Skip to main content

Abstract

Robotic process automation (RPA), a technology to automate structured tasks on computers in a light-weight fashion, thrives on graphical models, enabling business users and citizen developers to create automation workflows without programming knowledge. However, due to the created flows often not being optimized and the fine-grained nature of the RPA instructions, these models quickly become complex and extensive, complicating their maintenance and comprehensibility. In this paper, we draw inspiration from the related fields of software programming and business process modeling to introduce complexity metrics for RPA bot models. These allow to objectively measure and compare the complexity of such workflows, and can thus, for example, provide an indication of where to start refactoring models in the bot repository.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As in related work, we use the term metric to also refer to measures (e.g., [6, 19]).

  2. 2.

    Entering the first context is also considered a context switch, i. e., NOCS \(\ge \) NOC.

  3. 3.

    In contrast to Cardoso et al., we use the original length formula, rather than the formula for the estimated program length [12], since we want to assess exactly the present model.

  4. 4.

    https://github.com/bptlab/onto-rpa-platform/tree/main/components/metrics.

References

  1. van der Aalst, W.M.P., Bichler, M., Heinzl, A.: Robotic process automation. Bus. Inf. Syst. Eng. 60(4), 269–272 (2018)

    Article  Google Scholar 

  2. Agostinelli, S., Lupia, M., Marrella, A., Mecella, M.: Reactive synthesis of software robots in RPA from user interface logs. Comput. Ind. 142, 103721 (2022). https://www.sciencedirect.com/science/article/pii/S016636152200118X

  3. Aguirre, S., Rodriguez, A.: Automation of a business process using robotic process automation (RPA): a case study. In: Figueroa-García, J.C., López-Santana, E.R., Villa-Ramírez, J.L., Ferro-Escobar, R. (eds.) WEA 2017. CCIS, vol. 742, pp. 65–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66963-2_7

    Chapter  Google Scholar 

  4. Bock, A.C., Frank, U.: Low-code platform. Bus. Inf. Syst. Eng. 63(6), 733–740 (2021)

    Article  Google Scholar 

  5. Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A discourse on complexity of process models. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 117–128. Springer, Heidelberg (2006). https://doi.org/10.1007/11837862_13

    Chapter  Google Scholar 

  6. Cardoso, J.: Control-flow complexity measurement of processes and weyuker’s properties. In: 6th International Enformatika Conference. Transactions on Enformatika, Systems Sciences and Engineering, pp. 213–218. Enformatika, World Enformatika Society (2005)

    Google Scholar 

  7. Cardoso, J.: Business process control-flow complexity. Int. J. Web Serv. Res. 5(2), 49–76 (2008)

    Article  Google Scholar 

  8. Correia, C., Rodrigues da Silva, A.: Platform-independent specifications for robotic process automation applications. In: Pires, L.F., Hammoudi, S., Seidewitz, E. (eds.) MODELSWARD 2022, pp. 379–386. SciTePress (2022)

    Google Scholar 

  9. Flechsig, C., Lohmer, J., Lasch, R.: Realizing the full potential of robotic process automation through a combination with BPM. In: Bierwirth, C., Kirschstein, T., Sackmann, D. (eds.) Logistics Management. LNL, pp. 104–119. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29821-0_8

    Chapter  Google Scholar 

  10. Gruhn, V., Laue, R.: Adopting the cognitive complexity measure for business process models. In: Yao, Y. (ed.) 5th IEEE International Conference on Cognitive Informatics, pp. 236–241. IEEE Computer Society (2006)

    Google Scholar 

  11. Gruhn, V., Laue, R.: Complexity metrics for business process models. In: Abramowicz, W. (ed.) Business Information Systems - 9th International Conference on Business Information Systems (BIS 2006), pp. 1–12. LNI, Gesellschaft für Informatik e.V. (2006), https://dl.gi.de/items/e0000ba6-71b2-4889-a664-4c07cc124ed3

  12. Halstead, M.H.: Natural laws controlling algorithm structure? ACM SIGPLAN Not. 7(2), 19–26 (1972)

    Article  Google Scholar 

  13. Halstead, M.H.: Elements of Software Science, Operating and Programming Systems Series, vol. 2. Elsevier, New York (1977)

    Google Scholar 

  14. Hofmann, P., Samp, C., Urbach, N.: Robotic process automation. Electron. Mark. 30(1), 99–106 (2020)

    Article  Google Scholar 

  15. Leno, V., Dumas, M., La Rosa, M., Maggi, F.M., Polyvyanyy, A.: Automated discovery of data transformations for robotic process automation. In: Zhang, D., Freitas, A., Tao, D., Song, D. (eds.) Proceedings of the AAAI-20 Workshop on Intelligent Process Automation (IPA-2020). AAAI Press (2020). https://minerva-access.unimelb.edu.au/handle/11343/241635

  16. Leno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., Maggi, F.M.: Robotic process mining: vision and challenges. Bus. Inf. Syst. Eng. 63, 301–314 (2021)

    Article  Google Scholar 

  17. Mendling, J., Neumann, G., van der Aalst, W.: Understanding the occurrence of errors in process models based on metrics. In: Meersman, R., Tari, Z. (eds.) OTM 2007. LNCS, vol. 4803, pp. 113–130. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-76848-7_9

    Chapter  Google Scholar 

  18. Penttinen, E., Kasslin, H., Asatiani, A.: How to choose between robotic process automation and back-end system automation? In: Bednar, P.M., Frank, U., Kautz, K. (eds.) ECIS 2018 Proceedings. AIS (2018)

    Google Scholar 

  19. Polančič, G., Cegnar, B.: Complexity metrics for process models - a systematic literature review. Comput. Stand. Interfaces 51, 104–117 (2017). https://doi.org/10.1016/j.csi.2016.12.003

  20. Průcha, P., Skrbek, J.: API as method for improving robotic process automation. In: Marrella, A., et al. (eds.) BPM 2022. LNCS, vol. 459, pp. 260–273. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16168-1_17

    Chapter  Google Scholar 

  21. Rolón, E., Ruiz, F., García, F., Piattini, M.: Applying software metrics to evaluate business process models. CLEI Electron. J. 9(1) (2006)

    Google Scholar 

  22. Syed, R., et al.: Robotic process automation: contemporary themes and challenges. Comput. Ind. 115 (2020)

    Google Scholar 

  23. Sánchez González, L., García Rubio, F., Ruiz González, F., Piattini Velthuis, M.: Measurement in business processes: a systematic review. Bus. Process Manag. J. 16(1), 114–134 (2010). https://doi.org/10.1108/14637151011017976

  24. Völker, M., Siegert, S., Weske, M.: Adding decision management to robotic process automation. In: González Enríquez, J., Debois, S., Fettke, P., Plebani, P., van de Weerd, I., Weber, I. (eds.) BPM 2021. LNBIP, vol. 428, pp. 23–37. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85867-4_3

    Chapter  Google Scholar 

  25. Völker, M., Weske, M.: Conceptualizing bots in robotic process automation. In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds.) ER 2021. LNCS, vol. 13011, pp. 3–13. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89022-3_1

    Chapter  Google Scholar 

  26. Völker, M., Weske, M.: Ontology-supported modeling of bots in robotic process automation. In: Ralyté, J., Chakravarthy, S., Mohania, M., Jeusfeld, M.A., Karlapalem, K. (eds.) Conceptual Modeling, pp. 239–254. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-17995-2_17

  27. Völker, M., Weske, M.: On the nature of data in RPA bots. In: Monti, F., Rinderle-Ma, S., Ruiz Cortés, A., Zheng, Z., Mecella, M. (eds.) Service-Oriented Computing. LNCS, vol. 14420, pp. 29–37. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-48424-7_3

    Chapter  Google Scholar 

  28. Völker, M., Weske, M.: Ontology-based abstraction of bot models in robotic process automation. In: Almeida, J.P.A., Borbinha, J., Guizzardi, G., Link, S., Zdravkovic, J. (eds.) Conceptual Modeling, pp. 239–256. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-47262-6_13

  29. Willcocks, L.P., Lacity, M., Craig, A.: The IT function and robotic process automation: The Outsourcing Unit Working Research Paper Series (15/05), London, UK (2015). http://eprints.lse.ac.uk/64519/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Völker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Völker, M., Weske, M. (2024). Measuring Complexity of Bot Models in Robotic Process Automation. In: Di Ciccio, C., et al. Business Process Management: Blockchain, Robotic Process Automation, Central and Eastern European, Educators and Industry Forum. BPM 2024. Lecture Notes in Business Information Processing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-031-70445-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70445-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70444-4

  • Online ISBN: 978-3-031-70445-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics