Abstract
Many people suffer from pollen allergies. Therefore, pollen monitoring is performed worldwide, and pollen traps are used for this purpose. Specialists are analyzing the acquired material, using adequate reference material for the identification of target taxa. However, the background in reference images is relatively clean and uniform, whereas the background in pollen trap images contains air bubbles, dust, fungal and fern spores, and pollen grains of various taxa. In this work, we address the automatic detection and identification of the pollen grains of selected tree species, responsible for most common allergies, in images from pollen traps. Deep neural networks have been applied for this purpose, using models trained on reference pollen grain images. These models produce unsatisfactory results when applied to images from pollen traps. Problems related to the background in these images are discussed in this paper, and fine-tuning of the models for the recognition of allergenic pollen grains is presented. The obtained results are discussed, and future works are indicated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Papers with Code - COCO test-dev Benchmark (Object Detection). https://paperswithcode.com/sota/object-detection-on-coco
AAFA: 2023 Allergy Capitals (2023). https://aafa.org/wp-content/uploads/2023/03/aafa-2023-allergy-capitals-report.pdf
Azevedo, P.: Object detection state of the art 2022 (2022). https://medium.com/@pedroazevedo6/object-detection-state-of-the-art-2022-ad750e0f6003
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. CoRR abs/2005.12872 (2020). https://arxiv.org/abs/2005.12872, www.github.com/facebookresearch/detr
Clot, B., et al.: The EUMETNET AutoPollen programme: establishing a prototype automatic pollen monitoring network in Europe. Aerobiologia (2020). https://doi.org/10.1007/s10453-020-09666-4
Fang, Y., et al.: EVA: exploring the limits of masked visual representation learning at scale (2022). http://arxiv.org/abs/2211.07636 [cs] version: 2
Jiang, C., et al.: Field evaluation of an automated pollen sensor. Int. J. Environ. Res. Public Health 19(11), 6444 (2022). https://doi.org/10.3390/ijerph19116444
Jiang, P., Ergu, D., Liu, F., Cai, Y., Ma, B.: A review of Yolo algorithm developments. Procedia Comput. Sci. 199, 1066–1073 (2022). https://doi.org/10.1016/j.procs.2022.01.135, 8th International Conference on Information Technology and Quantitative Management (ITQM 2020 & 2021): Developing Global Digital Economy after COVID-19
Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLOv8, version 8.0.0, license AGPL-3.0 (2023). https://github.com/ultralytics/ultralytics/blob/main/docs/en/models/yolov8.md
Kejriwal, K.: YOLOv7: The most advanced object detection algorithm? (2023). https://www.unite.ai/yolov7/, unite.AI
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017). https://doi.org/10.1145/3065386
Kubera, E., Kubik-Komar, A., Kurasiński, P., Piotrowska-Weryszko, K., Skrzypiec, M.: Detection and recognition of pollen grains in multilabel microscopic images. Sensors 22(7), 2690 (2022). https://doi.org/10.3390/s22072690
Kubera, E., Kubik-Komar, A., Wieczorkowska, A., Piotrowska-Weryszko, K., Kurasiński, P., Konarska, A.: Towards automation of pollen monitoring: image-based tree pollen recognition. In: Ceci, M., Flesca, S., Masciari, E., Manco, G., Raś, Z.W. (eds.) Foundations of Intelligent Systems. ISMIS 2022. LNCS, vol. 13515, pp. 219–229. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16564-1_21
Lin, T.Y., et al.: COCO - Common Objects in Context (2014). https://arxiv.org/abs/1405.0312
Pinheiro, J., Bates, D., R Core Team: nlme: linear and nonlinear mixed effects models (2023). https://CRAN.R-project.org/package=nlme, r package version 3.1-162
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2022). https://www.R-project.org/
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Proceedings of the Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc., Montreal, Canada (2015)
Wang, W., et al.: InternImage: exploring large-scale vision foundation models with deformable convolutions (2023). http://arxiv.org/abs/2211.05778 [cs] version: 4
Zong, Z., Song, G., Liu, Y.: DETRs with collaborative hybrid assignments training (2023). http://arxiv.org/abs/2211.12860 [cs] version: 4
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kubera, E., Wieczorkowska, A., Piotrowska-Weryszko, K., Konarska, A., Kubik-Komar, A. (2025). Towards Automation of Pollen Monitoring - Dealing with the Background in Pollen Monitoring Images. In: Meo, R., Silvestri, F. (eds) Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2023. Communications in Computer and Information Science, vol 2135. Springer, Cham. https://doi.org/10.1007/978-3-031-74633-8_44
Download citation
DOI: https://doi.org/10.1007/978-3-031-74633-8_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-74632-1
Online ISBN: 978-3-031-74633-8
eBook Packages: Artificial Intelligence (R0)