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Abstract. Anomaly detection and fall prevention represent one of the
key research areas within gait analysis for patients suffering from neu-
rological disorders. Deep Learning has penetrated into healthcare appli-
cations, encompassing disease diagnosis and anomaly prediction. Con-
nected wearable medical sensors are emerging due to computationally
expensive machine learning tasks, which traditionally require use of
remote PC or cloud computing. However, to reduce needs for wireless
communication channel throughput, for data processing latency, and
increase service reliability and safety, on device machine learning is gain-
ing attention. This paper presents an innovative approach that lever-
ages one dimensional convolutional neural network (1D-CNN) and long-
short term memory (LSTM) neural network for the real-time detection
of abnormal gait patterns during the step. Real-time anomaly detection
pertains to the algorithm’s ability to promptly detect true gait abnor-
mality occurrence during the swing phase of an ongoing step.

For the experiments, we have collected eight different common gait
anomalies, simulated by 22 persons, using motion sensors containing mul-
tidimensional inertial measurement units (IMUs).

Results have demonstrated that the proposed 1D-CNN-AD algorithm
achieves an average accuracy of 95% and an average F1-score of 88%
for all gait types and can run in true real-time. Average earliness for
1D-CNN-AD algorithm was 0.6 s, which is mid-swing phase of the step.
Proposed LSTM-AD algorithm achieved average accuracy of 87% and
average F1-score of 70% for all gait types.

Keywords: Human gait · Anomaly detection · Gait analysis ·
Machine learning · Real-time · 1D-CNN · LSTM · Wearable sensors

This work has been supported by Estonian Research Council, via research grant No
PRG424, by the Center of Excellence (TK) project TAR16013 (EXCITE) and Estonian
IT Academy project “Sustainable Artificial Internet of Things (SAIoT)”.

c© The Author(s) 2024
M. Särestöniemi et al. (Eds.): NCDHWS 2024, CCIS 2084, pp. 260–278, 2024.
https://doi.org/10.1007/978-3-031-59091-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-59091-7_17&domain=pdf
http://orcid.org/0000-0003-1778-0333
http://orcid.org/0000-0002-4162-6646
http://orcid.org/0000-0002-2173-8181
http://orcid.org/0000-0002-6860-9539
http://orcid.org/0000-0002-1055-7959
https://doi.org/10.1007/978-3-031-59091-7_17


Real-Time Gait Anomaly Detection Using 1D-CNN and LSTM 261

1 Introduction

According to the World Health Organisation (WHO) report about one billion
persons are affected by neurological disorders worldwide [3]. Neurological dis-
eases ranging from migraine to stroke, and Alzheimer are the leading causes of
Disability Adjusted Life Years (DALY) loss [7]. For instance, there is a sub-
stantial risk of falling for patients with gait impairments from neurological dis-
eases [23]. It is especially true for patients suffering from neuromuscular diseases,
because high variability and deviations from the optimal gait pattern can be seen
in their gait [13]. Therefore, it is challenging to analyze patients’ gait patterns
in real-time. The gait of a person can be described by a set of parameters such
as: step length, duration of individual step phases, muscle force, etc. [19]. Wear-
able motion sensors, containing multidimensional Inertial Measurement Units
(IMUs), are the most widely used gait assessment devices in recent years for sup-
porting daily activities [25]. For example, motion sensors are used to detect ini-
tial and final contact events of the gait cycle for different persons - healthy, with
stroke, and with other neurological disorders, and select the best algorithms and
sensor placements for correct classification between them [10]. Motion sensors
can be employed to detect activities of daily life, fall events and their directions
[9], to determine rehabilitation progress and analyze gait normalcy index [2,36].
Also such devices can be used to discover environment dependent differences in
gait, which will help with context-aware decisions [29]. Finally, in combination
with Neural Networks (NNs), identify if person has balance disorder [20], to
track rehabilitation progress for broken limbs [4] etc.

It is shown that Functional Electrical Stimulation (FES) can be used to assist
walking and help with fall prevention [12] as well as for generic gait improvements
[17]. Long-term gait deviation analysis and efficient run-time control of FES
devices require automated real-time recognition of gait deviations. Average swing
phase of a step is 300–400 ms long [8], and the time of full contraction of the
muscle using electrical stimulation is 100–200 ms long [5], thus the detection
time of step pattern deviations should be under 100 ms. Considering that the
incoming signal must be processed, a correct decision made, and stimulation
actuation started, a detection time of 50 ms is required since the gait abnormality
has started.

Connected wearable medical sensors are emerging due to computationally
expensive machine learning tasks, which traditionally require use of remote PC
or cloud computing [14]. Nowadays, it is common to offload such data analysis
from wearable sensors to wirelessly connected smartphones [11]. For example,
data processing unit, sensors and muscle stimulator shall be wireless for gait
correction system, i.e. based on Bluetooth or SmartBAN standard. However, to
reduce needs for wireless communication channel throughput, for data processing
latency, and increase service reliability and safety, on device machine learning
is gaining attention [31]. Existing real-time algorithms are used in gait analysis
for identification by gait [15]; detecting of gait events like heel-strike and toe-off
for elderly healthy subjects; stroke patients and patients with Parkinson disease
[35], as well as with other impairments [24,37]; haptic biofeedback devices are
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implemented using inertial measurement units (IMUs), to correct toe-in or toe-
out during walking in real-time [32].

Notably, there are not found state-of-the-art solutions in gait analysis for
real-time anomaly detection of realistic gait deviations during the ongoing step,
caused by neurological diseases.

In our prior research work [27,28] we proposed a base method for real-time
anomaly detection in gait during the ongoing step, with an algorithm based on
Support Vector Machines (SVM), which is one of the most popular algorithms
used in gait analysis. On the other hand, NNs are widely adopted in gait analysis
[30]. They are capable of solving complex tasks in time-series data. Nonetheless,
to the best of our knowledge, there is no research exploiting NNs for real-time
anomaly detection during the ongoing step in gait analysis. In this paper, for the
first time, we leverage Convolutional Neural Network (CNN) and Long Short-
Term Memory NNs for real-time anomaly detection during the ongoing step in
human gait.

The contributions of this work are:

– Estimation of the performance of One Dimensional-Convolutonal Neural
Network-Anomaly Detection algorithm (1D-CNN-AD) and Long Short-Term
Memory Neural Network-Anomaly Detection algorithm (LSTM-AD) on the
collected simulated gait deviation dataset in comparison to the Real-time
tsSVM Anomaly Detection algorithm (RTtsSVM-AD).

– Exploiting hyperparameters for the neural networks to optimize performance
on simulated gait dataset for real-time in-step anomaly detection.

This paper consists of six sections: after the introduction, in Sect. 2 data
acquisition and gait types are described, as well as metrics used for analysis in
addition to presenting the proposed 1D-CNN-AD and LSTM-AD algorithms,
then in Sect. 3 we briefly describe evaluation metrics and the SVM-based algo-
rithm – RTtsSVM-AD, which is continued with experimental setup in Sect. 4;
this is followed by the results and discussion in the Sect. 5 and the paper is
concluded in Sect. 6.

2 Methodology

2.1 Dataset

Data Acquisition. The dataset in our experiments is collected from twenty-two
healthy persons of different genders, ages, heights and weights (Table 1), while
walking in a straight line and simulating abnormalities. Simulations are recre-
ating actual patients’ video recordings of gait deviations in collaboration and
guidance from a professional physiotherapist of Tallinn East Central Hospital.
We have included the most frequent human gait abnormalities, regarding ref-
erence [1]: Ataxic, Diplegic, Hemiplegic, Hyperkinetic, Parkinonian, Slap, Step-
page, and Trendelenburg (lurch). Table 2 shows eight under-study gait types and
the number of collected gait recordings per gait type. Collected data is labeled



Real-Time Gait Anomaly Detection Using 1D-CNN and LSTM 263

Table 1. Persons’ Information Used in This Study (Mean ± Standard Deviation)

No. of subjects Age (years) Height (cm) Mass (kg)

15 (Male) 32.1± 11.1 177.7± 5.5 76.8± 15.1

7 (Female) 26.3± 5.5 169.5± 6.2 62.7± 8.9

Fig. 1. Example of the typical shape of simulated step of studied gait types in compar-
ison to normal step shape, from the data used in this study. Blue line is normal step
shape and red line is corresponding typical shape for this gait type. On X-axis is time
in seconds and on Y-axis is normalized magnitude of angular velocities of gyroscope.
(Color figure online)

Table 2. Labeled data collected for this study.

Gait type Total number of
recordings for all
persons

Ataxic 32

Diplegic 25

Hemiplegic 17

Hyperkinetic 6

Parkinsonian 29

Slap 8

Steppage 32

Trendelenburg 6
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step-wise, thus all steps are annotated as normal or abnormal. Figure 1 illustrates
the patterns of each gait type in comparison with a normal step.

Such dataset to the best of authors knowledge is first to have combination of
normal and abnormal steps in one dataset. Other datasets are focusing on normal
gait patterns; have only abnormal steps in the dataset; compare separate normal
gait datasets and abnormal gait datasets, etc. [6,18,26,33].

Data Preprocessing. The collected data is in a form of time-series including
a three-axis gyroscope and their calculated magnitude (1).

Mag(X,Y,Z) =
√

X2 + Y2 + Z2, (1)

where X,Y and Z are gyroscope axes data vectors, X = [x0, x1, . . . , xi]T ,
Y = [y0, y1, . . . , yi]T and Z = [z0, z1, . . . , zi]T , sample index i ∈ Z. And the
Mag(X,Y,Z) is the magnitude vector of these axes.

To address future works with embedded devices in regard to data transmis-
sion and data gathering, data is collected into chunks. One chunk contains M
samples for each gyroscope axis. The collected data sample rate is 256Samples/s
in the current study. Collected data is labeled stepwise as “normal” step or
“abnormal” step.

Data Preparation for Real-Time Anomaly Detection. For 1D-CNN-
AD and LSTM-AD algorithms each person’s data is assessed separately. Data
for one gait type is prepared by separating training and validation datasets. One
gait recording is used as a validation dataset in real-time step anomaly detection
estimation, and all other recordings are combined into one training dataset. The
ratio between the training and validation datasets can change depending on the
person, gait type and available gait recordings for particular gait type.

To enable real-time abnormality detection in the swing phase of the ongo-
ing step, training dataset is divided into overlapping sliding windows. Figure 2
depicts how the windowing of the dataset is designed. As it is shown, each win-
dow contains P chunks (i.e., window factor), and each chunk includes M samples
and the overlap is N chunks.

Labeling of the windows is conducted according to the labels of the steps. In
edge cases, where one step is ending and new step is begging, label is assigned by
the proportion of samples of abnormal steps in the window. If this proportion is
less than abnormality proportion threshold then the window is labeled as normal,
if more, then it is labeled as abnormal.

One of the key advantages of the sliding windows for this study is indepen-
dence of the anomaly detection algorithms from gait phases.

As a part of hyperparameters optimization, hyperparameters, which affect
sizes, overlaps and labels of the sliding windows are investigated. These
hyperparameters are a) chunk duration – time in milliseconds, where num-
ber of samples M in one chunk is calculated from chunk duration as
M = round(Chunk duration ∗ Sample rate); b) window factor P – deter-
mines window size and is proportional to P chunks; c) Abnormality proportion



Real-Time Gait Anomaly Detection Using 1D-CNN and LSTM 265

threshold – fraction of the window, which should contain abnormal samples, to
consider the label of the window to be abnormal.

New samples
from the chunk

...
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nd

Flowing data ...

to "in-step
anomaly
detector"

Collect window from chunks' data

St
ep

 s
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rt

Fig. 2. Windowing of the data for training and for real-time anomaly detection per-
formance estimation. Ongoing gait data is incoming as flowing data, which is split
into chunks. From these chunks sliding windows are collected and used in real-time
in-step anomaly detector. Step start can be misaligned with sliding window. Chunks
are aligned with the sliding windows If abnormality is detected during the chunk C0,
then earliness is time between step start and end of the chunk C0.

2.2 Proposed Neural Networks

One Dimensional-Convolutonal Neural Network-Anomaly Detec-
tion Algorithm. The hypothesis of the 1D-CNN-AD algorithm is following: if
real-time gait data could be collected in the form of sliding windows, and neural
network could be trained on the dataset using same form of sliding windows
with known labels, then it is possible to detect abnormalities in gait during the
ongoing step.

The CNN in this study consists of two 1D convolutional layers, max pooling
layer, and two fully-connected (dense) layers to provide a binary classification.
The 1D-CNN-AD algorithm has the following hyperparameters: i) number of
filters; ii) kernel size; iii) batch size; iv) and number of epochs. These hyperpa-
rameters would be optimized in this study to achieve the best performance for
1D-CNN-AD algorithm.

In the explorations, the CNN is initialized with a fixed seed of parameters
(i.e., weights and bias). The neural network is trained on training dataset with
Adam optimizer and cross-entropy loss function. Moreover, a 20% dropout is
also considered between the convolutional layer and dense layers.
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Long Short-Term Memory Neural Network-Anomaly Detection Algo-
rithm. Hypothesis of the LSTM-AD algorithm is identical to the hypothesis of
the 1D-CNN-AD algorithm.

The LSTM-AD algorithm in this work consists of one layer of LSTM followed
by two fully-connected (dense) layers to provide a classification probability. The
number of cells in the LSTM layer is equal to the number of neurons in the
first dense layer. The LSTM-AD algorithm has the following hyperparameters:
i) number of LSTM cells; ii) batch size; iii) and number of epochs. These hyper-
parameters would be optimized in this study to achieve the best performance
for LSTM-AD algorithm.

In the explorations, the LSTM is initialized with a fixed seed of parameters
(i.e., weights and bias). The LSTM-AD algorithm is trained on training dataset
with Adam optimizer and cross-entropy loss function.

2.3 Anomaly Detection

To estimate performance of the real-time anomaly detection of the algorithms,
validation dataset is processed in online-fashion. It means, that data is arriving
sample by sample. Each sample is collected into chunks. Chunks are collected
into windows, as was described in the Sect. 2.1. Algorithms return anomalous
class probability for each window, which is collected to the buffer. After the
real-time estimation, collected probabilities are analyzed. Different thresholds for
anomalous class probability are estimated to achieve best results. This results in
the binary classification. These classification results are compared to the labels
of the validation dataset, resulting in confusion matrix. Accuracy and F1 score
are calculated from confusion matrix.

3 Baseline and Evaluation

3.1 Real-time tsSVM Anomaly Detection Algorithm

RTtsSVM-AD algorithm is based on a tslearn [34] Python library. Optimization
of hyperparameters is done by dividing training data into two datasets: training
and testing with ratio of 70%:30%. Trained classifier with best results for test
dataset is used in real-time performance estimation. Model step is calculated as
normal step ensemble average from test dataset, which consist of normal steps
that have been classified correctly.

The hypothesis of the algorithm is following: if full time-series step pattern
could be collected in real-time by combining the average normal step from train-
ing phase with the ongoing step data, then anomaly could be detected during
the swing phase of the ongoing step by the RTtsSVM-AD algorithm.

We have adopted the RTtsSVM-AD algorithm in our prior work [28] as a
baseline for comparing the results of the proposed 1D-CNN-AD and LSTM-
AD algorithms in this paper.

Brief overview of the algorithm. Data is collected chunk wise, when step
start is detected. Step start and end events are detected if the step detection
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threshold crosses 20% of the gyroscope magnitude range. Hyperparameter γ
is optimized on training and testing datasets. This hyperparameter is used by
the global alignment kernel (GAK), where γ is the hyperparameter controlling
soft dynamic time warping (softDTW) smoothness [34]. Multiple classifiers with
different values of γ could have same performance. Average normal step is created
from correctly classified normal steps from training dataset. In real-time in-step
gait anomaly detection performance estimation, if step start is detected, data
is collected into a chunk. This chunk is replacing corresponding chunk in the
model step. Such chunkwise replacement converts regular time-series SVM into
the real-time anomaly detection algorithm.

3.2 Evaluation Metrics

For evaluation, several metrics are exploited: Accuracy, F1-score, earliness, and
real-time factor (RTF). Earliness in this paper is defined as – time between the
beginning of a step and the moment in time when anomaly is detected in this
step. The minimal achievable earliness naturally depends on the gait deviation
type. Such a measure has been introduced, because the concrete moment when
anomaly starts to occur can fluctuate, depending on a gait type.

3.3 Score and Alarm

For estimation of the performance of the algorithms, anomalous class probabil-
ity is collected from the classifier. Binary decision is performed later in post-
processing of the results. Score is the resulting anomalous class probability. For
RTtsSVM-AD algorithm Score is average score from used classifiers in estima-
tion, because multiple classifiers could be used simultaneously. Score is compared
with the selected threshold, giving alarm signal in (2), finalizing the anomaly
detection.

Alarm =

{
1, if S > threshold

0, if S ≤ threshold
(2)

If Alarm is triggered, then earliness is the time duration from the beginning
of the step to the current moment in time.

4 Experimental Setup

For 1D-CNN-AD and LSTM-AD algorithms, the considered hyperparameters
are presented in the Table 3 and Table 4.

For the RTtsSVM-AD algorithm parameters used in this work are as follows:
a) one chunk is M = 12 samples; b) predefined γ values are in the range from
100 to 1000 with an increase of 100 and in the range from 5 to 100 with an
increase of 10; c) the step detection threshold is 200◦/s.

All training and validation experiments are implemented in Python 3.10.13,
tslearn 0.6.2, and TensorFlow 2.9.1 and performed on a prebuilt HP computer
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Table 3. Global hyperparameters for 1D-CNN-AD and LSTM-AD algorithms

Hyperparameter Values

Window factor (P) 6 to 10. Default 8

Chunk size 25 ms to 100 ms. Default 50 ms

Samples in a chunk (M) 6 to 25. Default 12

Sliding window overlap (N) 1

Abnormality proportion threshold 50% to 90%. Default 70%

Batch size 2n where n is from 3 to 8. Default n is 5

Number of epochs in training 1 to 30. Default 20

Table 4. Algorithm-Specific Hyperparameters

Algorithm Specific Hyperparameters

LSTM-AD Number of LSTM cells: 20, 25, 30. Default: 25

1D-CNN-AD Number of filters in convolutional layer:
2n where n is from 3 to 8. Default n is 6
Kernel size in convolutional layer: 2, 3, 5, 7, 9, 11.
Default 5
Dense layer with 100 neurons

with Intel Core i7 and 16Gb of DDR4 memory. We conducted CPU experiments
to model the execution on the embedded devices in future works.

5 Experimental Results and Discussion

Results for the 1D-CNN-AD, LSTM-AD and RTtsSVM-AD algorithms are pre-
sented in this section.

5.1 Optimization of 1D-CNN-AD and LSTM-AD Algorithms
Hyperparameters

In this paper, optimization is performed by one parameter at a time, while the
other parameters are set to their default values.

Chunk Length. The first hyperparameter to consider is the length of the chunk.
Table 5 shows the best mean F1 scores with corresponding chunk sizes. It is
observed that the best results are achieved with chunk sizes of 75 and 100 ms for
all gait types for LSTM-AD and most of the gait types for 1D-CNN-AD. Chunk
size of 40 and 50 ms performed better for Steppage, and Trendelenburg gait
types for 1D-CNN-AD algorithm. Despite the better performance with longer
chunks for some gait types, chunk size is set to 50 ms, with consideration of fast
anomaly detection. Larger chunk sizes would lead to slow anomaly detection.
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Table 5. Best mean F1 scores for different chunk sizes (CS)

Gait type LSTM-AD 1D-CNN-AD

F1 CS, ms F1 CS, ms

Ataxic 62.63% 100 79.28% 75

Diplegic 72.36% 100 87.49% 100

Hemiplegic 81.03% 100 83.52% 75

Hyperkinetic 75.95% 100 96.3% 75

Parkinsonian 75.24% 100 84.65% 100

Slap 57.45% 75 78.7% 75

Steppage 75.09% 100 84.17% 40

Trendelenburg 59.65% 75 81.3% 50

Window Factor and Abnormality Proportion. These hyperparameters
should be considered in correlation with each other because both of them change
the number of samples in the window, which can change the final label of the
window. Table 6 presents the best mean F1 scores for combination of window fac-
tor and abnormality proportion. It could be seen, that 1D-CNN-AD algorithm is
performing best with shorter windows for most of the gait types, whereas LSTM-
AD algorithm is performing best with longer windows for most of the gait types.
In terms of abnormality proportion threshold, for most of the gait types for
both 1D-CNN-AD and LSTM-AD algorithms higher threshold is needed. Only
for Hyperkinetic and Steppage gait types it was 70% for LSTM-AD and 60%
for 1D-CNN-AD algorithms respectively. It means, that for Hyperkinetic and
Steppage gait types edge cases are important for correct anomaly detection.
Thus, in general, most of the windows should contain mostly abnormal sam-
ples to be labeled abnormal for best performance. With the default settings for
other parameters, 1D-CNN-AD algorithm achieves mean F1 scores of 96.3% for
Hyperkinetic gait type. On the other hand, LSTM-AD algorithm achieves best
mean F1 score of 73.78% for Hemiplegic gait type.

Diplegic and Hyperkinetic gait types have anomalies in the middle and end
of the step, thus short windows should be best suited for them to detect abnor-
mality early, as can be seen in 1D-CNN-AD algorithm results. Both Ataxic and
Parkinsonian gait types have multiple abnormal steps in a row, which can be
similar to normal steps, thus requiring well defined long abnormal windows dur-
ing the training phase. Slap gait is usually characterized by the sharp short peak
at the end of the step, whereas the rest of the step can be similar to normal, thus
making it more critical to have a correct classification in edge cases. Steppage
gait type have different amplitudes from the normal step for its peaks when the
knee is raised up to compensate for lack of movement in the forefoot. Hemi-
plegic gait type can be similar to a normal gait, which makes it more difficult to
differentiate from normal steps which require well-defined shorter windows.
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Table 6. Best mean F1 scores for different window factor (WF) and abnormality
proportion threshold (AP)

Gait type LSTM-AD 1D-CNN-AD

F1 WF AP F1 WF AP

Ataxic 58.16% 9 90% 78% 10 90%

Diplegic 58.31% 8 90% 82.81% 7 80%

Hemiplegic 73.78% 10 90% 84.03% 6 90%

Hyperkinetic 69.05% 10 70% 95.15% 7 90%

Parkinsonian 63.25% 9 90% 84.38% 10 80%

Slap 62.55% 8 80% 86.9% 6 80%

Steppage 64.83% 10 80% 88.39% 6 60%

Trendelenburg 64.75% 10 80% 83.75% 6 90%

Number of Filters and Kernel Size in the Convolutional Layer for 1D-
CNN-AD Algorithm and Number of LSTM Cells for LSTM-AD Algo-
rithm. As presented in Table 7, the best scores for 1D-CNN-AD algorithm are
generally achieved with a higher number of filters of 128 and 256, except for
Diplegic gait type with 32 filters. This means that extracting more features from
the data improves the performance of the 1D-CNN-AD algorithm demonstrat-
ing the complexity of the human gait. For Diplegic gait type a smaller network
is best suited, meaning that extracting too many features can confuse the 1D-
CNN-AD algorithm, because the shapes of the abnormal steps for them are more
defined than the ones in other gait types.

Best performance is achieved for 1D-CNN-AD algorithm with medium kernel
size of 7 except for Hyperkinetic and Steppage gait types with a kernel size of
11 and for Parkinsonian and Trendelenburg gait types with kernel size of 9.
For Hyperkinetic, Steppage, Parkinsonian and Trendelenburg gait types bigger
kernel size is needed to neglect the variance between individual abnormal steps
in the data.

For LSTM-AD algorithm larger number of LSTM cells results in a better
performance, due to the complexity of the gait signal. For Ataxic, Diplegic and
Slap gait types algorithm performs best with 25 cells showing, that they have
simpler shapes, compared to other gait types. For Parkinsonian gait type the best
performance was with 20 cells, meaning, that this gait type, has more pronoun
shape, compared to other gait types.

Batch Size and Number of Epochs in Training. As presented in Table 8,
the best scores are generally achieved with a bigger batch size of 128 and 256,
except for Trendelenburg gait type with a size of 32 for 1D-CNN-AD algorithm,
and Slap and Trendelenburg gait types with size of 16 and 64 respectively for
LSTM-AD algorithm. This means, that a more accurate training gradient of the
neural network is needed for these gait types.
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Table 7. Best mean F1 scores for different numbers of LSTM cells (#C) and 1D-CNN
kernel size (KS) and number of filters (#F)

Gait type LSTM-AD 1D-CNN-AD

F1 #C F1 KS F1 #F

Ataxic 52.4% 25 75.31% 7 75.04% 128

Diplegic 56% 25 81.67% 7 80.3% 32

Hemiplegic 61.37% 30 82.3% 7 87.87% 256

Hyperkinetic 69.5% 30 92.45% 11 86.7% 128

Parkinsonian 57.49% 20 85.45% 9 87.74% 128

Slap 56.95% 25 87.1% 7 81.8% 256

Steppage 60.17% 30 85.23% 11 87.43% 256

Trendelenburg 59.85% 30 83.05% 9 81.75% 128

Table 8. Best mean F1 scores for different batch size (B) and number of epochs (#E)

Gait type LSTM-AD 1D-CNN-AD

F1 B F1 #E F1 B F1 #E

Ataxic 56.11% 128 55.95% 5 77.52% 256 78.95% 3

Diplegic 68.77% 256 71.06% 5 85.92% 256 89.33% 5

Hemiplegic 77.08% 256 81.32% 2 85.08% 256 85.45% 4

Hyperkinetic 60.7% 256 73.2% 2 92.45% 256 98.1% 5

Parkinsonian 68.43% 256 66.38% 4 86.81% 256 88.36% 2

Slap 59.8% 16 55.8% 10 83.9% 256 90.8% 4

Steppage 64.89% 128 67.8% 5 87.7% 256 88.1% 2

Trendelenburg 55.4% 64 57.05% 10 81.3% 32 81.3% 20

In terms of the amount of training required by the algorithms, it is clear, that
more than 5 epochs could lead to overfitting, thus reducing classification quality
in this study. Only LSTM-AD algorithm performed better with 10 epochs for
Slap and Trendelenburg gait types, and 1D-CNN-AD algorithm performed bet-
ter with 20 epochs for Trendelenburg gait type. This could be due to similarities
between normal step and typical step shape for Trendelenburg gait type, thus
needing more time to properly fit the network. Considering the overall perfor-
mance of 55.8% for Slap gait type for LSTM-AD algorithm in epoch optimiza-
tion, algorithm struggled with this gait type. Training dataset usually contains
around 5000 windows, thus every epoch has around 39 iterations with batch size
of 128. Normal and abnormal steps have mostly consistent shapes in one gait
type. Thus, smaller number of epochs can fit such data better. Larger number
of epochs could lead to lower performance due to overfitting of the training data
and would trigger anomaly detection while classifying unknown data. Therefore,
better results are generally achieved with 2 to 5 epochs.
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Fig. 3. Distribution of accuracy across different algorithms for all persons for different
gait types. On y-axis is accuracy in percents or time in seconds, on x-axis are different
gait types.

Fig. 4. Distribution of F1 scores across different algorithms for all persons for different
gait types. On y-axis is F1 score in percents, on x-axis are different gait types.
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Fig. 5. Distribution of Earliness across different algorithms for all persons for different
gait types. On y-axis is time in seconds, on x-axis are different gait types.

Comparison of Algorithms. In Fig. 3 and Fig. 4 could be seen, that both 1D-
CNN-AD and LSTM-AD algorithms are outperforming the RTtsSVM-AD base
comparison algorithm. The best scores for all gait types are achieved by 1D-CNN-
AD algorithm with an average accuracy of 95% and average F1-score of 88%.
LSTM-AD algorithm achieved an average accuracy of 87% and average F1-score
of 70%. Best results for 1D-CNN-AD algorithm are for Hyperkinetic and Slap
gait types with F1 scores of 98.1 ± 2.7% and 90.8 ± 9.3% respectively. It could
be observed that for Ataxic, Hemiplegic, Slap, Steppage, and Trendelenburg gait
types there are some deviations in results from person to person, that could be
improved with additional optimization. Best result for LSTM-AD algorithm is
achieved for Hemiplegic gait type with average F1 score of 81.32 ± 9.96%. 1D-
CNN-AD algorithm is achieving accuracies over 92.6% for all gait types and F1
scores of over 83% for all gait types, except for Ataxic gait type with F1 score
of 78.95 ± 15.43%. LSTM-AD algorithm achieved accuracies over 78.3% for all
gait types with F1 scores of 71.06 ± 12.47%, 73.2 ± 22.77% and 79.61 ± 14.92%
for Diplegic, Hyperkinetic and Steppage gait types respectively. Lowest F1 score
of 60.24 ± 18.65% is achieved for Ataxic gait type.

Time of detection is relevant, when classification accuracy is high. Typical
normal step length in this study is ranging from 1 to 1.2 s depending on the
person, whereas abnormal step duration ranges from 1 to 1.7 s, depending on the
person and gait type. Mid-swing phase of the step is starting at around 0.2–0.4 s
from the step beginning. Therefore, for the earliness metric depicted in Fig. 5, it
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could be observed that for most gait types the earliness is less than one second.
For Steppage gait type the most common earliness measure is around 0.6 s for
RTtsSVM-AD and LSTM-AD algorithms and 0.2 s for 1D-CNN-AD algorithm
which is in the middle or at the beginning of a step. For other gait types it could
be observed that detection was mainly in the middle of a step, which shows, that
algorithms can detect anomalies early, during the mid-swing phase of a step. For
some gait types RTtsSVM-AD and LSTM-AD are detecting abnormality earlier
than 1D-CNN-AD, but in combination with quality of prediction, 1D-CNN-AD is
outperforming other presented algorithms.

Table 9. Average real-time factor for all algorithms

Algorithm RTF

1D-CNN-AD 0.09± 0.03

LSTM-AD 1± 0.07

RTtsSVM-AD 9.13± 6.54

In Table 9, it can be observed that the main issue of RTtsSVM-AD algorithm
is computational real-time factor. It means that for every second of incoming
data, it takes 9.13 ± 6.54 s to classify it, which is 3 to 15 times longer than the
amount of collected data in real-time. The main reason for this is the usage of
prediction probability in tslearn classifier, which uses an expensive 5-fold cross-
validation method to calculate probability. Using regular class prediction is not
possible due to inaccurate results from the classifier, as it outputs only zero
or one as class identification, drastically reducing classification quality. LSTM-
AD algorithm is performing classification in near real-time but not faster than
it, because recurrent operations of the algorithm are computationally expensive.
Thus, 1D-CNN-AD algorithm is most suitable for real-time applications, for
example, to operate in real-time on a real gait assistive device.

This work have several limitations: a) Simulated gait deviation could differ
from the real patient’s gait with neurological disorders. However, the main goal
in this study is to classify the step as normal or abnormal during the mid-swing
phase of the step. If patient’s normal step pattern after the rehabilitation is
sufficiently different from the patient’s abnormal step pattern (i.e. because of
fatigue or other reasons), then algorithms will be able to detect gait abnormali-
ties during the mid-swing phase of the step as they are able to detect them in this
study with simulated gait. Also, as it was stated in the Sect. 2.1: simulations are
recreating actual patients’ video recordings of gait deviations in collaboration
and guidance from a professional physiotherapist of Tallinn East Central Hospi-
tal. Thus, such simulated gait types are representing real gait types as close as
possible. b) Neural networks in this study are not aware of the gait phase, thus
multiple alarms could be triggered during one abnormal step, thus they would be
optimized further. Cross-correlation of different hyperparameters could improve
classification performance and would be studied in future work.
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6 Conclusion

Proposed in this study real-time in-step anomaly detection algorithms are at the
very beginning of the research towards context aware assistive devices, which will
help to improve gait quality and reduce falling risk for patients suffering from
neurological disorders.

Results of this study shows that 1D-CNN-AD algorithm is suitable for real-
time anomaly detection in realistic gait deviations during the ongoing step with
average earliness of 0.4 s. An average accuracy of 95% and average F1 score of
88% across different studied gait types is achieved for 1D-CNN-AD algorithm,
with best F1 score of 98.1 ± 2.7% for Hyperkinetic gait type. Benefits of this
algorithm are, that it is not dependent on gait phases, resistant to the non-
optimal hyperparameters and can run in real-time. Second proposed LSTM-
AD algorithm achieved average accuracy of 87% and average F1-score of 70%
across different studied gait types and best result is achieved for Hemiplegic gait
type with F1 score of 81.3 ± 9.96%.

Future gait correction systems and assistive devices will benefit from context
awareness in a form of real-time anomaly detection algorithms, leading to more
tailored approach for patients suffering from neurological disorders. This will help
them to maintain better gait quality, which they obtained after rehabilitation,
giving higher chance to continue daily living activities without major restrictions.
Main benefit of context aware assistive devices compared to regular assistive
devices would be less muscle fatigue from using it. Considering, that FES is used
in current assistive devices [16,21,22], where electrical stimulation is given every
step, context aware FES would be used only, when step deviation is detected
and stimulation is necessary.

Future work will be focusing on further optimization of the presented algo-
rithms, in-step abnormality estimation with more persons and real-time in-step
abnormality detection tests with embedded devices running proposed in this
study algorithms.
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