Skip to main content

A Framework for Controlled Self-optimisation in Modular System Architectures

  • Chapter

Part of the book series: Autonomic Systems ((ASYS,volume 1))

Abstract

Organic Computing tackles design issues of future technical systems by equipping them with self-x properties. A key self-x feature is self-optimisation, i.e. the system’s ability to adapt its dynamic behaviour to its current environment and requirements. In this article, it is shown how self-optimisation can be realised in a safe and goal-directed way, but also why it has to be enhanced and embedded into a suitable, modular system architecture. Then, a suitable framework for controlled self-optimisation is developed, which enables the system designer to give a priori guarantees of important dynamic system properties, and which ensures the system’s ability to cope dynamically with anomalies. The key features are online machine learning, which is complemented by incremental, local regularisation in a local Observer/Controller architecture as well as expressing anomalies by health signals, which are exploited to guide the learning process dynamically in order to achieve fast, but safe learning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brockmann, W.: Online machine learning for adaptive control. In: Proc. IEEE Int. Work. Emerging Technologies and Factory Automation, pp. 190–195 (1992)

    Chapter  Google Scholar 

  2. Brockmann, W., Buschermöhle, A., Hülsmann, J.: A generic concept to increase the robustness of embedded systems by trust management. In: Proc. IEEE Conf. Systems, Man, and Cybernetics, SMC, pp. 2037–2044 (2010)

    Google Scholar 

  3. Brockmann, W., Horst, A.: Stabilizing the convergence of online-learning in neuro-fuzzy systems by an immune system-inspired approach. In: Proc. IEEE Int. Conf. Fuzzy Systems, FUZZ-IEEE, pp. 351–356 (2007)

    Google Scholar 

  4. Brockmann, W., Maehle, E., Mosch, F.: Organic fault-tolerant control architecture for robotic applications. In: IARP/IEEE-RAS/EURON Workshop on Dependable Robots in Human Environments (2005)

    Google Scholar 

  5. Brockmann, W., Rosemann, N.: Instantaneous anomaly detection in online learning fuzzy systems. In: Hoffmann, F., Cordón, O., Angelov, P., Klawonn, F. (eds.) 3rd Int. Workshop on Genetic and Evolving Fuzzy Systems, pp. 23–28. IEEE Press, Piscataway (2008)

    Chapter  Google Scholar 

  6. Brockmann, W., Rosemann, N., Lintze, C.: Dynamic rate adaptation in self-adapting real-time control systems. In: Lohweg, V., Niggemann, O. (eds.) Proc. Workshop Machine Learning in Real-Time Applications—MLRTA 09. Lemgo Series on Industrial Information Technology, vol. 3 (2009). ISSN 1869-2087

    Google Scholar 

  7. Farrell, J., Polycarpou, M.: Approximation Based Control: Unifying Neural, Fuzzy and Traditional Adaptive Approximation Approaches. Wiley-Interscience, Hoboken (2006)

    Google Scholar 

  8. Geibel, P., Wysotzki, F.: Risk-sensitive reinforcement learning applied to control under constraints. J. Artif. Intell. Res. 24, 81–108 (2005)

    MATH  Google Scholar 

  9. Hafner, R., Riedmiller, M.: Neural reinforcement learning controllers for a real robot application. In: Proc. IEEE Int. Conf. Robotics and Automation, ICRA, pp. 2098–2103 (2007)

    Google Scholar 

  10. Hsu, C.F.: Self-organizing adaptive fuzzy neural control for a class of nonlinear systems. IEEE Trans. Neural Netw. 18(4), 1232–1241 (2007)

    Article  Google Scholar 

  11. Kleinlützum, K., Brockmann, W., Rosemann, N.: Modellierung von Anomalien in einer modularen Roboter-Steuerung. In: Berns, K., Luksch, T. (eds.) Autonome Mobile Systeme 2007, pp. 89–95. Springer, Berlin (2007)

    Chapter  Google Scholar 

  12. Mösch, F., Litza, M., Auf, E.S., Jakimovski, B., Maehle, E., Brockmann, W.: Organic fault-tolerant controller for the walking robot OSCAR. In: Proc. Work. Dependability and Fault Tolerance, ARCS. VDE Verlag GmbH (2007)

    Google Scholar 

  13. Peters, J., Schaal, S.: Natural actor-critic. Neurocomputing 71(7–9), 1180–1190 (2008)

    Article  Google Scholar 

  14. Polycarpou, M.: Stable adaptive neural control scheme for nonlinear systems. IEEE Trans. Autom. Control 41(3), 447–451 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Riedmiller, M., Montemerlo, M., Dahlkamp, H.: Learning to drive a real car in 20 minutes. In: Proc. Frontiers in the Convergence of Bioscience and Information Technologies, FBIT, pp. 645–650 (2007)

    Google Scholar 

  16. Riedmiller, M., Peters, J., Schaal, S.: Evaluation of policy gradient methods and variants on the cart-pole benchmark. In: Proc. IEEE Int. Symp. Approximate Dynamic Programming and Reinforcement Learning, ADPRL, pp. 254–261 (2007)

    Chapter  Google Scholar 

  17. Rosemann, N., Brockmann, W.: Concept for controlled self-optimization in online learning neuro-fuzzy systems. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007: Advances in Artificial Intelligence. LNAI, vol. 4667, pp. 498–501. Springer, Berlin (2007)

    Chapter  Google Scholar 

  18. Rosemann, N., Brockmann, W.: Incremental regularization to compensate biased teachers in incremental learning. In: Proc.World Congress Computational Intelligence, pp. 1963–1970. IEEE Press, Piscataway (2010)

    Google Scholar 

  19. Rosemann, N., Brockmann, W., Neumann, B.: Enforcing local properties in online learning first order ts-fuzzy systems by incremental regularization. In: Proc. Int. Fuzzy Systems Assoc. World Congress / 2009 European Soc. for Fuzzy Logic and Technology Conf.—IFSA/EUSFLAT, pp. 466–471 (2009)

    Google Scholar 

  20. Rosemann, N., Buschermöhle, A., Brockmann, W.: Beschleunigung der Selbstoptimierung durch Selbstsimulation. In: Hoffmann, E., Hüllermeier, E. (eds.) Proc. Workshop Computational Intelligence, pp. 114–128. KIT Scientific, Karlsruhe (2009)

    Google Scholar 

  21. Rosemann, N., Hülsmann, J., Brockmann, W.: Disrupted Learning—Lernen Bei Harten Zustands - Oder Strukturwechseln. In: Proc. Workshop Computational Intelligence, pp. 105–117. Universitätsverlag Karlsruhe, Karlsruhe (2008)

    Google Scholar 

  22. Rosemann, N., Neumann, B., Brockmann, W.: Formale Eigenschaften des Silke-Ansatzes zur Kontrolle selbstoptimierender Systeme. In: Hegering, H.-G., Lehmann, A. (eds.) Proc. Informatik 2008 Beherrschbare Systeme—dank Informatik. LNI, vol. 134, pp. 755–762. Köllen, Bonn (2008)

    Google Scholar 

  23. Zhang, T., Ge, S.: Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs. Automatica 43(6), 1021–1033 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Rosemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Brockmann, W., Rosemann, N., Maehle, E. (2011). A Framework for Controlled Self-optimisation in Modular System Architectures. In: Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds) Organic Computing — A Paradigm Shift for Complex Systems. Autonomic Systems, vol 1. Springer, Basel. https://doi.org/10.1007/978-3-0348-0130-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0130-0_18

  • Publisher Name: Springer, Basel

  • Print ISBN: 978-3-0348-0129-4

  • Online ISBN: 978-3-0348-0130-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics