Skip to main content

Compress3D: A Compressed Latent Space for 3D Generation from a Single Image

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

3D generation has witnessed significant advancements, yet efficiently producing high-quality 3D assets from a single image remains challenging. In this paper, we present a triplane autoencoder, which encodes 3D models into a compact triplane latent space to effectively compress both the 3D geometry and texture information. Within the autoencoder framework, we introduce a 3D-aware cross-attention mechanism, which utilizes low-resolution latent representations to query features from a high-resolution 3D feature volume, thereby enhancing the representation capacity of the latent space. Subsequently, we train a diffusion model on this refined latent space. In contrast to solely relying on image embedding for 3D generation, our proposed method advocates for the simultaneous utilization of both image embedding and shape embedding as conditions. Specifically, the shape embedding is estimated via a diffusion prior model conditioned on the image embedding. Through comprehensive experiments, we demonstrate that our method outperforms state-of-the-art algorithms, achieving superior performance while requiring less training data and time. Our approach enables the generation of high-quality 3D assets in merely 7 s on a single A100 GPU. More results and visualization can be found on our project page: https://compress3d.github.io/.

B. Zhang—Work done during the internship at IDEA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, Z., Wang, F., Liu, H.: Text-to-3d using gaussian splatting. arXiv preprint arXiv:2309.16585 (2023)

  2. Cheng, Y.C., Lee, H.Y., Tulyakov, S., Schwing, A.G., Gui, L.Y.: Sdfusion: multimodal 3d shape completion, reconstruction, and generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4456–4465 (2023)

    Google Scholar 

  3. Deitke, M., et al.: Objaverse-xl: a universe of 10m+ 3d objects. Adv. Neural Inf. Process. Syst. 36 (2024)

    Google Scholar 

  4. Deitke, M., et al.: Objaverse: a universe of annotated 3d objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13142–13153 (2023)

    Google Scholar 

  5. Gupta, A., Xiong, W., Nie, Y., Jones, I., Oğuz, B.: 3dgen: triplane latent diffusion for textured mesh generation. arXiv preprint arXiv:2303.05371 (2023)

  6. He, Z., Wang, T.: Openlrm: open-source large reconstruction models (2023). https://github.com/3DTopia/OpenLRM

  7. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  8. Ho, J., Salimans, T.: Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598 (2022)

  9. Hong, Y., et al.: Lrm: large reconstruction model for single image to 3d. arXiv preprint arXiv:2311.04400 (2023)

  10. Jun, H., Nichol, A.: Shap-e: generating conditional 3d implicit functions. arXiv preprint arXiv:2305.02463 (2023)

  11. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4), 139-1 (2023)

    Google Scholar 

  12. Laine, S., Hellsten, J., Karras, T., Seol, Y., Lehtinen, J., Aila, T.: Modular primitives for high-performance differentiable rendering. ACM Trans. Graph. 39(6) (2020)

    Google Scholar 

  13. Li, M., Duan, Y., Zhou, J., Lu, J.: Diffusion-sdf: text-to-shape via voxelized diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12642–12651 (2023)

    Google Scholar 

  14. Li, R., Li, X., Hui, K.H., Fu, C.W.: Sp-gan: sphere-guided 3d shape generation and manipulation. ACM Trans. Graph. (TOG) 40(4), 1–12 (2021)

    Article  Google Scholar 

  15. Li, S., et al.: Instant-3d: instant neural radiance field training towards on-device ar/vr 3d reconstruction. In: Proceedings of the 50th Annual International Symposium on Computer Architecture, pp. 1–13 (2023)

    Google Scholar 

  16. Lin, C.H., et al.: Magic3d: high-resolution text-to-3d content creation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 300–309 (2023)

    Google Scholar 

  17. Liu, M., et al.: Openshape: scaling up 3d shape representation towards open-world understanding. Adv. Neural Inf. Process. Syst. 36 (2024)

    Google Scholar 

  18. Liu, M., et al.: One-2-3-45: any single image to 3d mesh in 45 seconds without per-shape optimization. Adv. Neural Inf. Process. Syst. 36 (2024)

    Google Scholar 

  19. Liu, R., et al.: Zero-1-to-3: zero-shot one image to 3d object. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9298–9309 (2023)

    Google Scholar 

  20. Liu, Z., Feng, Y., Black, M.J., Nowrouzezahrai, D., Paull, L., Liu, W.: Meshdiffusion: score-based generative 3d mesh modeling. arXiv preprint arXiv:2303.08133 (2023)

  21. Mercier, A., et al.: Hexagen3d: stablediffusion is just one step away from fast and diverse text-to-3d generation. arXiv preprint arXiv:2401.07727 (2024)

  22. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  23. Mittal, P., Cheng, Y.C., Singh, M., Tulsiani, S.: Autosdf: shape priors for 3d completion, reconstruction and generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 306–315 (2022)

    Google Scholar 

  24. Nash, C., Ganin, Y., Eslami, S.A., Battaglia, P.: Polygen: an autoregressive generative model of 3d meshes. In: International Conference on Machine Learning, pp. 7220–7229. PMLR (2020)

    Google Scholar 

  25. Nichol, A., Jun, H., Dhariwal, P., Mishkin, P., Chen, M.: Point-e: a system for generating 3d point clouds from complex prompts. arXiv preprint arXiv:2212.08751 (2022)

  26. Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: Dreamfusion: text-to-3d using 2d diffusion. arXiv preprint arXiv:2209.14988 (2022)

  27. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  28. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  29. Schaefer, S., Warren, J.: Dual marching cubes: primal contouring of dual grids. In: 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings, pp. 70–76. IEEE (2004)

    Google Scholar 

  30. Schuhmann, C., et al.: Laion-5b: an open large-scale dataset for training next generation image-text models. Adv. Neural. Inf. Process. Syst. 35, 25278–25294 (2022)

    Google Scholar 

  31. Shen, T., Gao, J., Yin, K., Liu, M.Y., Fidler, S.: Deep marching tetrahedra: a hybrid representation for high-resolution 3d shape synthesis. Adv. Neural. Inf. Process. Syst. 34, 6087–6101 (2021)

    Google Scholar 

  32. Shen, T., et al.: Flexible isosurface extraction for gradient-based mesh optimization. ACM Trans. Graph. (TOG) 42(4), 1–16 (2023)

    Google Scholar 

  33. Shim, J., Kang, C., Joo, K.: Diffusion-based signed distance fields for 3d shape generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20887–20897 (2023)

    Google Scholar 

  34. Shue, J.R., Chan, E.R., Po, R., Ankner, Z., Wu, J., Wetzstein, G.: 3d neural field generation using triplane diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20875–20886 (2023)

    Google Scholar 

  35. Siddiqui, Y., et al.: Meshgpt: generating triangle meshes with decoder-only transformers. arXiv preprint arXiv:2311.15475 (2023)

  36. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)

  37. Tang, J., Chen, Z., Chen, X., Wang, T., Zeng, G., Liu, Z.: Lgm: large multi-view gaussian model for high-resolution 3d content creation. arXiv preprint arXiv:2402.05054 (2024)

  38. Tang, J., Ren, J., Zhou, H., Liu, Z., Zeng, G.: Dreamgaussian: generative gaussian splatting for efficient 3d content creation. arXiv preprint arXiv:2309.16653 (2023)

  39. Tang, J., et al.: Make-it-3d: high-fidelity 3d creation from a single image with diffusion prior. arXiv preprint arXiv:2303.14184 (2023)

  40. Wang, T., et al.: Rodin: a generative model for sculpting 3d digital avatars using diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4563–4573 (2023)

    Google Scholar 

  41. Wu, L., et al.: Fast point cloud generation with straight flows. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9445–9454 (2023)

    Google Scholar 

  42. Yi, T., et al.: Gaussiandreamer: fast generation from text to 3d gaussian splatting with point cloud priors. arXiv preprint arXiv:2310.08529 (2023)

  43. Zeng, X., et al.: Lion: latent point diffusion models for 3d shape generation. arXiv preprint arXiv:2210.06978 (2022)

  44. Zhang, B., Nießner, M., Wonka, P.: 3dilg: irregular latent grids for 3d generative modeling. Adv. Neural. Inf. Process. Syst. 35, 21871–21885 (2022)

    Google Scholar 

  45. Zhang, B., Tang, J., Niessner, M., Wonka, P.: 3dshape2vecset: a 3d shape representation for neural fields and generative diffusion models. arXiv preprint arXiv:2301.11445 (2023)

  46. Zou, Z.X., et al.: Triplane meets gaussian splatting: fast and generalizable single-view 3d reconstruction with transformers. arXiv preprint arXiv:2312.09147 (2023)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (62072366, U23A20312).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bowen Zhang , Tianyu Yang or Xi Zhao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8009 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, B., Yang, T., Li, Y., Zhang, L., Zhao, X. (2025). Compress3D: A Compressed Latent Space for 3D Generation from a Single Image. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15076. Springer, Cham. https://doi.org/10.1007/978-3-031-72649-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72649-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72648-4

  • Online ISBN: 978-3-031-72649-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics