Skip to main content

ICPR 2024 Competition on Domain Adaptation and GEneralization for Character Classification (DAGECC)

  • Conference paper
  • First Online:
Pattern Recognition. Competitions (ICPR 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15334))

Included in the following conference series:

Abstract

In this companion paper for the DAGECC (Domain Adaptation and GEneralization for Character Classification) competition organized within the frame of the ICPR 2024 conference, we present the general context of the tasks we proposed to the community, we introduce the data that were prepared for the competition and we provide a summary of the results along with a description of the top three winning entries. The competition was centered around domain adaptation and generalization, and our core aim is to foster interest and facilitate advancement on these topics by providing a high-quality, lightweight, real world dataset able to support fast prototyping and validation of novel ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://zenodo.org/records/13320997.

  2. 2.

    https://zenodo.org/records/11093441.

  3. 3.

    from \(18 \times 30\) pixels to \(86 \times 79\) pixels.

  4. 4.

    https://dagecc-challenge.github.io/icpr2024/.

References

  1. Alpaydin, E., Kaynak, C.: Optical recognition of handwritten digits data set. UCI Mach. Learn. Repos. 64(5620) (1998)

    Google Scholar 

  2. Ansel, J., Y., et al.: PyTorch 2: faster machine learning through dynamic python bytecode transformation and graph compilation. In: 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2 (ASPLOS 2024). ACM, April 2024. https://doi.org/10.1145/3620665.3640366, https://pytorch.org/assets/pytorch2-2.pdf

  3. Chen, X., Liu, M., Niu, Y., Wang, X., Wu, Y.C.: Deep-learning-based lithium battery defect detection via cross-domain generalization. IEEE Access (2024)

    Google Scholar 

  4. Choi, S., Jung, S., Yun, H., Kim, J.T., Kim, S., Choo, J.: RobustNet: improving domain generalization in urban-scene segmentation via instance selective whitening. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11580–11590 (2021)

    Google Scholar 

  5. Ciampi, L., Santiago, C., Costeira, J.P., Falchi, F., Gennaro, C., Amato, G.: Unsupervised domain adaptation for video violence detection in the wild. In: IMPROVE, pp. 37–46 (2023)

    Google Scholar 

  6. Cohen, G., Afshar, S., Tapson, J., Van Schaik, A.: EMNIST: extending MNIST to handwritten letters. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2921–2926. IEEE (2017)

    Google Scholar 

  7. Blender Online Community: Blender - a 3D modelling and rendering package. Blender Foundation, Stichting Blender Foundation, Amsterdam. http://www.blender.org

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Esser, P., et al.: Scaling rectified flow transformers for high-resolution image synthesis. In: Forty-first International Conference on Machine Learning (2024)

    Google Scholar 

  10. Ganin, Y., Lempitsky, V.S.: Unsupervised domain adaptation by backpropagation. In: Bach, F.R., Blei, D.M. (eds.) Proceedings of the 32nd International Conference on Machine Learning, ICML 2015. JMLR Workshop and Conference Proceedings, Lille, France, 6-11 July 2015, vol. 37, pp. 1180–1189. JMLR.org (2015). http://proceedings.mlr.press/v37/ganin15.html

  11. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(59), 1–35 (2016)

    MathSciNet  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Hémadou, L., Vorobieva, H., Kijak, E., Jurie, F.: Beyond internet images: evaluating vision-language models for domain generalization on synthetic-to-real industrial datasets. In: Synthetic Data for Computer Vision Workshop @ CVPR 2024 (2024). https://openreview.net/forum?id=BgpApqspGw

  14. Himeur, Y., et al.: Video surveillance using deep transfer learning and deep domain adaptation: towards better generalization. Eng. Appl. Artif. Intell. 119, 105698 (2023)

    Article  Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  17. Li, J., Xu, R., Ma, J., Zou, Q., Ma, J., Yu, H.: Domain adaptive object detection for autonomous driving under foggy weather. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 612–622 (2023)

    Google Scholar 

  18. Li, S., et al.: Logical relation inference and multiview information interaction for domain adaptation person re-identification. IEEE Trans. Neural Netw. Learn. Syst. (2023)

    Google Scholar 

  19. Liu, Y., et al.: Adversarial domain generalization for surveillance face anti-spoofing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6352–6360 (2023)

    Google Scholar 

  20. Marino, S., Beauseroy, P., Smolarz, A.: Unsupervised adversarial deep domain adaptation method for potato defects classification. Comput. Electron. Agric. 174, 105501 (2020)

    Article  Google Scholar 

  21. Marino, S., Vandoni, J., Lemghari, I., Musquer, B., Arsaut, T.: Safran-MNIST-DLS (0.0.1) [data set]. Zenodo (2024).https://doi.org/10.5281/zenodo.11093441

  22. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning 2011 (2011). http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf

  23. Otsu, N., et al.: A threshold selection method from gray-level histograms. Automatica 11(285–296), 23–27 (1975)

    Google Scholar 

  24. Shan, Y., Lu, W.F., Chew, C.M.: Pixel and feature level based domain adaptation for object detection in autonomous driving. Neurocomputing 367, 31–38 (2019)

    Article  Google Scholar 

  25. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  26. Thoma, M.: The HASYv2 dataset. arXiv preprint arXiv:1701.08380 (2017)

  27. Thota, M., Kollias, S., Swainson, M., Leontidis, G.: Multi-source domain adaptation for quality control in retail food packaging. Comput. Ind. 123, 103293 (2020)

    Article  Google Scholar 

  28. Vandoni, J., Marino, S., Lemghari, I., Arsaut, T., Musquer, B.: Safran-MNIST-D (0.0.1) [data set]. Zenodo (2024). https://doi.org/10.5281/zenodo.13320997

  29. Xu, Z., et al.: Codabench: flexible, easy-to-use, and reproducible meta-benchmark platform. Patterns 3(7), 100543 (2022). https://doi.org/10.1016/j.patter.2022.100543. https://www.sciencedirect.com/science/article/pii/S2666389922001465

  30. Zhang, S., Zhang, Q., Gu, J., Su, L., Li, K., Pecht, M.: Visual inspection of steel surface defects based on domain adaptation and adaptive convolutional neural network. Mech. Syst. Signal Process. 153, 107541 (2021)

    Article  Google Scholar 

  31. Zhang, Y., David, P., Gong, B.: Curriculum domain adaptation for semantic segmentation of urban scenes. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2020–2030 (2017)

    Google Scholar 

Download references

Acknowledgements

A special thank to SAFRAN, especially Basile Musquer (SAFRAN Aircraft Engines) and Thierry Arsaut (SAFRAN Helicopter Engines) for participating in the acquisition of the images, the creation of the dataset and for allowing the public release of the data. We are also grateful to Codabench, and specifically to Adrien Pavão, for their great support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Vandoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marino, S., Vandoni, J., Aldea, E., Lemghari, I., Le Hégarat-Mascle, S., Jurie, F. (2025). ICPR 2024 Competition on Domain Adaptation and GEneralization for Character Classification (DAGECC). In: Antonacopoulos, A., Chaudhuri, S., Chellappa, R., Liu, CL., Bhattacharya, S., Pal, U. (eds) Pattern Recognition. Competitions. ICPR 2024. Lecture Notes in Computer Science, vol 15334. Springer, Cham. https://doi.org/10.1007/978-3-031-80139-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-80139-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-80138-9

  • Online ISBN: 978-3-031-80139-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics