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Abstract. The ability to regularly assess Parkinson’s disease (PD) symptoms
outside of complex laboratories supports remote monitoring and better treatment
management. Multimodal sensors are beneficial for sensing different motor and
non-motor symptoms, but simultaneous analysis is difficult due to complex depen-
dencies between different modalities and their different format and data proper-
ties. Multimodal machine learning models can analyze such diverse modalities
together, thereby enhancing holistic understanding of the data and overall patient
state. The Unified Parkinson’s Disease Rating Scale (UPDRS) is commonly used
for PD symptoms severity assessment. This study proposes a Perceiver-based
multimodal machine learning framework to predict UPDRS scores.

We selected a gait dataset of 93 PD patients and 73 control subjects from the
PhysioNet repository. This dataset includes two-minute walks from each partici-
pant using 16 Ground Reaction Force (GRF) sensors, placing eight on each foot.
This experiment used both raw gait timeseries signals and extracted features from
these GRF sensors. The Perceiver architecture’s hyperparameters were selected
manually and through Genetic Algorithms (GA). The performance of the frame-
work was evaluated using Mean Absolute Error (MAE), Root Mean Square Error
(RMSE) and linear Correlation Coefficient (CC).

Our multimodal approach achieved aMAE of 2.23± 1.31, a RMSE of 5.75±
4.16 and CC of 0.93± 0.08 in predicting UPDRS scores, outperforming previous
studies in terms of MAE and CC.

This multimodal framework effectively integrates different data modalities,
in this case illustrating by predicting UPDRS scores using sensor data. It can
be applied to diverse decision support applications of similar natures where
multimodal analysis is needed.
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1 Introduction

1.1 Parkinson’s Disease (PD)

PD is the fastest growing neurological disorder according to the Global Burden of Dis-
eases, Injuries, and Risk Factors (GBD) studies [1–3]. The World Health Organization
(WHO) estimated that about 8.5 million individuals were living with PD worldwide in
2019 [4]. In the last thirty years, there has been a significant increase in prevalence and
mortality rates of PD. Several components contributed to this upward trend, such as a
growing elderly population, environmental and social factors, and extended duration of
the disease. If the current trend persists, it is projected that the number of individuals with
PD could exceed 17 million by the year 2040 [5], which will pose enormous challenges
for any healthcare system.

Diagnosis of PD is typically performed by neurologists specialized in movement
disorders and involves different neurological tests and patient interviews. However, the
diagnosis of PD remains a difficult task due to its overlapping characteristics with other
neurodegenerative diseases and the subjectivity in short-term assessment. A global short-
age of specialized neurologists increases the risk of misdiagnosis, potentially preventing
targeted treatment and increasing disease severity. PD symptoms are typically evaluated
using a rating scale called Unified Parkinson’s Disease Rating Scale (UPDRS), which is
a widely accepted score. This PD severity rating scale has four distinct components that
include both non-motor and motor parts [6]. Early diagnosis and frequent assessment of
PD symptoms is required for more targeted medical intervention and to support remote
monitoring for better treatment management, thereby improving the quality of life of
PD patients.

1.2 Gait Analysis

Gait analysis canbe auseful tool formeasuringgait abnormalities as gaitworsenswith the
disease progression. The analysis is conducted in a specialized laboratory equipped with
video systems, motion-capturing cameras, floor-based force sensors, and electromyo-
graphy (EMG) systems [7]. Although this complex laboratory setup provides accurate
results, the availability of these systems is limited due to expensive infrastructures and
lack of skilled personnel, particularly in developing countries and remote places. Ground
ReactionForce (GRF) non-invasivewearable sensors can offer a cost-effective and acces-
sible tool for gait analysis to provide a comprehensive overview of gait pattern. These
sensors are designed to capture joint movements and muscle activities effectively [8].
They are small and typically placed in the insole or underneath shoes to measure kinetic
force, temporal, and spatial characteristics of gait variability.

Gait abnormalities in PD patients under cognitive load become more severe with
the disease progression [9]. Dynamic changes in gait can be detected through regular
monitoring of daily activities, medications, social interactions, or environmental condi-
tions outside of the artificial laboratory in real-life settings. Therefore, there is a need for
inexpensive monitoring methods that can be used not only during healthcare encounters
but also to improve treatment intervention and management throughout the patient’s
lifetime [10].
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The gait signals obtained from the controlled laboratory settings are more structured,
as the participants follow a specific protocol in a strictly controlled environment [11].
Gait analysis has traditionally focused on temporal or frequency domain analysis with
standard hypothesis testing. This approach was mainly used because the datasets were
simpler and more structured [12]. However, real-world gait signals are unstructured and
noisy, and may require multimodal sensing for more comprehensive analysis taking into
account a wider context. Therefore, the GRF based gait signal alone may not be enough
for estimating PD symptoms severity in remote monitoring applications. Analyzing
other gait or tremor signals with non-motor symptoms combined could give us a better
understanding about the progression of PD symptoms in real-life scenarios.

1.3 Multimodal in Decision Support

Analyzing multimodal data from diverse sources is a challenging task due to possible
complex, non-linear relationships, and temporal dependencies between modalities [13].
If these modalities are analyzed separately with own methods (signal processing and
other approaches), and their results are combined and processed thereafter, there is a risk
of losing potential joint information between them. Integrating these modalities requires
harmonization and standardization prior to analysis in a computational model [14].
Multimodal machine learning is an evolving field of machine learning where multiple
modalities can be combined simultaneously to support or aid each other in enhancing
the predictive performance of the model.

Recently,DeepMind’s Perceiver architecture has shownpromising results in process-
ing different data modalities [15]. This architecture is designed on top of Transformer
networks, it is capable of processing different modalities including time series, images,
and other signals. The core concept behind the Perceiver architecture is the use of an
iterative attention mechanism [15]. This mechanism allows the model to concentrate
on distinct parts of signals to capture the underlying pattern. By integrating multiple
modalities, the model may generate robust predictions as it can observe patterns from
different modalities and identify the relationship between input modalities and output.

A Perceiver architecture-based multimodal machine learning framework could be
an effective solution for simultaneously analyzing both raw gait timeseries signals and
extracted hand-crafted features from GRF sensors, allowing them to complement each
other to improve the predictive ability for PD diagnosis and PD symptoms severity
estimation. The iterative nature of the Perceiver architecture, along with the weight
sharing strategy can enhance the predictive performance by efficiently reusing the same
input multiple times [15].

Optimizing hyperparameters is a challenging task in any deep learning model, par-
ticularly when parameters are selected manually. To overcome this issue, state-of-the-art
optimization techniques like Random search (RS), Grid search (GS), Bayesian optimiza-
tion (BO), and Genetic Algorithms (GA) techniques explored in earlier studies [16]. GA
has the advantage of simulating different hyperparameter settings to find the optimal
configuration to achieve better prediction performance. This algorithm has been used
for hyperparameter optimization in the detection of femoral neck fracture [17] and the
diagnosis of nutritional anemia [18].
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1.4 Goal of the Study

The main advantage of using raw gait signals is that it eliminates the manual processing
steps and simplifies analysis prior to computational model. However, to incorporate
explicitly expert-based knowledge in the form of well-defined features, and to evaluate
the capability of the computational model for analyzing multimodal data, we utilized
the extracted features from gait timeseries signal as separate modality. This is because
expert-derived features represent interpretable biomechanical metrics, while the gait
timeseries signal provides sensor data covering variation in spatiotemporal domains. In
addition, the effect of GA optimization performance is assessed in this approach.

This research proposes a multimodal machine learning framework based on the Per-
ceiver architecture for predicting the severity of PD symptoms. The study also examines
the framework’s performance for the diagnosis of PD. The major contributions of this
paper can be summarized as follows:

1. Study if UPDRS can be predicted with gait timeseries signals from GRF sensors and
compare framework’s performance with other studies,

2. Compare performance of multimodal vs single model approaches,
3. Study GA optimization performance.

The rest of the paper follows as outlined below: Sect. 2 discusses state-of-the-art
data analysis methods related to PD diagnosis and severity assessment. Studies related
to applying the Perceiver architecture in disease diagnosis for other diseases than PD are
also presented in this section. Section 3 describes the materials and explanation of each
component of the proposed framework. Section 4 presents the results of the performance
evaluation of the proposed approach. Section 5 discusses the results comparing different
modalities, as well as the limitations, challenges, and future scope of this research.
Section 6 concludes the paper.

2 Related Work

Despite the need for regular assessment of PD symptoms to improve treatment man-
agement, most existing studies focused on diagnostic solutions for detecting PD. Fewer
studies have addressed estimating the exact symptoms severity of PD as regression prob-
lem. This study includes references to PD diagnosis research to provide a comprehensive
overview of howwearable sensors and data analysis can improve diagnosis. Themajority
of these studies explored single modality data whereas only a small number of studies
have used a multimodal approach. These multimodal studies are mostly based on small
populations and/or imbalanced datasets [19]. Prior tomachine learning, standard hypoth-
esis statistical tests like t-tests, Mann-Whiteney U test, and ANOVAs were employed
for PD detection from gait data [12]. Recent literature shows successful implementation
of machine learning and deep learning techniques for PD detection. Machine learning
techniques like Random Forests (RF) [20] and Support Vector Machines (SVM) [21]
have been explored for PD diagnosis from gait data. Convolutional Neural Network
(CNN) and long short-term memory (LSTM) deep learning algorithms are mostly used
in research for PD diagnosis [22]. Most studies use a single modality analysis for PD
diagnosis and the PhysioNet Gait database is most used in these studies for gait analysis
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[22]. This PhysioNet Gait dataset contains original UPDRS to reflect the severity of PD.
The total UPDRS score ranges from 0 to 199, encompassing both motor and non-motor
components, with 199 representing severe disability and 0 indicating the healthy state.
The maximum score from the motor part of the scale is 108 [6, 23].

2.1 PD Severity Estimation

Aşuroğlu et al. [24] proposed a hybrid deep learning regression approach emphasizing
on local pattern recognition for predicting PD symptoms severity from the gait signal.
Their proposed framework is based on the combination of CNN and locally Weighted
Random Forest (LWRF) that use multi-channel gait data to predict exact UPDRS scores.
The convolutional part of their framework extracts local characteristics from the extracted
time and frequency domain features and the LWRF part exploits the local relationships
from these characteristics. Their proposedmodel achieved a state-of-the-art performance
and outperformed the previous study.Aşuroğlu et al. [25] conducted a prior study focused
on the same regression problem for estimating PD symptoms severity. In this study they
used a decision tree-based supervised machine learning model. This study was the first
one that utilizes multichannel GRF wearable sensors-based gait data in general. They
utilized the same time and frequency domain features as [24] for the prediction. Their
developed ML model exploited the local patterns from these features to better predict
UPDRS scores.

2.2 PD Diagnosis

In this section, studies that used the PhysioNet gait dataset for PD diagnosis are discussed
to maintain a consistent comparison. El Maachi et al. [26] used raw gait timeseries data
for PD detection using a deep learning model based on the 1D CNN (1D-Convnet). This
model was designed to simultaneously process 18 one-dimensional signals obtained
from 16 GRF foot sensors and the total force from each foot, eliminating the need for
manual feature extraction. The first part of their model used 18 parallel 1D-CNN signals
for local spatial information extraction. Following this, a fully connected layer that
integrates the relevant CNN spatial features for PD diagnosis. Their proposed algorithm
achieved an accuracy of 98.7%, a sensitivity of 98.1% and a specificity of 100.0%.
Alharthi et al. [27] used deep CNN architecture for PD diagnosis. They transformed the
raw GRF sensor signal into a 3D matrix to provide input to the model. Their approach
was designed to learn the spatiotemporal GRF signals without manual feature extraction.
Their proposed model was robust against noise and effectively addressed the variability
of human movement between individuals.

Pham et al. [28] focused on a single GRF sensor from the gait data for PD detec-
tion. From the timeseries signal, they extracted time-frequency and time-space features.
With the extracted features they trained bi-LSTM (bi-LSTM). Their results showed bet-
ter performance compared to conventional LSTM and other prior studies in terms of
accuracy (100.0%), sensitivity (100.0%), specificity (100.0%) and F1 score (1.0). They
also reported that their model was more efficient in terms of computational power and
processing time as it used only one sensor. Balaji et al. [29] introduced a deep learning
approach using LSTM for PD detection and severity classification, eliminating the need
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for handcrafted features. They passed gait cycles from GRF sensors to train the LSTM
network. Their network consists of four LSTM layers, four dropout layers followed by a
fully connected layer and a SoftMax layer. Their approach achieved accuracy of 98.6%
for PD detection.

Vidya et al. [30] used a hybrid CNN-LSTMmodel to explore the spatial and temporal
dependence of GRF timeseries signals to differentiate between healthy subjects and
different PD severity levels. They selected the optimal number of GRF sensors using a
variability analysis. They applied the empirical mode decomposition (EMD) technique
to extract the significant intrinsicmode functions (IMFs) through power spectral analysis
to capture the non-linear and non-stationary characteristics of the timeseries signal. The
dominant IMFs from the optimal GRF signals were then used to train the hybrid model
for PD stage classification. They reported that their proposed hybrid model achieved
better performance than other studies that used gait analysis to classify healthy subjects
and PD severity stages.

Nguyen et al. [31] introduced a Transformer-based deep learning model that empha-
sized both temporal and spatial characteristics of gait signals to differentiate between
healthy control subjects and PD patients. They applied one temporal Transformers for
each gait sensor, and the dimensionally reduced outputs from these temporal Trans-
formers were concatenated before being fed into a spatial Transformer. This spatially
encoded feature set was then passed to two fully connected layers and an output layer for
the final classification. Their model achieved accuracy of 95.2%, a sensitivity of 98.1%
and a specificity of 86.8%.

2.3 Multimodal Data Analysis Using Perceiver

Although the Perceiver architecture is a recent development, it has already been
implemented in other studies focusing on disease diagnosis other than PD.

Josef et al. [32] estimated the speed of human motion using IMU-based wearable
sensors. They evaluated the performance of different deep learning methods, including
the Perceiver architecture. In their experiment, they collected IMU data from a single
foot, shin, and thigh. The Perceiver architecture, along with other deep learning tech-
niques, outperformed conventional feature-based methods in estimating speed. Aadam
et al. [33] evaluated the performance of the Perceiver architecture for classification of
emotion from raw EEG signals. In this experiment, they used EEG signal from DEAP
[34] dataset, and they used two modalities for the analysis. The first modality consisted
of EEG signal from all channels as 1D vector and the spatial locations of electrodes as the
second modality. They found that the Perceiver model performed better for multimodal
configuration compared to single modality.

3 Materials and Methods

This section introduces a Perceiver architecture-based multimodal machine framework
for PD symptoms severity estimation. The proposed framework can simultaneously
process both raw gait timeseries signals and extracted features from GRF sensors as
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multimodal input to predict UPDRS score. This framework can also process eachmodal-
ity input separately. Figure 1 depicts the workflow of the proposed framework which
includes the Perceiver model and hyperparameter optimization using GA.

Fig. 1. Workflow of the proposed Perceiver architecture-based multimodal machine learning
framework for UPDRS score prediction. The framework simultaneously processes raw gait time-
series signals and extracted features from these signals to complement each other through the
iterative process of Perceiver network. GA selects hyperparameters of the Perceiver architecture
in the first cross validation (CV) and then applies them to subsequent CVs.

3.1 Dataset Description

The performance of the proposed architecture was evaluated using the dataset of Phy-
sioNet [35] that includes walking sequences from 93 idiopathic PD patients and 73
healthy control subjects. The mean age of the PD patients was 66.3 years, and 63% of
the patients were male. The average age of control subjects was 63.7 years among which
55%were men. This dataset was collected by three independent research groups (Yogev
et al. [36], Hausdorff et al. [37], and Silvi Frenkel-Toledo et al. [38]) at the Laboratory
for Gait &Neurodynamics, Movement Disorders Unit of the Tel Aviv SouraskyMedical
Center.

Gait patterns were measured from each participant for two minutes by placing eight
GRF sensors under each foot. Participants were asked to walk in two different scenarios:
normal walking at a self-selected speed and dual-task walking. In the dual-task protocol,
subjects were instructed to perform arithmetic tasks by serially subtracting seven from
a pre-defined number.

These GRF sensors measure force (in Newton) with a sampling rate of 100 Hz and
the force distribution of these sensors could be used to measure the gait impairment of
subjects. The GRF sensors-based measurement system provides better foot distribution
compared to force-sensitive resistors (FSR) due to their larger size and sensing area [39].
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The dataset also includes demographic information about the participants, such as their
gender, age, height, weight, and PD severity values as UPDRS scores. In this dataset, the
mean UPDRS score of PD patients was 32, with a minimum score of 13 and a maximum
of 70.

3.2 Pre-processing and Feature Extraction

The first 20 s and the last 10 s from each sensor data segment were excluded to minimize
the start and end effects. After that, a median filter with a length of 3 was applied to
remove outliers or large spikes. This filter reduces sudden walking fluctuations, and the
small filter size preserves maximum force signal without distortion.

Gait cycles are repetitive in nature therefore sensor timeseries signals may con-
tain redundant information. Hand-crafted features that reflect the spatiotemporal and
frequency characteristics of timeseries signals may be useful for PD detection or PD
severity estimation. Therefore, we extracted the frequency and time domain features
from the median filtered signal of each GRF sensor. These seven-frequency domain and
sixteen-time domain extracted features, presented in Table 1, effectively capture relevant
information that has been demonstrated in previous studies [24, 25]. Extracted features
were then standardized by subtracting the mean and scaling to unit variance, as defined
in Eq. 1. In this equation, ‘μ’ represents a mean of a specific feature that is calculated
from all subjects. ‘σ’ represents the standard deviation of that feature also calculated
from all subjects, x represents feature value for a single subject and z is the standardized
value of x.

z = x − μ

σ
(1)

Table 1. Time and Frequency based features extracted from each sensor of all participants.

Feature Domain Features calculated from each GRF sensor

Time mean, harmonic mean, median, range, interquartile range (IQR), mean
absolute deviation, maximum amplitude and minimum/maximum spread,
skewness, kurtosis, root mean square (RMS), energy, power, and entropy

Frequency mean, minimum, maximum, normalized, energy, power, and phase

3.3 Perceiver Architecture

The Perceiver architecture has the potential of combining multiple data modalities to
improve a model’s predictive capability. The Perceiver leverages an iterative attention
mechanism to scale high-dimensional multimodal data without making any domain spe-
cific assumptions. This architecture employs scalable Fourier features-based position
encoding to preserve the temporal, spatial or spatiotemporal characteristics of the input
data. These encoded features are then concatenated with input data before processing



Assessment of Parkinson’s Disease Severity 37

in the main architecture. As illustrated in Fig. 2, the Perceiver architecture is com-
posed of two main components: the cross-attention module and the latent Transformer.
The cross-attention module reduces the dimensionality of the input data into a lower
dimensional latent bottleneck. The latent Transformer then processes further to learn
complex patterns in the data. This concept allows the construction of large networks of
multiple cross-attention and the latent Transformer blocks for processing complex and
high-dimensional multimodal data without changing the underlying architecture. The
weight sharing strategy across each block can also improve predictive performance by
efficiently reusing the same input multiple times. Finally, the model generates predic-
tions by averaging the output of the final latent Transformer over the index dimension
depending on the classification or regression task [15].

Fig. 2. The Perceiver architecture uses an iterative approach that alternates between cross-
attention layers and several latent self-attention blocks. By alternating between these two types of
blocks, the model can receptively attend to the input data and find patterns between the input and
output layers more effectively. This mechanism allows the model to reduce the dimensionality of
the input data while preserving the most critical information. The weight sharing strategy of the
architecture can also improve predictive performance.

A potential disadvantage of the Perceiver architecture is that while the size of the
latent array facilitates detail mapping of the input data, the bottleneck effectmay limit the
extent of detail. The use of multiple cross-attention layers can improve the precision of
information extraction from the input data. However, this comes at the cost of increased
computational resources that can lead to longer processing times [15].

3.4 Proposed Framework

The proposed framework uses the Perceiver architecture to identify the relationships
between GRF signals with corresponding targets (either for classification or regression
purposes). This work uses a multimodal version of the perceiver architecture that is
capable of processing both unimodal and multimodal data in a single run [40]. This
multimodal architecture leverages the attention mechanism to dynamically focus on
distinct parts of these modalities to enhance the overall performance.

After the pre-processing phase, the timeseries signal of each participant is reshaped
to 9025 samples× 16 sensors and the features set is reshaped to 368× 1 from 23 features
× 16 sensors. This conversion is necessary as the multimodal version [40] requires the
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inputs in specific format for processing. These reshaped datasets are then converted to a
one-dimensional tensor vector to feed into the Perceiver architecture.

To address the class imbalance during training, we use the weighted random sampler
algorithm from PyTorch without oversampling. This means that each training batch
includes samples from both classes (0 = healthy and 1 = PD) proportional to their
class weights, until all samples from the minority class have been utilized. After that,
training continues with samples from the majority class. The training batch size for these
experiments is set to six. Validation is conducted in a single batch, where samples are
randomly selected without considering class balance to simulate the real-world scenario.

3.5 Experimental Setup

The Perceiver model’s hyperparameters are initially selected in a non-optimized manner
using a trial-and-error method, where the optimal selection is determined based on the
lowest prediction error. We first begin with predetermined hyperparameters and then
adjust them to achieve the lowest possible prediction error. Through this process, we
then select a network depth of 4, a cross-attention layer of 6 and latent-attention layer
of 6 and the weighting sharing between the cross-attention and the latent self-attention
layers. For optimization, we use Adam optimizer with a learning rate of 10–4.

The proposed framework is implemented in Python with the PyTorch library on
the JupyterLab development environment. This experiment is conducted on a computer
with an AMD Ryzen 5 5600X 6-Core Processor, 16 GB RAM, and a 12 GB NVIDIA
GeForce RTX 3060 graphics card. CUDA library of GeForce is used to utilize graphics
card. Typical training sessions for processing eithermultimodal data or timeseries signals
lasts approximately 80 h. The duration of training session extendswhenGAoptimization
is employed.

3.6 Evaluation

The accuracy of the proposed framework for predicting PD severity symptoms depends
on the error between actual and predicted UPDRS scores. We use Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), and Correlation Coefficient (CC) to eval-
uate the performance of the proposed framework. MAE measures the mean differ-
ence between two continuous variables (mean difference between actual and predicted
UPDRS scores).

MAE = |p1 − a1| + · · · + |pn − an|
n

(2)

RMSE =
√

(p1 − a1)2 + · · · + (pn − an)2

n
(3)

Here n is the size of the sample, p and a are the target and estimated value (output of the
algorithm), respectively.

Initially gait data shorter than two minutes are discarded to maintain consistency
across samples. This process resulted in a comprehensive dataset of 189 samples from
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126 participants (68 PD patients and 58 Healthy control subjects). Gait timeseries data
and the extracted features from each sample are structured according to the requirements
of the framework to train either a single or a multimodal Perceiver model, individually or
together. In the framework,wedivide the structured dataset into ten randomly equal-sized
subsamples using the ten-fold CV method. For each iteration, one subsample represent-
ing 10% of the dataset is reserved for validation and the remaining nine subsamples are
reserved for training. This process is then repeated ten times. During training in each CV,
samples are divided in proportion to preserve class balance as indicated in the Proposed
Framework.

The final performance of each model is evaluated using the mean and standard devi-
ation (SD) of MAE, RMSE and CC obtained from the ten-fold CV. The best performing
model is identified by the lowest mean and SD in both MAE and RMSE, along with the
highestmean and lowest SD inCC. Themodel is then benchmarked against the outcomes
of previous similar studies. Similarly, we compare the mean and SD of these metrics
between the multimodal and single model approaches to determine the best model. The
performance of these models is visually illustrated using scatter plots of actual versus
predicted UPDRS scores.

3.7 Hyperparameter Optimization Using GA

Hyperparameters define the complexity of the Perceiver architecture and its learning
behavior [16]. Hyperparameters are difficult to optimize while improving model per-
formance and reducing complexity of the architecture. This work attempts to opti-
mize hyperparameters like the network depth, the number of cross-attention and self-
attention blocks to minimize the prediction error of the framework. The manual tuning
of these hyperparameters is time-consuming, so after an initial effort, we use GA for
hyperparameter optimization. The main mechanism behind GA is given below [16]:

• First, initialize the population’s equivalent of chromosomes and genes, randomly.
These parameters represent the search space, hyperparameter and hyperparameter
values, respectively.

• A fitness value of each member of the current generation is evaluated using a fitness
function. The objective of the fitness function is to minimize the prediction error
from the optimized hyperparameter settings. We use MAE as the fitness value for
regression tasks and accuracy as the fitness value for classification tasks.

• The termination criterion for the regression task is set at a MAE of 2.5, while for the
classification task it is set at an accuracy of 100%. These values are set high to achieve
better performance by exploring more generations and combinations. If there is no
change in the accuracy or the MAE score for two consecutive generations, then the
evolution process will stop. Otherwise, if the termination criterion is not met, then
proceed with the following steps:

– Select parents from the mating pool.
– Perform crossover and mutation operations on the chromosomes to produce the

next generation population.
– Evaluate the fitness of each child in the new generation.
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To implement this algorithm, we use the TorchGA open-source library, which has
implemented GA using PyTorch library [41]. The hyperparameters of this algorithm
are presented in Table 2. In this study, we use the population size of 10 and repeat the
algorithm until 10 generations have passed if the termination condition is not met. We
configure three hyperparameters such as net depth, the number of cross-attention and
self-attention layers and represent them as chromosomes. Their corresponding values, as
shown in Table 2, are specified as genes. Parents are randomly selected from the mating
pool, and a crossover operation is performed after the selection. We do not include
mutation operations in this task.

We use ten-fold CV to evaluate PD diagnosis and symptoms severity estimation
performance, applying both single and multimodal model with the same structured gait
data and extracted features. The class balance is also maintained during the training.
The optimal hyperparameters are identified through GA optimization using the fitness
function from the first CV. The resultant hyperparameters from the first CV are then
used in the remaining CVs.

Table 2. GA hyperparameters

Hyperparameters Values

Population Size 10

Generation 10

Chromosomes (Genes) Net depth (4,8),
Cross-attention (1,2,4),
Latent attention (2,4,8)

Parent Selection Type Random

Crossover Type Uniform

4 Results

4.1 Empirical Results

Table 3 presents ten-fold CV results of models with manually selected hyperparameters.
Themodel that incorporated both Features and Timeseries as input modalities together is
referred to as theMultimodalDatamodel. Thismodel outperformed the other twomodels
where Timeseries or Features were used as separate input modalities. From Table 3, it
is observed that the Multimodal Data model achieved the highest performance among
all models with an MAE of 2.23 ± 1.31, RMSE of 5.75 ± 4.16 and CC of 0.93 ± 0.08,
indicating that it enhances prediction with a certain degree of variability. The model that
utilized the Features modality demonstrated slightly lower performance with anMAE of
2.72± 1.57,RMSEof 6.79± 4.42 andCCof 0.91± 0.09. Themodel used theTimeseries
modality has the highest errors, as indicated by an MAE of 3.18 ± 1.60, RMSE of 7.56
± 3.89 and CC of 0.90 ± 0.08. The MAE scores of each model demonstrate relatively
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low means and small SD. The RMSE scores of each model exhibits high means and
larger SD, particularly due to the mispredictions of higher UPDRS scores.

Table 3. Performance comparison of different input modalities with manually selected hyperpa-
rameters (Network Depth: 4, Cross-Attention Layer: 6, Latent-Attention Layer: 6)

Input Modality MAE
Mean ± SD

RMSE
Mean ± SD

CC
Mean ± SD

Features 2.72 ± 1.57 6.79 ± 4.42 0.91 ± 0.09

Timeseries 3.18 ± 1.60 7.56 ± 3.89 0.90 ± 0.08

Multimodal Data 2.23 ± 1.31 5.75 ± 4.16 0.93 ± 0.08

Figure 3 indicates the relationship between predicted and actual UPDRS scores for
threemodels withmanually selected hyperparameters. The blue reference line in the plot
represents the ideal scenario where predicted scores would perfectly align with actual
scores. Figure 3 illustrates that the Multimodal Data model performed better than other
models, as most samples were comparatively closer to the reference line than others.

Fig. 3. Scatter plot showing the predicted against the actual UPDRS scores fromMultimodal Data
(black cross), Timeseries (green down-pointing triangle) and Features (yellow circles). Scores
closely align with the y = x reference line (blue) indicate a strong correlation between predicted
and actual UPDRS scores.

Table 4 presents the performance of threemodels with GA selected hyperparameters.
It selects identical hyperparameters for the Timeseries and Multimodal Data modalities
but selected a larger network for the Feature modality. Despite having a larger network
depth, the Feature modality performed better than Timeseries modality. All models with
GA selected hyperparameters showed poor performance. This suggests that suboptimal
hyperparameters selected in the first CV could reduce GA optimization performance.
However, the Multimodal Data outperformed the other two models in MAE, RMSE and
CC.
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Table 4. Performance comparison of different input modalities for the selected hyperparameters
(D: Depth, C: Cross-attention layer and L: Latent-attention layer) using GA.

Input Modality Hyperparameter
(D, C, L)

MAE
Mean ± SD

RMSE
Mean ± SD

CC
Mean ± SD

Features 8,1,2 3.64 ± 3.26 6.92 ± 5.54 0.92 ± 0.08

Timeseries 4,1,8 4.04 ± 1.82 7.79 ± 2.98 0.91 ± 0.07

Multimodal Data 4,1,8 2.58 ± 1.39 6.12 ± 3.46 0.93 ± 0.06

To compare the performance of models using these modalities with and without GA
selected hyperparameters, we used scatter plot in Fig. 4. The plot visually compares the
alignment between the predicted and actual UPDRS scores for each modality. In Fig. 4a,
themodel using theFeaturesmodality showedadecrease in performancewhenpredicting
UPDRS scores for healthy control subjects. Similarly in Fig. 4b, the model with the
Timeseries modality showed a decline in performance for predicting UPDRS scores for
both healthy control subjects and PD patients. The variation slightly improved when
predicting using GA selected hyperparameters. However, the Multimodal Data model,
as demonstrated in Fig. 4c, accurately predicted UPDRS scores for healthy control
subjects in both cases. Similarly, the prediction UPDRS scores were relatively close to
the reference line for PD patients in both scenarios.

In Table 5, we compared the performance of the Multimodal Data model with pre-
vious studies that predicted UPDRS scores from GRF signals. The Multimodal Data
model, using manually selected hyperparameters, showed better performance in terms
of MAE and CC compared to referenced studies. RMSE performance of theMultimodal
Data model was slightly higher compared to one of the previous studies.

Table 6 demonstrates the classification evaluation metrics for three modalities with
and without GA optimization. As can be seen from Table 6, the Multimodal Data model
demonstrated the highest performance, with an accuracy of 97.3%, AUC of 0.98, sen-
sitivity of 96%, and specificity of 100%. However, the performance slightly decreased
with GA optimized hyperparameters. The models using the Features input modality
also showed a relatively good performance, both with and without GA optimization,
while the models that used Timeseries input modality had slightly lower performance
in comparison. Overall, integrating multiple data modalities improved the predictive
performance for PD diagnosis.
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Fig. 4. Scatter plots comparing predicted and actual UPDRS scores for (a) Features Modality, (b)
Timeseries Modality, and (c) Multimodal Data Modality with and without GA Optimization.

Table 5. Comparison with previous studies on PD severity estimation.

Authors MAE RMSE CC

Aşuroğlu et al. [24] 3.01 4.56 0.90

Aşuroğlu et al. [25] 4.46 7.38 0.90

Present Method (Multimodal) 2.23 ± 1.31 5.75 ± 4.16 0.93 ± 0.08

5 Discussion

Currently used gait analysis methods are mostly limited to complex laboratories, but the
advancement ofwearable technologies demand increased support for remotemonitoring.
Regular assessment of PD symptoms severity can support and benefit all stakeholders,
from patients to healthcare professionals, for better treatment management. Early diag-
nosis andmonitoringmay benefit individualswho are either developingmotor symptoms
or transitioning from non-motor to motor symptoms. This approach can also assist indi-
viduals who have manifested motor symptoms but have not received clinical diagnosis
and clinical supervision.
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Table 6. Performance Evaluation of PDClassifier for Different InputModalities with andwithout
GA Optimization.

Input
Modality

Optimization Hyperparameter
(D, C, L)

AUC Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Features Without GA 4,6,6 0.968 93.6 100 95.7

With GA 4,1,2 0.972 94.4 100 96.3

Timeseries Without GA 4,6,6 0.956 92.8 98.4 94.7

With GA 4,1,8 0.949 94.4 95.3 94.7

Multimodal
Data

Without GA 4,6,6 0.980 96.0 100 97.3

With GA 4,1,8 0.956 92.8 98.4 94.7

Theproposed framework successfully predictedUPDRSscores using themultimodal
data, outperforming single model approaches in terms of MAE, RMSE and CC. Addi-
tionally, it outperformed previous studies in terms of MAE and CC. This multimodal
approach might offer promising solution for combining different sensor modalities that
capture the characteristics of motor and non-motor symptoms characteristics influenced
by daily activities and treatment interventions. This approach would benefit frommutual
support or co-learning from these modalities. However, multimodal machine learning is
still a developing field, particularly in the biomedical sector. Special considerations are
required for challenges like data linkage between modalities and dealing with noise and
missing data. Training a Perceiver model on multimodal data requires extensive com-
putational power due to large size of the data. Complexity and training time increase
with larger batch sizes and large number of parameters of the Perceiver architecture.
To effectively process multimodal data and reduce training time, a small batch size,
optimized hyperparameters tailored to the data, and an advanced GPU are required.

The proposed framework predicted UPDRS scores using the gait timeseries signal,
with promising results in terms of MAE, RMSE and CC. This approach could minimize
the preprocessing steps required for automatic prediction in free living conditions. In this
dataset, we observed higher gait variability in PD patients compared to healthy controls,
particularly during dual task activities. Analyzing gait variability directly from the time-
series signal is challenging, as gait characteristics of PD patients and healthy subjects
are influenced by several factors. Nonetheless, this framework effectively captures these
variabilities to estimate PD symptoms severity.

In this study, we only used GA to optimize the hyperparameters of the first cross-
fold due to computational limitations because training the Perceiver model is time-
consuming task. These selected hyperparameters may not be sufficient for subsequent
folds. In addition, although GA automates the hyperparameter tuning, this approach
has limitations. This algorithm introduces additional hyperparameter configuration like
population size, generation number, crossover, and mutation rate. In addition, the time
complexity of this algorithm is considerably high [16].

In this study, we used a CV strategy but did not reserve any data for testing because
of the relatively small sample size. As a result, performance of themodel might be biased
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towards this dataset. During training, class balancing was maintained until all samples
from the minority class were used to ensure balanced learning. Without this approach,
the model might have biased or overfitted towards the majority class.

This dataset has a limited population, particularly PD patients with high UPDRS
scores. Patients with high severity typically exhibit motor disabilities even during normal
walking. They are often excluded from experiments because of the risk of falling during
dual-task activities. This exclusion can result in a misrepresentation of the actual PD
population, leading to a high bias in the dataset. A complexmodel such as Perceiver, with
its numerous parameters, could potentially reduce this bias and variation with extensive
training at the risk of overfitting.

For future direction of this study, we aim to use a large and diverse dataset that would
capture free-living gait characteristics from smart shoe and smartwatch, combined with
non-motor symptoms collected via smartphone, could enable continuous assessment of
PD symptoms.

6 Conclusion

Frequent assessment of PD symptoms may open new opportunities for personalized
remote monitoring and effective treatment intervention in free-living environments.
Free-living conditions introduce uncertain variables like different activity levels and
environmental factors can complicate gait patterns. These complexities, combined with
non-motor symptoms and medication effects, make it significantly challenging and
impossible for any single sensor. A comprehensive monitoring system, combining gait
sensors for motor symptoms and smartphone data for non-motor symptoms can capture
the whole spectrum. However, analyzing multimodal data from these diverse sources in
free-living conditions is a challenging task due to several factors such as data source inte-
gration and potential biases. The Perceiver architecture has shown promising results in
combining data from different modalities effectively. Our study demonstrates the combi-
nation GRF based gait timeseries signal with extracted features predicted UPDRS scores
accurately. This attention-based architecture outperforms previous studies for predict-
ing PD symptoms severities. This architecture has potential to be used as multimodal
machine learning framework for decision support solution in personalized treatment
management, remote care, and digital twin-based applications.
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Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
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