Abstract
Synchronization involves the task of inferring unknown vertex values (belonging to a group) in a graph, from edges labeled with vertex relations. While many matrix groups (e.g., rotations or permutations) have received extensive attention in Computer Vision, a complete solution for projectivities is lacking. Only the \(3 \times 3\) case has been addressed so far, by mapping the problem onto the Special Linear Group, but the \(4 \times 4\) projective case has remained unexplored and is the focus here. We propose novel strategies to address this task, and demonstrate their effectiveness in synthetic experiments, as well as on an application to projective Structure from Motion.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
With reference to projectivity synchronization, the number of measures used for updating a node \(X_i\) is equal to the degree of node i, that is the number of edges having such a node as endpoint.
- 2.
It is easy to see that A and \(A - \alpha I\) for any scalar \(\alpha \) have the same eigenvectors. Moreover, \(\lambda (A) = - \lambda (-A)\).
- 3.
- 4.
It is worth observing that both Sphere and Euclidean are robust to outliers (being based on the L1 norm), whereas Direction is not (being based on the L2 norm). Therefore, for the first two methods, the IRLS-like scheme has the effect of improving robustness, whereas for the third approach it has the effect of gaining robustness.
- 5.
The datasets can be downloaded from https://www.maths.lth.se/matematiklth/personal/calle/dataset/dataset.html.
References
Aftab, K., Hartley, R., Trumpf, J.: Generalized Weiszfeld algorithms for \(l_q\) optimization. IEEE Trans. Pattern Anal. Mach. Intell. 4(37), 728–745 (2015)
Arie-Nachimson, M., Kovalsky, S.Z., Kemelmacher-Shlizerman, I., Singer, A., Basri, R.: Global motion estimation from point matches. In: Proceedings of the Joint 3DIM/3DPVT Conference: 3D Imaging, Modeling, Processing, Visualization and Transmission (2012)
Arrigoni, F., Rossi, B., Fusiello, A.: Spectral synchronization of multiple views in SE(3). SIAM J. Imag. Sci. 9(4), 1963–1990 (2016)
Arrigoni, F., Fusiello, A.: Synchronization problems in computer vision with closed-form solutions. Int. J. Comput. Vision 128, 26–52 (2020)
Arrigoni, F., Pajdla, T.: Motion segmentation via synchronization. In: IEEE International Conference on Computer Vision Workshops (ICCVW) (2019)
Arrigoni, F., Pajdla, T., Fusiello, A.: Viewing graph solvability in practice. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8147–8155 (2023)
Arrigoni, F., Rossi, B., Fragneto, P., Fusiello, A.: Robust synchronization in SO(3) and SE(3) via low-rank and sparse matrix decomposition. Comput. Vis. Image Underst. 174, 95–113 (2018)
Bernard, F., Thunberg, J., Gemmar, P., Hertel, F., Husch, A., Goncalves, J.: A solution for multi-alignment by transformation synchronisation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)
Bernard, F., Thunberg, J., Goncalves, J., Theobalt, C.: Synchronisation of partial multi-matchings via non-negative factorisations. Pattern Recogn. 92, 146–155 (2019)
Bernard, F., Thunberg, J., Swoboda, P., Theobalt, C.: HiPPI: higher-order projected power iterations for scalable multi-matching. In: Proceedings of the International Conference on Computer Vision (2019)
Bhattacharya, U., Govindu, V.M.: Efficient and robust registration on the 3D special euclidean group. In: Proceedings of the International Conference on Computer Vision (2019)
Birdal, T., Arbel, M., Simsekli, U., Guibas, L.J.: Synchronizing probability measures on rotations via optimal transport. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1566–1576 (2020)
Birdal, T., Golyanik, V., Theobalt, C., Guibas, L.: Quantum permutation synchronization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2021)
Birdal, T., Simsekli, U.: Probabilistic permutation synchronization using the riemannian structure of the birkhoff polytope. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11105–11116 (2019)
Birdal, T., Simsekli, U., Eken, M.O., Ilic, S.: Bayesian pose graph optimization via bingham distributions and tempered geodesic MCMC. In: Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. (2018)
Boumal, N., Singer, A., Absil, P.A., Blondel, V.D.: Cramer-Rao bounds for synchronization of rotations. Inf. Inference J. IMA 3(1), 1–39 (2014)
Buss, S.R., Fillmore, J.P.: Spherical averages and applications to spherical splines and interpolation. ACM Trans. Graph. 20(2), 95–126 (2001)
Carlone, L., Tron, R., Daniilidis, K., Dellaert, F.: Initialization techniques for 3D SLAM: a survey on rotation estimation and its use in pose graph optimization. In: Proceedings of the IEEE International Conference on Robotics and Automation (2015)
Chatterjee, A., Govindu, V.M.: Efficient and robust large-scale rotation averaging. In: Proceedings of the International Conference on Computer Vision (2013)
Chen, Y., Guibas, L., Huang, Q.: Near-optimal joint object matching via convex relaxation. In: Proceedings of the International Conference on Machine Learning, pp. 100–108 (2014)
Crandall, D., Owens, A., Snavely, N., Huttenlocher, D.P.: Discrete-continuous optimization for large-scale structure from motion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3001–3008 (2011)
Dellaert, F., Rosen, D.M., Wu, J., Mahony, R., Carlone, L.: Shonan rotation averaging: global optimality by surfing \(SO(p)^n\). In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 292–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_18
Eriksson, A., Olsson, C., Kahl, F., Chin, T.J.: Rotation averaging and strong duality. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 127–135 (2018)
Gojcic, Z., Zhou, C., Wegner, J.D., Guibas, L.J., Birdal, T.: Learning multiview 3D point cloud registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)
Govindu, V.M.: Combining two-view constraints for motion estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2001)
Govindu, V.M.: Lie-algebraic averaging for globally consistent motion estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 684–691 (2004)
Govindu, V.M., Pooja, A.: On averaging multiview relations for 3D scan registration. IEEE Trans. Image Process. 23(3), 1289–1302 (2014)
Hartley, R., Aftab, K., Trumpf, J.: L1 rotation averaging using the Weiszfeld algorithm. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3041–3048 (2011)
Hartley, R.I., Trumpf, J., Dai, Y., Li, H.: Rotation averaging. Int. J. Comput. Vision (2013)
Huang, J., et al.: Multibodysync: multi-body segmentation and motion estimation via 3D scan synchronization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7108–7118 (2021)
Huang, X., Liang, Z., Zhou, X., Xie, Y., Guibas, L.J., Huang, Q.: Learning transformation synchronization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)
Iglesias, J.P., Olsson, C., Kahl, F.: Global optimality for point set registration using semidefinite programming. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Kasten, Y., Geifman, A., Galun, M., Basri, R.: GPSfM: global projective SFM using algebraic constraints on multi-view fundamental matrices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3259–3267 (2019)
Lee, S.H., Civera, J.: Hara: a hierarchical approach for robust rotation averaging. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)
Leonardos, S., Zhou, X., Daniilidis, K.: Distributed consistent data association via permutation synchronization. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 2645–2652 (2017)
Leonardos, S., Zhou, X., Daniilidis, K.: A low-rank matrix approximation approach to multiway matching with applications in multi-sensory data association. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 8665–8671 (2020)
Levi, N., Werman, M.: The viewing graph. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 518 – 522 (2003)
Li, H., Cui, Z., Liu, S., Tan, P.: Rago: recurrent graph optimizer for multiple rotation averaging. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)
Li, S., Shi, Y., Lerman, G.: Fast, accurate and memory-efficient partial permutation synchronization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2022)
Li, X., Ling, H.: Pogo-net: pose graph optimization with graph neural networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5895–5905 (2021)
Mankovich, N., Birdal, T.: Chordal averaging on flag manifolds and its applications. In: Proceedings of the International Conference on Computer Vision (2023)
Martinec, D., Pajdla, T.: Robust rotation and translation estimation in multiview reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2007)
Maset, E., Arrigoni, F., Fusiello, A.: Practical and efficient multi-view matching. In: Proceedings of IEEE International Conference on Computer Vision, pp. 4568–4576 (2017)
Moreira, G., Marques, M., Costeira, J.A.P.: Rotation averaging in a split second: a primal-dual method and a closed-form for cycle graphs. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5452–5460 (2021)
Olsson, C., Enqvist, O.: Stable structure from motion for unordered image collections. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 524–535. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21227-7_49
Ozyesil, O., Sharon, N., Singer, A.: Synchronization over cartan motion groups via contraction. SIAM J. Appl. Algebra Geom. 2(2), 207–241 (2018)
Ozyesil, O., Voroninski, V., Basri, R., Singer, A.: A survey of structure from motion. Acta Numer. 26, 305–364 (2017)
Pachauri, D., Kondor, R., Singh, V.: Solving the multi-way matching problem by permutation synchronization. In: Advances in Neural Information Processing Systems, vol. 26, pp. 1860–1868 (2013)
Parra, A., Chng, S.F., Chin, T.J., Eriksson, A., Reid, I.: Rotation coordinate descent for fast globally optimal rotation averaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4298–4307 (2021)
Porfiri Dal Cin, A., Magri, L., Arrigoni, F., Fusiello, A., Boracchi, G.: Synchronization of group-labelled multi-graphs. In: IEEE International Conference on Computer Vision (ICCV) (2021)
Purkait, P., Chin, T.-J., Reid, I.: NeuRoRA: neural robust rotation averaging. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 137–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_9
Rosen, D.M., DuHadway, C., Leonard, J.J.: A convex relaxation for approximate global optimization in simultaneous localization and mapping. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 5822 – 5829 (2015)
Rosen, D.M., Carlone, L., Bandeira, A.S., Leonard, J.J.: Se-sync: a certifiably correct algorithm for synchronization over the special euclidean group. Int. J. Robot. Res. 38, 95–125 (2019)
Santellani, E., Maset, E., Fusiello, A.: Seamless image mosaicking via synchronization. ISPRS Ann. Photogram. Remote Sens. Spatial Inf. Sci. IV-2, 247–254 (2018)
Schroeder, P., Bartoli, A., Georgel, P., Navab, N.: Closed-form solutions to multiple-view homography estimation. In: IEEE Workshop on Applications of Computer Vision (WACV), pp. 650–657 (2011)
Sengupta, S., et al.: A new rank constraint on multi-view fundamental matrices, and its application to camera location recovery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2413–2421 (2017)
Shen, Y., Huang, Q., Srebro, N., Sanghavi, S.: Normalized spectral map synchronization. In: Advances in Neural Information Processing Systems, vol. 29, pp. 4925–4933. Curran Associates, Inc. (2016)
Shi, Y., Lerman, G.: Message passing least squares framework and its application to rotation synchronization. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 8796–8806. PMLR (2020)
Singer, A.: Angular synchronization by eigenvectors and semidefinite programming. Appl. Comput. Harmon. Anal. 30(1), 20–36 (2011)
Sun, Y., Huang, Q.: Pose synchronization under multiple pair-wise relative poses. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)
Tejus, G., Zara, G., Rota, P., Fusiello, A., Ricci, E., Arrigoni, F.: Rotation synchronization via deep matrix factorization. In: 2023 IEEE International Conference on Robotics and Automation (ICRA) (2023)
Torsello, A., Rodolà, E., Albarelli, A.: Multiview registration via graph diffusion of dual quaternions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2441 – 2448 (2011)
Tron, R., Danilidis, K.: Statistical pose averaging with varying and non-isotropic covariances. In: Proceedings of the European Conference on Computer Vision (2014)
Tron, R., Zhou, X., Daniilidis, K.: A survey on rotation optimization in structure from motion. In: Computer Vision and Pattern Recognition Workshops (CVPRW) (2016)
Visual Geometry Group - University of Oxford: Multiview datasets. https://www.robots.ox.ac.uk/~vgg/data/
Wang, H., Liu, Y., Dong, Z., Guo, Y., Liu, Y.S., Wang, W., Yang, B.: Robust multiview point cloud registration with reliable pose graph initialization and history reweighting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)
Wilson, K., Bindel, D.: On the distribution of minima in intrinsic-metric rotation averaging. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6030–6038 (2020)
Wilson, K., Bindel, D., Snavely, N.: When is rotations averaging hard? In: Proceedings of the European Conference on Computer Vision, pp. 255 – 270 (2016)
Yang, H., Carlone, L.: Certifiably optimal outlier-robust geometric perception: semidefinite relaxations and scalable global optimization. IEEE Trans. Pattern Anal. Mach. Intell. 45(3), 2816–2834 (2023)
Yang, L., Li, H., Rahim, J.A., Cui, Z., Tan, P.: End-to-end rotation averaging with multi-source propagation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11774–11783 (2021)
Yu, J.G., Xia, G.S., Samal, A., Tian, J.: Globally consistent correspondence of multiple feature sets using proximal Gauss-Seidel relaxation. Pattern Recogn. 51, 255–267 (2016)
Zhang, G., Larsson, V., Barath, D.: Revisiting rotation averaging: uncertainties and robust losses. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2023)
Zhou, X., Zhu, M., Daniilidis, K.: Multi-image matching via fast alternating minimization. In: Proceedings of the International Conference on Computer Vision, pp. 4032–4040 (2015)
Acknowledgements
This paper is supported by PNRR-PE-AI FAIR project funded by the NextGeneration EU program. The authors would like to thank Gaia Trebucchi for her help on a preliminary project related to this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Madhavan, R., Fusiello, A., Arrigoni, F. (2025). Synchronization of Projective Transformations. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15095. Springer, Cham. https://doi.org/10.1007/978-3-031-72913-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-72913-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72912-6
Online ISBN: 978-3-031-72913-3
eBook Packages: Computer ScienceComputer Science (R0)