Skip to main content

FIPER: A Visual-Based Explanation Combining Rules and Feature Importance

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2023)

Abstract

Artificial Intelligence algorithms have now become pervasive in multiple high-stakes domains. However, their internal logic can be obscure to humans. Explainable Artificial Intelligence aims to design tools and techniques to illustrate the predictions of the so-called black-box algorithms. The Human-Computer Interaction community has long stressed the need for a more user-centered approach to Explainable AI. This approach can benefit from research in user interface, user experience, and visual analytics. This paper proposes a visual-based method to illustrate rules paired with feature importance. A user study with 15 participants was conducted comparing our visual method with the original output of the algorithm and textual representation to test its effectiveness with users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://pypi.org/project/XAI-Library/.

References

  1. Abdul, A.M.,  Vermeulen, J., Wang, D., Lim, B.Y., Kankanhalli, M.S.: Trends and trajectories for explainable, accountable and intelligible systems: an HCI research agenda (2018). https://doi.org/10.1145/3173574.3174156

  2. Andrienko, N.V., Andrienko, G.L., Adilova, L., Wrobel, S., Rhyne, T.-M.: Visual analytics for human-centered machine learning. IEEE Comput. Graphics Appl. 42(1), 123–133 (2022). https://doi.org/10.1109/MCG.2021.3130314

  3. Cheng, H.F., et al.: Explaining decision-making algorithms through UI: strategies to help non-expert stakeholders (2019). https://doi.org/10.1145/3290605.3300789

  4. Chromik, M., Butz, A.: Human-xai interaction: a review and design principles for explanation user interfaces (2021). https://doi.org/10.1007/978-3-030-85616-8_36

  5. Chromik, M., Schuessler, M.: A taxonomy for human subject evaluation of black-box explanations in XAI (2020). https://ceur-ws.org/Vol-2582/paper9.pdf

  6. Danilevsky, M., Qian, K., Aharonov, R., Katsis, Y., Kawas, B., Sen, P.: A survey of the state of explainable AI for natural language processing (2020). https://aclanthology.org/2020.aacl-main.46/

  7. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  8. Ehsan, U., Tambwekar, P., Chan, L., Harrison, B., Riedl, M.O.: Automated rationale generation: a technique for explainable AI and its effects on human perceptions (2019). https://doi.org/10.1145/3301275.3302316

  9. Freitas, A.A.: Comprehensible classification models: a position paper. SIGKDD Explor. 15(1), 1–10 (2013). https://doi.org/10.1145/2594473.2594475

  10. Guidotti, R., Monreale, A., Giannotti, F., Pedreschi, D., Ruggieri, S., Turini, F.: Factual and counterfactual explanations for black box decision making. IEEE Intell. Syst. 34(6), 14–23 (2019). https://doi.org/10.1109/MIS.2019.2957223

  11. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 93:1–93:42 (2019b). https://doi.org/10.1145/3236009

  12. Gunning, D., Aha, D.W.: Darpa’s explainable artificial intelligence (XAI) program. AI Mag. 40(2), 44–58 (2019). https://doi.org/10.1609/aimag.v40i2.2850. https://doi.org/10.1609/aimag.v40i2.2850

  13. Hart, S.G.: Nasa-task load index (nasa-tlx); 20 years later (2006)

    Google Scholar 

  14. Hart, S.G., Staveland, L.E.: Development of nasa-tlx (task load index): results of empirical and theoretical research. In: Advances in psychology, vol. 52, pp. 139–183. Elsevier (1988)

    Google Scholar 

  15. Kulesza, T., Stumpf, S., Burnett, M.M., Yang, S., Kwan, I., Wong, W.-K.: Too much, too little, or just right? ways explanations impact end users’ mental models (2013). https://doi.org/10.1109/VLHCC.2013.6645235

  16. Vera Liao, Q., Varshney, K.R.: Human-centered explainable AI (XAI): from algorithms to user experiences. CoRR, abs/2110.10790 (2021). https://arxiv.org/abs/2110.10790

  17. Vera Liao, Q., Gruen, D.M., Miller, S.: Questioning the AI: informing design practices for explainable AI user experiences (2020). https://doi.org/10.1145/3313831.3376590

  18. Lim, B.Y., Dey, A.K.: Toolkit to support intelligibility in context-aware applications (2010). https://doi.org/10.1145/1864349.1864353

  19. Lipton, Z.C.: The mythos of model interpretability. Commun. ACM 61(10), 36–43 (2018). https://doi.org/10.1145/3233231

  20. Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions (2017)

    Google Scholar 

  21. Madumal, P., Miller, T., Sonenberg, T., Vetere, F.: A grounded interaction protocol for explainable artificial intelligence (2019). http://dl.acm.org/citation.cfm?id=3331801

  22. Miller, T.: Explanation in artificial intelligence: Insights from the social sciences. Artif. Intell. 267, 1–38 (2019). https://doi.org/10.1016/j.artint.2018.07.007

  23. Miller, T., Howe, P., Sonenberg, L.: Explainable AI: beware of inmates running the asylum or: How I learnt to stop worrying and love the social and behavioural sciences. CoRR, abs/1712.00547 (2017). http://arxiv.org/abs/1712.00547

  24. Ming, Y., Huamin, Q., Bertini, E.: Rulematrix: visualizing and understanding classifiers with rules. IEEE Trans. Vis. Comput. Graph. 25(1), 342–352 (2019). https://doi.org/10.1109/TVCG.2018.2864812

  25. Mucha, H., Robert, S., Breitschwerdt, R., Fellmann, M.: Interfaces for explanations in human-ai interaction: Proposing a design evaluation approach (2021). https://doi.org/10.1145/3411763.3451759

  26. O’Brien, H.L., Cairns, P.A., Hall, M.: A practical approach to measuring user engagement with the refined user engagement scale (UES) and new UES short form. Int. J. Hum Comput Stud. 112, 28–39 (2018). https://doi.org/10.1016/j.ijhcs.2018.01.004

  27. O’Brien, H.: Theoretical perspectives on user engagement. Why engagement matters: Cross-disciplinary perspectives of user engagement in digital media, pp. 1–26 (2016)

    Google Scholar 

  28. Preece, A.D., Harborne, D., Braines, D., Tomsett, R., Chakraborty, S.: Stakeholders in explainable AI. CoRR abs/1810.00184 (2018). http://arxiv.org/abs/1810.00184

  29. Preece, J., Sharp, H., Rogers, Y.: Interaction design: beyond human-computer interaction. John Wiley & Sons (2015)

    Google Scholar 

  30. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier, pp. 1135–1144 (2016). https://doi.org/10.1145/2939672.2939778

  31. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic explanations. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pp. 1527–1535. AAAI Press (2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16982

  32. Schaffer, J., Giridhar, P., Jones, D., Höllerer, T., Abdelzaher, T.F., O’Donovan, J.: Getting the message? a study of explanation interfaces for microblog data analysis (2015). https://doi.org/10.1145/2678025.2701406

  33. Sharp, H.,  Preece, J.,  Rogers, Y.: Interaction Design: Beyond Human-Computer Interaction. Wiley, 2019. ISBN 9781119547259. https://books.google.it/books?id=HreODwAAQBAJ

  34. Sovrano, F., Vitali, F., Palmirani, M.: Making things explainable vs explaining: requirements and challenges under the GDPR. CoRR, abs/2110.00758 (2021). https://arxiv.org/abs/2110.00758

  35. Wang, D., Yang, Q., Abdul, A.M., Lim, B.Y.: Designing theory-driven user-centric explainable AI (2019). https://doi.org/10.1145/3290605.3300831

  36. Yang, F., Huang, Z., Scholtz, J., Arendt, D.L.: How do visual explanations foster end users’ appropriate trust in machine learning? (2020). https://doi.org/10.1145/3377325.3377480

Download references

Acknowledgements

This work has been supported by the European Community Horizon 2020 programme under the funding scheme ERC-2018-ADG G.A. 834756 XAI: Science and technology for the eXplanation of AI decision making, by the European Union’s Horizon Europe Programme under the CREXDATA project, grant agreement no. 101092749, by the Next Generation EU: NRRP Initiative, Mission 4, Component 2, Investment 1.3, PE0000013 - “Future Artificial Intelligence Research - FAIR” - CUP: H97G22000210007 and “SoBigData.it - Strengthening the Italian RI for Social Mining and Big Data Analytics” - Prot. IR0000013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora Cappuccio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cappuccio, E., Fadda, D., Lanzilotti, R., Rinzivillo, S. (2025). FIPER: A Visual-Based Explanation Combining Rules and Feature Importance. In: Meo, R., Silvestri, F. (eds) Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2023. Communications in Computer and Information Science, vol 2135. Springer, Cham. https://doi.org/10.1007/978-3-031-74633-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-74633-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-74632-1

  • Online ISBN: 978-3-031-74633-8

  • eBook Packages: Artificial Intelligence (R0)

Publish with us

Policies and ethics