Skip to main content

CINA: Conditional Implicit Neural Atlas for Spatio-Temporal Representation of Fetal Brains

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Abstract

We introduce a conditional implicit neural atlas (CINA) for spatio-temporal atlas generation from Magnetic Resonance Images (MRI) of the neurotypical and pathological fetal brain, that is fully independent of affine or non-rigid registration. During training, CINA learns a general representation of the fetal brain and encodes subject specific information into latent code. After training, CINA can construct a faithful atlas with tissue probability maps of the fetal brain for any gestational age (GA) and anatomical variation covered within the training domain. Thus, CINA is competent to represent both, neurotypical and pathological brains. Furthermore, a trained CINA model can be fit to brain MRI of unseen subjects via test-time optimization of the latent code. CINA can then produce probabilistic tissue maps tailored to a particular subject. We evaluate our method on a total of 198 T2 weighted MRI of normal and abnormal fetal brains from the dHCP and FeTA datasets. We demonstrate CINA’s capability to represent a fetal brain atlas that can be flexibly conditioned on GA and on anatomical variations like ventricular volume or degree of cortical folding, making it a suitable tool for modeling both neurotypical and pathological brains. We quantify the fidelity of our atlas by means of tissue segmentation and age prediction and compare it to an established baseline. CINA demonstrates superior accuracy for neurotypical brains and pathological brains with ventriculomegaly. Moreover, CINA scores a mean absolute error of 0.23 weeks in fetal brain age prediction, further confirming an accurate representation of fetal brain development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avants, B.B., Tustison, N., Song, G.: Advanced normalization tools (ants). Insight J. 2(365), 1–35 (2009)

    Google Scholar 

  2. Bauer, M., Dupont, E., Brock, A., Rosenbaum, D., Schwarz, J.R., Kim, H.: Spatial functa: scaling functa to ImageNet classification and generation. arXiv preprint arXiv:2302.03130 (2023)

  3. Cheng, J., Dalca, A.V., Zöllei, L.: Unbiased atlas construction for neonatal cortical surfaces via unsupervised learning. In: Hu, Y., et al. (eds.) ASMUS/PIPPI -2020. LNCS, vol. 12437, pp. 334–342. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60334-2_33

    Chapter  Google Scholar 

  4. Dalca, A., Rakic, M., Guttag, J., Sabuncu, M.: Learning conditional deformable templates with convolutional networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  5. Dey, N., Ren, M., Dalca, A.V., Gerig, G.: Generative adversarial registration for improved conditional deformable templates. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3929–3941 (2019)

    Google Scholar 

  6. Dupont, E., Kim, H., Eslami, S., Rezende, D., Rosenbaum, D.: From data to functa: your data point is a function and you can treat it like one. arXiv preprint arXiv:2201.12204 (2022)

  7. Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  8. Gholipour, A., et al.: A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth. Sci. Rep. 7(1), 476 (2017). https://doi.org/10.1038/s41598-017-00525-w

    Article  Google Scholar 

  9. Glasser, M.F., et al.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013)

    Article  Google Scholar 

  10. Habas, P.A., et al.: A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation. Neuroimage 53(2), 460–470 (2010)

    Article  Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Kuklisova-Murgasova, M., et al.: A dynamic 4D probabilistic atlas of the developing brain. Neuroimage 54(4), 2750–63 (2011). https://doi.org/10.1016/j.neuroimage.2010.10.019

    Article  Google Scholar 

  13. Ma, H.L., Zhao, S.X., Lv, F.R., Zhang, Z.W., Xiao, Y.H., Sheng, B.: Volume growth trend and correlation of atrial diameter with lateral ventricular volume in normal fetus and fetus with ventriculomegaly: a strobe compliant article. Medicine 98(26) (2019)

    Google Scholar 

  14. Makropoulos, A., et al.: Regional growth and atlasing of the developing human brain. Neuroimage 125, 456–478 (2016). https://doi.org/10.1016/j.neuroimage.2015.10.047

  15. Mehta, I., Gharbi, M., Barnes, C., Shechtman, E., Ramamoorthi, R., Chandraker, M.: Modulated periodic activations for generalizable local functional representations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14214–14223 (2021)

    Google Scholar 

  16. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4460–4470 (2019)

    Google Scholar 

  17. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  18. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (ToG) 41(4), 1–15 (2022)

    Article  Google Scholar 

  19. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)

    Google Scholar 

  20. Payette, K., et al.: An automatic multi-tissue human fetal brain segmentation benchmark using the fetal tissue annotation dataset. Scientific Data 8(1), 167 (2021). https://doi.org/10.1038/s41597-021-00946-3

  21. Price, A.N., et al.: The developing human connectome project (dHCP): fetal acquisition protocol. In: Proceedings of the Annual Meeting of the International Society of Magnetic Resonance in Medicine (ISMRM), vol. 244 (2019)

    Google Scholar 

  22. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  23. Saragadam, V., LeJeune, D., Tan, J., Balakrishnan, G., Veeraraghavan, A., Baraniuk, R.G.: WIRE: wavelet implicit neural representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18507–18516 (2023)

    Google Scholar 

  24. Schuh, A., et al.: Construction of a 4D brain atlas and growth model using diffeomorphic registration. In: Durrleman, S., Fletcher, T., Gerig, G., Niethammer, M., Pennec, X. (eds.) STIA 2014. LNCS, vol. 8682, pp. 27–37. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14905-9_3

    Chapter  Google Scholar 

  25. Serag, A., et al.: Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. Neuroimage 59(3), 2255–65 (2012). https://doi.org/10.1016/j.neuroimage.2011.09.062

    Article  Google Scholar 

  26. Serag, A., et al.: A multi-channel 4D probabilistic atlas of the developing brain: application to fetuses and neonates. Ann. BMVA 2012(3), 1–14 (2012)

    Google Scholar 

  27. Sitzmann, V., Chan, E., Tucker, R., Snavely, N., Wetzstein, G.: MetaSDF: meta-learning signed distance functions. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) NeurIPS, vol. 33, pp. 10136–10147. Curran Associates, Inc. (2020)

    Google Scholar 

  28. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. In: Advances in Neural Information Processing Systems, vol. 33, pp. 7462–7473 (2020)

    Google Scholar 

  29. Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: continuous 3D-structure-aware neural scene representations. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  30. Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. In: Advances in Neural Information Processing Systems, vol. 33, pp. 7537–7547 (2020)

    Google Scholar 

  31. Zilles, K., Armstrong, E., Schleicher, A., Kretschmann, H.J.: The human pattern of gyrification in the cerebral cortex. Anat. Embryol. 179, 173–179 (1988)

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by the ERC (Deep4MI - 884622), and by the ERA-NET NEURON Cofund (MULTI-FACT - 8810003808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maik Dannecker .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2722 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dannecker, M., Kyriakopoulou, V., Cordero-Grande, L., Price, A.N., Hajnal, J.V., Rueckert, D. (2024). CINA: Conditional Implicit Neural Atlas for Spatio-Temporal Representation of Fetal Brains. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15009. Springer, Cham. https://doi.org/10.1007/978-3-031-72114-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72114-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72113-7

  • Online ISBN: 978-3-031-72114-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics