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Abstract. Early cancer detection is crucial, especially for intestinal cancer with
subtle early symptoms.While camera-basedWireless Capsule Endoscopy (WCE)
systems are efficient, patient-friendly, and safe investigating gastrointestinal (GI)
track thoroughly, some limitations persist in visualizing only the inner part of
the GI regions. Our study introduces a radio channel analysis -based approach to
detect intestinal/abdominal tumors which are not visible for theWCE camera, i.e.,
the tumors which have started to grow on the outer parts of the intestinal track.
Focused on S-parameter patterns in realistic human voxel models, our simulation-
based method discerns dielectric property variations in normal and tumorous tis-
sues, replicating intricate tissue characteristics. Preliminary simulation results in
different intestine locations demonstrate our technique’s efficacy in differentiat-
ing normal and tumor cases based on S-parameter patterns. With a 98% accuracy
rate, simple logistic regression classification model excels in distinguishing nor-
mal from tumor tissues, significantly enhancing diagnostic precision in GI health
monitoring showcasing its potential to revolutionize early cancer detection and
advance diagnostic accuracy within simulated human anatomy. This represents
a substantial stride toward improving healthcare outcomes through cutting-edge
technology.

Keywords: Early detection of tumors · Gastrointestinal monitoring · implant
communications · ultra-wideband

1 Introduction

Gastrointestinal (GI) tumors encompass a diverse spectrum of lesions, ranging from
benign polyps to aggressive malignancies which may represent a significant health bur-
den globally especially in developed countries [1, 2]. Colorectal cancer ranks as the

© The Author(s) 2024
M. Särestöniemi et al. (Eds.): NCDHWS 2024, CCIS 2084, pp. 426–440, 2024.
https://doi.org/10.1007/978-3-031-59091-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-59091-7_28&domain=pdf
https://doi.org/10.1007/978-3-031-59091-7_28


Detection of Intestinal Tumors Outside the Visibility of Capsule 427

most prevalent gastrointestinal (GI) malignancy [2] whereas small intestine cancer is
rare even though small intestine forms a major part of the digestive tract [3]. Small bowl
cancers, often originating in inner lining, can extend through various layers [3].

The early detection of intestinal tumors stands as a critical challenge in modern
oncology, as timely intervention significantly improves patient outcomes and survival
rates [2]. Traditional diagnostic modalities such as computed tomography (CT) [4],
magnetic resonance imaging (MRI) [5], and conventional endoscopy with the flexible
tube [6] are effective, although often pose limitations in terms of invasiveness, patient
discomfort, efficiency, and potential side-effects [6].

Wireless capsule endoscopy (WCE) is attracting attention due to its simplicity and
ability to comprehensively examine the gastrointestinal (GI) tract, especially the small
intestine, which poses challenges for conventional endoscopy [7]. Persistent challenges
include issues such as frame rate, battery life, and automated anomalydetection.Artificial
intelligence (AI) assists in image recognition during GI endoscopy, enhancing screening
quality and reducing unnecessary costs [8]. Convolutional neural network (CNN) based
systems are employed for cancer detection, adding value to colonoscopy based colorectal
screening [8].

One main challenge both with conventional endoscopy and capsule endoscopy is
that tumors deeply infiltrating the intestinal wall or invading surrounding structures
may not be detected since camera’s field of view is limited to the mucosal surface of
the gastrointestinal tract. Hence, deeper lesions may be beyond its reach. This paper
proposes a novel idea of analyzing microwave radio channel between the capsule and
on-body antennas which could also reveal tumors which are not visible for capsule
camera.

In this paper, we propose WCE radio channel analysis-based detection of tumors
which are not visible for capsule endoscopy cameras. The radio channel analysis could
be used as an additional feature to the traditional WCE. To the best of our knowledge,
none of the previous studies have explored the detectability of tumors, which are outside
the visibility of the capsule endoscopy camera, using radio channel-based analysis. Our
methodology revolves around radio signal recognition, specifically analyzing channel
transfer parameters SN1 between the capsule and the on-body antennas, with N being
the number of on-body antennas. In contrast to conventional visual-based methods,
our simulation-centric approach utilizes SN1 patterns to discern variations in dielectric
properties, such as relative permittivity and conductivity, between normal and tumorous
tissues. By leveraging realistic human voxel models, our approach aims to faithfully
replicate intricate tissue characteristics, providing a nuanced understanding of the subtle
differences that indicate the presence of tumors.

Our initial simulation findings, conducted with a realistic voxel model, underscore
the effectiveness of our method in distinguishing between normal and tumor cases based
on SN1 patterns. By utilizing SN1 pattern analysis, we not only enhance precision in
the WCE system but also highlight its potential to redefine strategies for early cancer
detection of the tumors non-visible for capsule cameras. This advancement contributes
to improved diagnostic accuracy within a simulated realistic human anatomy, paving the
way for transformative developments in the field.
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Our study focuses on automatically distinguishing between normal and tumorous
tissues in colon and small intestine areas using SN1 patterns. Besides of analyzing dif-
ferences in SN1 patterns, our further objective is to implement a classification approach
by employing Logistic Regression as a straightforward yet effective method. The classi-
fication model is trained on a labeled dataset, where SN1 patterns serve as features, and
corresponding labels indicate tissue status (0 for normal, 1 for tumorous). Through this
approach, we aim to achieve automated discrimination, thereby advancing early cancer
detection strategies.

The paper is structured as follows: Sect. 2 provides description of simulationmodels,
dielectric properties of tumor and normal tissues, as well as details about antennas and
their locations. Additionally, evaluated capsule and tumor locations are illustrated in the
small intestine and colon regions. Section 3 presents the radio channel evaluations in the
presence and absence of tumors in small intestine and colon areas. Section 4 presents
Logistic Regression Classification results. The paper concludes with a summary and
outlines the potential future works in Sect. 5.

2 Methodology

2.1 Simulation Models

The investigation employs computer systems technology (CST), an electromagnetic
simulation software utilizing the finite integration technique [9]. An anatomical voxel
model is utilized, and WCE-model, equipped with a dipole antenna, is strategically
positionedwithin various segments of the small intestine in the voxel model. To establish
an in-to-out wireless body area network (WBAN), a highly directive on-body antenna
is integrated. Notably, the radio channel characteristics undergo significant variations
dependingon theplacement of the on-bodyantennawithin the intestines and its proximity
to the WCE-model. Therefore, careful selection of on-body antenna locations becomes
essential to ensure comprehensive coverage across the entire intestinal area.

It is important to highlight that path loss emerges as a primary constraint in the
investigation. This constraint is influenced by both the distance between the capsule and
the on-body antenna, and the tissues situated between them. Hence, a nuanced consid-
eration of path loss, incorporating both distance and tissue characteristics, is crucial for
the successful execution and interpretation of the investigation.

Among the voxelmodels provided byCST, the anatomical voxelmodel namedLaura,
depicting a middle-aged female body with a resolution of 1.87 × 1.87 × 1.25 mm, is
chosen due to its accurate modeling of the intestinal region including subcutaneous
and visceral fat, muscles, small intestine (wall and content), and colon (large intestine).
Table 1 furnishes the dielectric properties of various human body tissues at 4 GHz [10]
including dielectric tumors of intestinal tumor retrieved from [11]. Table 1 also includes
tissue thicknesses in capsule location A.

2.2 Antennas and Antenna Locations

In conventional WCE, the integrated camera captures images while navigating the GI
tract, transmitting them to a monitoring device on the user’s belt. The patient returns the
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Table 1. Voxelmodel thickness at the selected crosscut and tissues’ dielectric properties at 4GHz.

Tissues Thickness
[mm]

Permittivity
[F/m]

Conductivity
[S/m]

Skin 1.4 36.6 2.34

Fat (subcutaneous) 15 5.31 0.18

Muscle 9 50.8 3.01

Fat (visceral) 4 5.31 0.18

Small intestine (wall) 8 50.8 3.11

Small intestine (content) 20 51.7 4.62

Intestinal tumor [11] 1 cm/2 cm/3 cm 57 5.2

monitoring device to the doctor the following day for image review. Nevertheless, the
potential for doctors to remotely monitor real-time images presents a valuable opportu-
nity.Our proposed idea facilitates comprehensiveGI track and surrounding areamonitor-
ing through radio signal transmission. The integration of an in-to-out WBAN, 5G func-
tionalities and a straightforward classification approachmakes real-time tumor detection
achievable [12, 13]. The IEEE802.15.6 standard for WBAN defines the frequency range
in Ultra-Wide Band (UWB), specifically 3.1–10.6 GHz [14]. Considering propagation
losses, our study utilizes the lower segment of the UWB band for capsule endoscopy
(3.75–4.25 GHz).

In our research, on-body antennas are designed for 3.75–4.25 GHz, meeting
IEEE802.15.6 standard requirements and falling within the 5G frequency range 3.3–
4.2 GHz) used in the USA and partly in Europe. A cavity-backed low-band UWB direc-
tive antenna type (Fig. 1a) is chosen for on-body antennas due to its good directivity,
aligned with IEEE 802.15.6 standard requirements [14]. Details of the antenna charac-
teristics and its radiation patterns are presented in [15]. Five on-body antennas are used
to cover small and large intestinal areas thoroughly as shown in Fig. 1b. The antennas
are numbered according to their port number in the simulation model (port number 1 for
the capsule antenna, port numbers 2–6 for on-body antennas), as described in our WCE
channel modeling paper in [16, 17].

As a capsule model, we used a small dipole embedded inside a realistic shaped and
sized capsule shell, as described in [16]. The evaluated capsule and tumor locations are
presented in Fig. 2a-b in small intestine and in Fig. 2c-h in large intestine areas. Location
in small intestine is named as MI00, similarly to our previous study presenting radio
channel modeling with realistic models [17]. Locations in large intestines are named
as “Loc. D” (Fig. 2c-d), “Loc. C” (Fig. 2e-f), and “Loc. A” (Fig. 2g-h), also similarly
to [13]. These capsule locations are chosen to present different propagation conditions
in abdominal area between the capsule and the on-body antenna - in terms of different
thicknesses of fat and muscle tissues as well as capsule location respect to the closest
on-body antennas.
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a) b)

Fig. 1. a) The cavity-backed low-band UWB directive on-body antenna designed for in-body
communications, b) locations of five on-body antennas [16].

Fig. 2. The locations of tumors and capsule respect the on-body antennas and corresponding
cross-section illustration a-b) Loc. MI00 (small intestine), c-d) Loc. D (colon), e-f) Loc. C (colon)
and g-h) Loc. A (colon).
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3 Results: Impact of the Tumors on Channel Characteristics

In this section, the channel characteristics between the capsule model and the on-body
antennas are evaluated in several locations of Laura-voxel’s intestine. Due to brevity, the
focus is showing the S-parameters in the presence and absence of tumors especially in
the colon area, where most of the GI tumors usually grow. Additionally, an example case
for small intestine area is also presented to demonstrate the efficiency of the method.

3.1 Impact of the Tumor in Small Intestinal Area

Firstly, radio channel characteristics are evaluated in small intestinal tumor case, in
locationMI00. In this case, three tumor sizes are evaluated: with the widths 1 cm (small),
2 cm (medium), and 3 cm (large). All of them are located inside the small intestine wall
without visibility to the interior of the small intestine where WCE moves.

The channel parameters between the capsule and on-body antenna S21, S31, S41, S51
and S61 are presented in Fig. 3a-e. As can be seen, the impact of the tumors is visible
in all the simulated channel parameters even with the smallest tumor. The impact of the
tumor varies significantly with the frequency. The changes due to small tumor vary from
0.01–4 dB whereas due to the large tumor 0.1–25 dB.

3.2 Impact of Tumors on Channel Characteristics in Colon Area

Location D
Next, the evaluations are carried out in different locations of the colon area, first in Loc.
D illustrated in Fig. 4a-b. This centralized location is demonstrated first to show how
tumorswhich are non-visible for the capsule camera, may change channel characteristics
between the capsule and all the surrounding antennas. The results for S21, S31, and S41
parameters are shown in Fig. 6a and for S51 and S61 in Fig. 6b. It is found that tumor
located on the outer surface of the colon, causes clear differences in S-parameters. The
smallest differences are found in the channel response, which is closest to the capsule, in
this case S21 parameter: maximum difference is 5 dB at 5 GHz, but within the antenna’s
specific operational frequency range 3.75–4.25 GHz, the maximum difference is only
1 dB. Instead with S61, the maximum difference within the antenna’s operational range
is even 7 dB. This phenomenon is due to the capsule’s location exactly in the same
horizontal line as the radiator of the on-body antenna 2 as well as due to the large size on
the on-body antennawhich capturesmultipath signal components from large area around
the capsule. Hence the tumor which is located exactly on the front of the capsule in this
scenario, does not affect significantly. However, it is assumed that with a smaller cavity,
or with the same antenna without the cavity, the impact would be more significant.

Location C
Next, the channel characteristics are evaluated in Location C which is on the down right
corner of the on-body antenna 6’s cavity. In this case, we evaluated the impact of the
tumor of two sizes 1 cm (small) and 3 cm (large). The results are presented in Fig. 5a-e.
Also in this case, the tumor has an impact on the channel characteristics of all the on-
body antennas. Now even the impact is larger than in the on-body antenna location D
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a)

b)

c)

d)

Fig. 3. Channel characteristics between the capsule and the on-body antennas in the small intestine
region in the presence of tumors having sizes 1cm, 2 cm and 3cm: a) S21, b) S31, c) S41, d) S51,
e) S61 results.
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e)

Fig. 3. (continued)

since the capsule is not located in the middle of the antenna’s cavity. The larger tumor
has naturally larger impact on the channel characteristics. The maximum difference
between the larger tumor and reference case is over 20 dB whereas with smaller tumor
the maximum difference is few decibels.

Location A
Finally, an assessment of the channel characteristics is conducted at Location A, and
the results are illustrated in Fig. 6a-c. This analysis includes the examination of capsule
antenna reflection coefficients S11, a commonly utilized parameter in tumor detection.
The findings reveal that, in this specific case of tumor and capsule placement, tumors
induce only negligible changes in the S11 parameters. Consequently, it is determined that
S11 is not conducive to effective tumor detection under these circumstances. Instead,
variation with channel parameters is obvious and clearly detectable: the difference is
even over 20 dB in several frequencies.

It is crucial to note that manually or visually inspecting a substantial amount of data
for such differences is impractical. Therefore, in the pursuit of a more systematic app-
roach, the next subsection introduces automatic classification modeling. This approach
allows for a comprehensive analysis and categorization of the data, ensuring efficient
identification of patterns indicative of normal and tumor tissue conditions.

4 Logistic Regression Classification Results

Logistic regression emerges as a robust statistical model tailored for binary classification
challenges, precisely aligningwith our objective of distinguishing between normal tissue
and tumor tissue.Comprisingkey components, the logistic regressionmodel incorporates
extracted features from theS21 as input features (X), encapsulating vital channel response
characteristics. The output variable (Y) denotes the binary class assignment (normal
or tumor). Employing the sigmoid activation function σ (z) = 1

1+exp(−z) , the model
transforms the linear combination of input features into probabilities, ensuring outputs
fall within the 0 to 1 range, signifying the likelihood of belonging to the positive class
(tumor) [18–20]. The linear combination, expressed as the logit function [20]

p̂ = β0 + β1X1 + β2X2 + . . . + βnXn, (1)
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a)

b)

Fig. 4. S21-S61 parameters in the presence and absence of small and large tumors and reference
case in capsule and tumor locations D in colon.

computes the log-odds, with coefficients (β) associated with input features determining
the probability of the positive class.

In the training phase of logistic regression, the model learns from a labeled dataset to
optimize its coefficients (β) for accurate predictions. The objective is to find the values
of β that minimize the difference between the predicted probabilities and the actual
class labels. This process is often achieved through optimization techniques, with two
common methods being Maximum Likelihood Estimation (MLE) and gradient descent.

Maximum Likelihood Estimation (MLE): This statistical method aims to maximize
the likelihood function, which measures the probability of observing the given dataset
under the assumed statistical model. In logistic regression, MLE finds the set of coef-
ficients (β) that maximizes the likelihood of observing the actual outcomes given the
input features [20].

Gradient Descent: An iterative optimization algorithm, gradient descent adjusts the
coefficients (β) by moving towards the minimum of the cost function. The cost function
quantifies the difference between predicted probabilities and actual labels. By calculating
the gradient of the cost function with respect to the coefficients, the algorithm updates β

in the direction that minimizes the cost, gradually converging towards the optimal values
[20].
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a)

b)

c)

d)

Fig. 5. S21-S61 parameters in the presence and absence of small and large tumors and reference
case in capsule and tumor locations C.
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e)

Fig. 5. (continued)

Both MLE and gradient descent play crucial roles in refining the logistic regression
model during training, ensuring it captures the underlying patterns in the data and can
make accurate predictions on new, unseen examples. This iterative process of adjusting
coefficients enhances the model’s ability to discern between normal and tumor tissue
cases based on the extracted features from S21.Evaluation metrics, including accuracy,
precision, recall, and F1-score, play a crucial role in assessing the proficiency of the
logistic regression model in classifying normal and tumor cases. Accuracy, represented
by [10].

Accuracy = (TP + TN )/ (TP + TN + FP + FN ), (2)

gauges the overall correctness of themodel’s predictions, considering true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN). Precision expressed
as [20].

Precision = TP/(TP + FP), (3)

evaluates the model’s ability to correctly identify positive cases among all predicted
positives. Recall, denoted by [20].

Recall = TP/(TP + FN ), (4)

F1score = (2Precision Recall)/(Precision + Recall), (5)

provides a balanced assessment, considering both false positives and false negatives.
These metrics collectively offer a comprehensive evaluation of the logistic regression
model’s performance, highlighting its strengths in binary classification tasks. In sum-
mary, logistic regression emerges as a powerful and reliable solution for intestinal tumor
detection, even those outside the visibility of WCE camera, excelling in simplicity,
interpretability, and efficacy.

Building upon the foundations laid in the preceding sections, our investigation
into Channel Frequency Response (CFR) using the SN1 parameter revealed compelling
insights. In the CFR analysis, distinctive patterns emerged between normal and tumor
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a)

b)

c)

Fig. 6. a) S11 and S21 parameters, b) S31, S41 parameters and c) S51 and S61 parameters in the
presence and absence of tumors in capsule and tumor location A.

cases, affirming the capability of wireless capsule endoscopy data to capture nuanced
differences in electromagnetic interactions within the small intestine. These findings
set the stage for a detailed examination of the results derived from logistic regression
modeling.

The application of logistic regression for intestinal tumor detection showcased excel-
lent outcomes, achieving a remarkable accuracy of 98% with this initial data set consist-
ing of 20 samples. The precision of the model, indicating its ability to correctly identify
tumor cases among the positive predictions, stood at an outstanding 96%. Recall, reflect-
ing the model’s capacity to capture all actual tumor cases, demonstrated an impressive
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rate of 97%. Additionally, the F1-score, a balanced metric considering both precision
and recall, reached an excellent level of 96%. Trained on labeled datasets, the model
not only displayed commendable performance across multiple metrics but also provided
interpretability, enhancing our understanding of the impact of extracted features on clas-
sification decisions. Logistic regression emerged as a practical tool for our proposed
methodology.

The results obtained with this initial data set, highlighted by an outstanding 98%
accuracy, coupled with impressive precision (96%), recall (97%), and F1-score (96%),
validate the robustness of our methodology. In addition to effectively distinguishing
betweennormal and tumor tissues, these outcomesholdpromise for advancingdiagnostic
accuracy in GI health monitoring. The interpretability and computational efficiency of
logistic regression significantly contribute to the practicality of our approach. Future
research endeavors may focus on refining the model, incorporating additional features,
and expanding the dataset to enhance its clinical applicability. In essence, our findings
represent a substantial advancement in the evolution of wireless capsule endoscope
localization and small intestinal polyp detection.

5 Conclusions and Future Works

This study introduces a groundbreaking approach to detecting non-visible intestinal
usingWCEwith radio channel analysis feature. Through the integration of CFR analysis
and logistic regression modeling, the study achieves remarkable results. The presence
of tumors effects clearly on the channel characteristics between the capsule and the
closest on-body antennas although the tumors are not visible for WCE. The logistic
regression model carried out to initial data set exhibits an impressive accuracy of 98%,
demonstrating outstanding precision, recall, and F1-score in distinguishing between
normal and tumor tissues. This achievement holds great promise for advancingdiagnostic
accuracy in gastrointestinal health monitoring even for the cases where tumors are not
visible for capsule camera.

As a future work, we will evaluate a more comprehensive study with different tumor
types, different tumor locations, aswell as using voxelmodels having different body con-
stitutions. Additionally, exploration of deep learningmodels, capitalizing on their ability
to discern intricate patterns within more extensive datasets. Models like CNN or Recur-
rent Neural Networks (RNNs) could elevate the sophistication of our current model,
potentially enhancing its performance across diverse and expansive datasets. Moreover,
ongoing refinement and expansion of the dataset could significantly bolster the model’s
robustness. The inclusion of additional features, such as patient-specific information or
real-time physiological data, has the potential to provide a more comprehensive context
for improved classifications. Collaborative efforts with medical professionals to validate
the model’s outcomes in clinical settings would further establish its practical applica-
bility. In essence, the success achieved in this study lays a solid foundation for future
advancements in WCE localization and intestinal tumor detection. The integration of
cutting-edge technologies, particularly deep learning, holds the promise of pushing the
boundaries of accuracy and reliability in GI monitoring.
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