Skip to main content

GraphWiseLearn: Personalized Learning Through Semantified TEL, Leveraging QA-Enhanced LLM-Generated Content

  • Conference paper
  • First Online:
The Semantic Web: ESWC 2024 Satellite Events (ESWC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15345))

Included in the following conference series:

  • 36 Accesses

Abstract

In today’s educational landscape, from traditional schools to MOOC platforms, the prevalent model is a one-size-fits-all approach to learning content, often overlooking the unique needs and learning paces of individual students. This gap between the ideal personalized instruction by a team of personal trainers and the practicalities of standardization presents significant challenges, including diminished engagement and understanding. My PhD research proposes a Knowledge Graph-based application of core Technology Enhanced Learning (TEL) components, aiming to bridge this divide with a cost-effective method targeted to individual learning objectives and paths.

The core elements of the approach are structured around five key components: Knowledge Graphs (KGs), Large Language Models (LLMs), Flashcards, Visualization of Dynamic Competence Maps (DCMs), and a Quality Assurance (QA) review and feedback workflow.

The approach will collect empirical data on students needs and misconceptions which allow to apply learning analytics for continuous improvement of the learning material.

We hypothesize that this approach will provide a viable method for digitization and entering into a quality improvement cycle based on the rating results, offering a concrete solution for the transition from traditional learning materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://cr.bitplan.com/index.php/TEL_approaches.

  2. 2.

    http://dbis-vl.wikidata.dbis.rwth-aachen.de/index.php/Main_Page.

  3. 3.

    https://wiki.bitplan.com/index.php/Skills_Wheel.

  4. 4.

    https://github.com/WolfgangFahl/dcm.

  5. 5.

    https://cr.bitplan.com/index.php/Workdocumentation_2024-02-02.

  6. 6.

    https://github.com/WolfgangFahl/pySemanticSlides.

  7. 7.

    https://www.isaqb.org.

  8. 8.

    http://dbis-vl.wikidata.dbis.rwth-aachen.de/index.php/List_of_Checks.

References

  1. Anderson, L.W., et al.: A Taxonomy for Learning, Teaching, and Assessing. Pearson, Upper Saddle River (2000)

    MATH  Google Scholar 

  2. Bloom, B.S. (ed.): Taxonomie von Lernzielen im kognitiven Bereich, 5th edn. Beltz Studienbuch, Julius Beltz, Weinheim, Germany (1976)

    Google Scholar 

  3. Carnovale, S., Allen, C., Pullman, M., Wong, D.: Using continuous improvement in online program design: DMAIC as a tool for assurance of learning assessments. Decis. Sci. J. Innov. Educ. 14(2), 128–153 (2016). https://doi.org/10.1111/dsji.12094

    Article  MATH  Google Scholar 

  4. Durand, G., Belacel, N., LaPlante, F.: Graph theory based model for learning path recommendation. Inf. Sci. 251, 10–21 (2013). https://doi.org/10.1016/j.ins.2013.04.017

    Article  MATH  Google Scholar 

  5. Erler, W., Gerzer-Saß, A., Nußhart, C., Saß, J.: Die kompetenzbilanz - ein instrument zur selbsteinschätzung und beruflichen entwicklung. In: Erpenbeck, J., Rosenstiel, L.V. (eds.) Handbuch Kompetenzmessung, pp. 339–352. Schäffer-Poeschel Verlag, Stuttgart (2003)

    Google Scholar 

  6. Heffler, B.: Individual learning style and the learning style inventory. Educ. Stud. 27(3), 307–316 (2001). https://doi.org/10.1080/03055690120076583

    Article  MATH  Google Scholar 

  7. Heist, N., Haase, P.: Flexible and extensible competency management with knowledge graphs. In: Seneviratne, O., Pesquita, C., Sequeda, J., Etcheverry, L. (eds.) Proceedings of the ISWC 2021 Posters, Demos and Industry Tracks: From Novel Ideas to Industrial Practice co-located with 20th International Semantic Web Conference (ISWC 2021), Virtual Conference, 24–28 October 2021. CEUR Workshop Proceedings, vol. 2980. CEUR-WS.org (2021). https://ceur-ws.org/Vol-2980/paper412.pdf

  8. Ilkou, E.: Personal knowledge graphs: use cases in e-learning platforms. In: Companion Proceedings of the Web Conference 2022, WWW 2022. ACM, April 2022. https://doi.org/10.1145/3487553.3524196

  9. Leitner, S.: So lernt man lernen. Herder Spektrum, Verlag Herder, Freiburg, Germany, 18th edn., February 2011

    Google Scholar 

  10. Malashenko, G.T., et al.: A digital model of full-cycle training based on the Zettelkasten and interval repetition system. Emerg. Sci. J. 7, 1–15 (2023). https://doi.org/10.28991/esj-2023-sied2-01

  11. Miller, G.E.: The assessment of clinical skills/competence/performance. Acad. Med. 65(9), S63-7 (1990). https://doi.org/10.1097/00001888-199009000-00045

    Article  MATH  Google Scholar 

  12. Preißer, R., Völzke, R.: Kompetenzbilanzierung - hintergründe, verfahren, entwicklungsnotwendigkeiten. REPORT Zeitschrift für Weiterbildungsforschung 2007(1), 62–71 (2007). http://www.die-bonn.de/id/3549. Accessed 14 Feb 2024

  13. Reich, J.: Failure to Disrupt. Harvard University Press, London (2022)

    MATH  Google Scholar 

  14. Reich, J., Ruipérez-Valiente, J.A.: The MOOC pivot. Science 363(6423), 130–131 (2019). https://doi.org/10.1126/science.aav7958

    Article  MATH  Google Scholar 

  15. Shemshack, A., Kinshuk, Spector, J.M.: A comprehensive analysis of personalized learning components. J. Comput. Educ. 8(4), 485–503 (2021). https://doi.org/10.1007/s40692-021-00188-7

  16. Triebel, C.: Kompetenzbilanzierung als psychologische Intervention: Wirkfaktoren und Wirkprinzipien in Laufbahnberatung und Coaching. Dissertation, Universität der Bundeswehr München, Munich, Germany (2009). https://d-nb.info/999369652/34, Doktors der Philosophie (Dr. phil.)

  17. Yang, Y., Lin, J., Zhang, X., Wang, M.: PKG: a personal knowledge graph for recommendation. In: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2022. ACM (2022). https://doi.org/10.1145/3477495.3531671

  18. Yin, Y.: Integration of a Moodle Chatbot into Online Courses utilizing State-of-the-Art NLP Techniques. Bachelorarbeit, Advisor: Alexander Tobias Neumann, RWTH Aachen University, Aachen (2023). https://publications.rwth-aachen.de/record/977904, Bachelorarbeit, RWTH Aachen University, 2023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Fahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fahl, W. (2025). GraphWiseLearn: Personalized Learning Through Semantified TEL, Leveraging QA-Enhanced LLM-Generated Content. In: Meroño Peñuela, A., et al. The Semantic Web: ESWC 2024 Satellite Events. ESWC 2024. Lecture Notes in Computer Science, vol 15345. Springer, Cham. https://doi.org/10.1007/978-3-031-78955-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-78955-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-78954-0

  • Online ISBN: 978-3-031-78955-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics