Abstract
Robotic process automation (RPA), a technology to automate structured tasks on computers in a light-weight fashion, thrives on graphical models, enabling business users and citizen developers to create automation workflows without programming knowledge. However, due to the created flows often not being optimized and the fine-grained nature of the RPA instructions, these models quickly become complex and extensive, complicating their maintenance and comprehensibility. In this paper, we draw inspiration from the related fields of software programming and business process modeling to introduce complexity metrics for RPA bot models. These allow to objectively measure and compare the complexity of such workflows, and can thus, for example, provide an indication of where to start refactoring models in the bot repository.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Entering the first context is also considered a context switch, i. e., NOCS \(\ge \) NOC.
- 3.
In contrast to Cardoso et al., we use the original length formula, rather than the formula for the estimated program length [12], since we want to assess exactly the present model.
- 4.
References
van der Aalst, W.M.P., Bichler, M., Heinzl, A.: Robotic process automation. Bus. Inf. Syst. Eng. 60(4), 269–272 (2018)
Agostinelli, S., Lupia, M., Marrella, A., Mecella, M.: Reactive synthesis of software robots in RPA from user interface logs. Comput. Ind. 142, 103721 (2022). https://www.sciencedirect.com/science/article/pii/S016636152200118X
Aguirre, S., Rodriguez, A.: Automation of a business process using robotic process automation (RPA): a case study. In: Figueroa-García, J.C., López-Santana, E.R., Villa-Ramírez, J.L., Ferro-Escobar, R. (eds.) WEA 2017. CCIS, vol. 742, pp. 65–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66963-2_7
Bock, A.C., Frank, U.: Low-code platform. Bus. Inf. Syst. Eng. 63(6), 733–740 (2021)
Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A discourse on complexity of process models. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 117–128. Springer, Heidelberg (2006). https://doi.org/10.1007/11837862_13
Cardoso, J.: Control-flow complexity measurement of processes and weyuker’s properties. In: 6th International Enformatika Conference. Transactions on Enformatika, Systems Sciences and Engineering, pp. 213–218. Enformatika, World Enformatika Society (2005)
Cardoso, J.: Business process control-flow complexity. Int. J. Web Serv. Res. 5(2), 49–76 (2008)
Correia, C., Rodrigues da Silva, A.: Platform-independent specifications for robotic process automation applications. In: Pires, L.F., Hammoudi, S., Seidewitz, E. (eds.) MODELSWARD 2022, pp. 379–386. SciTePress (2022)
Flechsig, C., Lohmer, J., Lasch, R.: Realizing the full potential of robotic process automation through a combination with BPM. In: Bierwirth, C., Kirschstein, T., Sackmann, D. (eds.) Logistics Management. LNL, pp. 104–119. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29821-0_8
Gruhn, V., Laue, R.: Adopting the cognitive complexity measure for business process models. In: Yao, Y. (ed.) 5th IEEE International Conference on Cognitive Informatics, pp. 236–241. IEEE Computer Society (2006)
Gruhn, V., Laue, R.: Complexity metrics for business process models. In: Abramowicz, W. (ed.) Business Information Systems - 9th International Conference on Business Information Systems (BIS 2006), pp. 1–12. LNI, Gesellschaft für Informatik e.V. (2006), https://dl.gi.de/items/e0000ba6-71b2-4889-a664-4c07cc124ed3
Halstead, M.H.: Natural laws controlling algorithm structure? ACM SIGPLAN Not. 7(2), 19–26 (1972)
Halstead, M.H.: Elements of Software Science, Operating and Programming Systems Series, vol. 2. Elsevier, New York (1977)
Hofmann, P., Samp, C., Urbach, N.: Robotic process automation. Electron. Mark. 30(1), 99–106 (2020)
Leno, V., Dumas, M., La Rosa, M., Maggi, F.M., Polyvyanyy, A.: Automated discovery of data transformations for robotic process automation. In: Zhang, D., Freitas, A., Tao, D., Song, D. (eds.) Proceedings of the AAAI-20 Workshop on Intelligent Process Automation (IPA-2020). AAAI Press (2020). https://minerva-access.unimelb.edu.au/handle/11343/241635
Leno, V., Polyvyanyy, A., Dumas, M., La Rosa, M., Maggi, F.M.: Robotic process mining: vision and challenges. Bus. Inf. Syst. Eng. 63, 301–314 (2021)
Mendling, J., Neumann, G., van der Aalst, W.: Understanding the occurrence of errors in process models based on metrics. In: Meersman, R., Tari, Z. (eds.) OTM 2007. LNCS, vol. 4803, pp. 113–130. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-76848-7_9
Penttinen, E., Kasslin, H., Asatiani, A.: How to choose between robotic process automation and back-end system automation? In: Bednar, P.M., Frank, U., Kautz, K. (eds.) ECIS 2018 Proceedings. AIS (2018)
Polančič, G., Cegnar, B.: Complexity metrics for process models - a systematic literature review. Comput. Stand. Interfaces 51, 104–117 (2017). https://doi.org/10.1016/j.csi.2016.12.003
Průcha, P., Skrbek, J.: API as method for improving robotic process automation. In: Marrella, A., et al. (eds.) BPM 2022. LNCS, vol. 459, pp. 260–273. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-16168-1_17
Rolón, E., Ruiz, F., García, F., Piattini, M.: Applying software metrics to evaluate business process models. CLEI Electron. J. 9(1) (2006)
Syed, R., et al.: Robotic process automation: contemporary themes and challenges. Comput. Ind. 115 (2020)
Sánchez González, L., García Rubio, F., Ruiz González, F., Piattini Velthuis, M.: Measurement in business processes: a systematic review. Bus. Process Manag. J. 16(1), 114–134 (2010). https://doi.org/10.1108/14637151011017976
Völker, M., Siegert, S., Weske, M.: Adding decision management to robotic process automation. In: González Enríquez, J., Debois, S., Fettke, P., Plebani, P., van de Weerd, I., Weber, I. (eds.) BPM 2021. LNBIP, vol. 428, pp. 23–37. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85867-4_3
Völker, M., Weske, M.: Conceptualizing bots in robotic process automation. In: Ghose, A., Horkoff, J., Silva Souza, V.E., Parsons, J., Evermann, J. (eds.) ER 2021. LNCS, vol. 13011, pp. 3–13. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89022-3_1
Völker, M., Weske, M.: Ontology-supported modeling of bots in robotic process automation. In: Ralyté, J., Chakravarthy, S., Mohania, M., Jeusfeld, M.A., Karlapalem, K. (eds.) Conceptual Modeling, pp. 239–254. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-17995-2_17
Völker, M., Weske, M.: On the nature of data in RPA bots. In: Monti, F., Rinderle-Ma, S., Ruiz Cortés, A., Zheng, Z., Mecella, M. (eds.) Service-Oriented Computing. LNCS, vol. 14420, pp. 29–37. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-48424-7_3
Völker, M., Weske, M.: Ontology-based abstraction of bot models in robotic process automation. In: Almeida, J.P.A., Borbinha, J., Guizzardi, G., Link, S., Zdravkovic, J. (eds.) Conceptual Modeling, pp. 239–256. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-47262-6_13
Willcocks, L.P., Lacity, M., Craig, A.: The IT function and robotic process automation: The Outsourcing Unit Working Research Paper Series (15/05), London, UK (2015). http://eprints.lse.ac.uk/64519/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Völker, M., Weske, M. (2024). Measuring Complexity of Bot Models in Robotic Process Automation. In: Di Ciccio, C., et al. Business Process Management: Blockchain, Robotic Process Automation, Central and Eastern European, Educators and Industry Forum. BPM 2024. Lecture Notes in Business Information Processing, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-031-70445-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-70445-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70444-4
Online ISBN: 978-3-031-70445-1
eBook Packages: Computer ScienceComputer Science (R0)