Skip to main content

Online Learning in Motion Modeling for Intra-interventional Image Sequences

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

Image monitoring and guidance during medical examinations can aid both diagnosis and treatment. However, the sampling frequency is often too low, which creates a need to estimate the missing images. We present a probabilistic motion model for sequential medical images, with the ability to both estimate motion between acquired images and forecast the motion ahead of time. The core is a low-dimensional temporal process based on a linear Gaussian state-space model with analytically tractable solutions for forecasting, simulation, and imputation of missing samples. The results, from two experiments on publicly available cardiac datasets, show reliable motion estimates and an improved forecasting performance using patient-specific adaptation by online learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angelini, E.D., Laine, A.F., Takuma, S., et al.: LV volume quantification via spatiotemporal analysis of real-time 3-D echocardiography. IEEE Transactions on Medical Imaging 20(6), 457–469 (2001)

    Article  Google Scholar 

  2. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework for statistics on diffeomorphisms. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI: 9th International Conference, Copenhagen, Denmark, October. Proceedings, Part I 9. Springer (2006)

    Google Scholar 

  3. Åström, K.J., Murray, R.: Feedback systems: an introduction for scientists and engineers. Princeton university press (2021)

    Google Scholar 

  4. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical image analysis 12(1), 26–41 (2008)

    Article  Google Scholar 

  5. Avants, B.B., Tustison, N., Song, G., et al.: Advanced normalization tools (ANTS). Insight j 2(365), 1–35 (2009)

    Google Scholar 

  6. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International journal of computer vision 61, 139–157 (2005)

    Article  Google Scholar 

  7. Bernard, O., Lalande, A., Zotti, C., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Transactions on Medical Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  8. Chen, C., Qin, C., Qiu, H., et al.: Deep learning for cardiac image segmentation: a review. Frontiers in Cardiovascular Medicine 7,  25 (2020)

    Article  Google Scholar 

  9. Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces. Medical image analysis 57, 226–236 (2019)

    Article  Google Scholar 

  10. Fraccaro, M., Kamronn, S., Paquet, U., Winther, O.: A disentangled recognition and nonlinear dynamics model for unsupervised learning. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  11. Gu, A., Goel, K., Ré, C.: Efficiently modeling long sequences with structured state spaces. arXiv preprint arXiv:2111.00396 (2021)

  12. Gunnarsson, N., Sjölund, J., Kimstrand, P., Schön, T.B.: Unsupervised dynamic modeling of medical image transformations. In: 2022 25th International Conference on Information Fusion (FUSION). pp. 01–07. IEEE (2022)

    Google Scholar 

  13. Jöhl, A., Ehrbar, S., Guckenberger, M., et al.: Performance comparison of prediction filters for respiratory motion tracking in radiotherapy. Medical physics 47(2), 643–650 (2020)

    Article  Google Scholar 

  14. Kalman, R.E.: A new approach to linear filtering and prediction problems. Journal of basic Engineering 82(1), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  15. Keall, P.J., Brighi, C., Glide-Hurst, C., et al.: Integrated MRI-guided radiotherapy-opportunities and challenges. Nature Reviews Clinical Oncology 19(7), 458–470 (2022)

    Article  Google Scholar 

  16. Krebs, J., Delingette, H., Ayache, N., Mansi, T.: Learning a generative motion model from image sequences based on a latent motion matrix. IEEE Transactions on Medical Imaging 40(5), 1405–1416 (2021)

    Article  Google Scholar 

  17. Krebs, J., Delingette, H., Mailhé, B., et al.: Learning a probabilistic model for diffeomorphic registration. IEEE Transactions on Medical Imaging 38(9), 2165–2176 (2019)

    Article  Google Scholar 

  18. Lombardo, E., Dhont, J., Page, D., et al.: Real-time motion management in MRI-guided radiotherapy: Current status and AI-enabled prospects. Radiotherapy and Oncology p. 109970 (2023)

    Google Scholar 

  19. Lombardo, E., Rabe, M., Xiong, Y., et al.: Offline and online LSTM networks for respiratory motion prediction in MR-guided radiotherapy. Physics in Medicine & Biology 67(9), 095006 (2022)

    Article  Google Scholar 

  20. Mattingley, J., Boyd, S.: Real-Time Convex Optimization in Signal Processing. IEEE Signal Processing Magazine 27(3), 50–61 (2010)

    Article  Google Scholar 

  21. Modersitzki, J.: Numerical methods for image registration. OUP Oxford (2003)

    Google Scholar 

  22. Oktay, O., Schlemper, J., Folgoc, L.L., et al.: Attention U-Net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  23. Ouyang, D., He, B., Ghorbani, A., et al.: Video-based AI for beat-to-beat assessment of cardiac function. Nature 580(7802), 252–256 (2020)

    Article  Google Scholar 

  24. Paganelli, C., Whelan, B., Peroni, M., et al.: MRI-guidance for motion management in external beam radiotherapy: current status and future challenges. Physics in Medicine & Biology 63(22), 22TR03 (2018)

    Google Scholar 

  25. Raaymakers, B.W., Lagendijk, J., Overweg, J., et al.: Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept. Physics in Medicine & Biology 54(12),  N229 (2009)

    Google Scholar 

  26. Rauch, H.E., Tung, F., Striebel, C.T.: Maximum likelihood estimates of linear dynamic systems. AIAA journal 3(8), 1445–1450 (1965)

    Article  MathSciNet  Google Scholar 

  27. Romaguera, L.V., Mezheritsky, T., Mansour, R., et al.: Probabilistic 4D predictive model from in-room surrogates using conditional generative networks for image-guided radiotherapy. Medical image analysis 74, 102250 (2021)

    Article  Google Scholar 

  28. Romaguera, L.V., Plantefève, R., Romero, F.P., et al.: Prediction of in-plane organ deformation during free-breathing radiotherapy via discriminative spatial transformer networks. Medical image analysis 64, 101754 (2020)

    Article  Google Scholar 

  29. Sharp, G.C., Jiang, S.B., Shimizu, S., Shirato, H.: Prediction of respiratory tumour motion for real-time image-guided radiotherapy. Physics in Medicine & Biology 49(3),  425 (2004)

    Article  Google Scholar 

  30. Ye, M., Yang, D., Huang, Q., et al.: SequenceMorph: A Unified Unsupervised Learning Framework for Motion Tracking on Cardiac Image Sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence 45(08), 10409–10426 (2023)

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niklas Gunnarsson .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 37 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gunnarsson, N., Sjölund, J., Kimstrand, P., Schön, T.B. (2024). Online Learning in Motion Modeling for Intra-interventional Image Sequences. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15002. Springer, Cham. https://doi.org/10.1007/978-3-031-72069-7_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72069-7_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72068-0

  • Online ISBN: 978-3-031-72069-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics