Non-Parametric Aerodynamic Shape Optimiza-
tion

Stephan Schmidt, Caslav Ilic, Volker Schulz and Nicolas Gauger

Abstract. Numerical schemes for large scale shape optimization are consid-
ered. Exploiting the structure of shape optimization problems is shown to
lead to very efficient optimization methods based on non-parametric surface
gradients in Hadamard form. The resulting loss of regularity is treated using
higher order shape Newton methods where the shape Hessians are studied
using operator symbols. The application ranges from shape optimization of
obstacles in an incompressible Navier—Stokes fluid to super- and transonic
airfoil and wing optimizations.
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1. Introduction

1.1. Paradigms in Aerodynamic Shape Optimization

There are two paradigms to solve aerodynamic shape optimization problems: para-
metric and non-parametric. The non-parametric approach is traditionally used to
derive analytically optimal shapes that can be globally represented as the graph of
a function or by a deformation of the submanifold of the surface of the flow obsta-
cle. With this paradigm, optimality of certain rotationally symmetric ogive shaped
bodies in supersonic, irrotational, inviscid potential flows can be shown [I5]. In the
incompressible regime, optimal shapes for a viscous Stokes flow are derived in [20].

Any actual optimization so far follows the parametric paradigm. After choos-
ing a finite dimensional design vector ¢ € R"™¢, the gradient is computed by a
formal Lagrangian approach:
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where f is the objective function, u is the solution of the flow state c(u, q), and A
is the adjoint variable. The mesh sensitivity Jacobian % is a dense matrix. Often,
the computation of the mesh sensitivity involves a mesh deformation procedure,
making the computation of this Jacobian very costly. As the computational time
and storage requirements increase quickly with the number of design parameters
ng, there is a strong desire to use as few design parameters as possible: Usually,
the shape is deformed by a small number of smooth ansatz functions, where the
coeflicients of these functions are the design parameters. The de facto standard is
a parameterization by Hicks-Henne functions [I6], but sometimes b-spline param-
eters are also used.

Overcoming the limited search space of such a global parameterization in
the form of coordinates of boundary points as design variables has long been
desired, but the computational costs become prohibitive very quickly and the
resulting loss of regularity is not well understood. A formulation of the gradient
for the highly complex, nonlinear, hyperbolic equations describing compressible
flows which can be computed without the design chain has long been sought after
by both academia, [7] and [11], and industry [28, 29| 30, B1], [32). More in line
with the theoretical non-parametric approach, the problem is seldom treated from
a true shape optimization perspective, except in [Il 2] for pressure tracking or
in []. Due to the complexity of the shape differentiation techniques, none of the
approaches above, which omit the design chain of the formal Lagrangian approach,
have so far been successfully applied on a large scale drag reduction problem.

The work presented here follows mainly the non-parametric approach as a
means to overcome the difficulties of the standard approach described above. Non-
parametric shape gradients for various objectives and flow regimes will be dis-
cussed. Furthermore, shape Hessians can be exploited for convergence acceleration
in higher order optimization approaches. The resulting shape-Newton methods
define a new efficient algorithmic approach in aerodynamic non-parametric shape
optimization. Such optimization problems are usually solved by a two loop ap-
proach: The outer loop is given by a gradient based optimization scheme, while
solving the flow and adjoint equations creates the inner loop. This nested loop is
rarely broken up, as in [I4][T9] or in [I3] [26]. The latter one-shot optimization relies
on the structure of a standard non-linear finite dimensional optimization problem
of the parametric approach [12]. Therefore, the need of a repeated mesh sensi-
tivity computation usually reduces the effective speed-up for a large-scale shape
parameterization. Therefore, similar to [23] a shape one-shot method is presented,
which works outside the structure of a finite dimensional nonlinear problem and
features a significant speed-up. As the standard approximation of the Hessian by
BFGS-updates is questionable in this setting, we present a Hessian approximation
based on operator symbols.

1.2. Shape Calculus

Shape calculus describes mathematical concepts when the geometry is the vari-
able. Forsaking the shape problem origin by parameterizing, most—if not all—of
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the standard calculus of finite spaces is applicable. The alternative is to retain
concepts of differential calculus, spaces of geometries, evolution equations, etc. to
geometric domains. Excellent overviews about these concepts applied to shapes
can be found in [6] [8, 27]. As both approaches are usually called “shape analysis”,
this field of research appears much more unified than it actually is. For example
in the area of continuum mechanics and structural mechanics of elastic bodies the
thickness of the material can be used to create a distributed parameter set. Alterna-
tively, one can employ direct shape calculus techniques on the moving boundaries
and topological derivatives in the interior [3] [5]. Outside of this compliance analy-
sis, non-parametric shape calculus enables very elegant and efficient descriptions of
sensitivities of general partial differential equations with respect to changes in the
domain. However, there are many open questions when using these analytical ob-
jects numerically. For example, the proper discretization of analytic shape Hessians
or finding reliable update formulas like BFGS need to be discussed more in order
to better establish optimization schemes beyond shape gradient steepest descent.
As such, higher order non-parametric shape optimization schemes are rare. In [9]
the shape Hessian is studied via sinusoidal perturbations of the annulus, in [I0]
the shape Hessian for potential flow pressure tracking in star-shaped domains is
considered, and in [I7, [I8] a non-parameterized image segmentation approach is
shown, also employing shape Hessians.

2. Impulse Response Approach for Characterizing Shape Hessians
in Stokes and Navier—Stokes Flow

The research presented in this section focuses on finding reliable and easily ap-
plicable shape Hessian approximations for flow problems governed by the incom-
pressible Navier—Stokes equations. We study shapes that minimize the conversion
of kinetic energy into heat, which is physically closely related to a proper drag
reduction using the formulation based on surface forces. The model problem for

finding shape Hessians is given by:
ou;
2.1
<8x] ) ®1)

min J(u,
(u,p,2) ( ) / Z

ij=1
s.t. —vAu+puVu+Vp = in Q
divu = 0
u = 0 on Iy (2.2)
U = Uy on Iy
Volume(Q2) = VW,

where u = (uy,u2)7 is the speed of the fluid, v is the kinematic viscosity, p denotes
the pressure, and p is the density which is constant in an incompressible fluid. Also,
'y € 09, the no-slip surface of the flow obstacle, is the unknown to be found. The
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shape derivative for this problem is given by:

3uk 2 8uk 8)\k
d Q = _ZRZR 4
T W)= [ Z () e 4
r
where A = (A1, \2)” and )\, again satisfy the adjoint equation
—VAX—pAVu—p (VAN u+VA, = —2Au inQ
divi, = 0 in Q.

For more details see [22] 24, 25]. The idea is to characterize the Hessian of this
problem by its symbol, which is defined as the image of a single fourier mode
G(r) := Ge™?® under the Hessian H of the problem.

If we assume Q = {(z,y) : z € R,y > 0} to be the upper half-plane, then
we need to track the Fourier mode a(z) := €*1* through the perturbation of the
local shape derivatives

ulla] = d;e" 12y (2.3)

zwl;v wzy

p'la] = pe
In the limit of the Stokes case, p = 0, the perturbed shape gradient dGr[«] is given
by

Ou; Oul[a
dGrla] = —2v :
rla Z oy 3y
which means that the Hessian H is deﬁned by the mapping
ou’;
dy

Thus, if the angular frequency w; can be made explicit in the left hand side, we
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FIGURE 1. Preconditioning accelerates the Stokes problem by 96%.

have exactly the definition of the operator symbol as stated above. To achieve this,



Non-Parametric Aerodynamic Shape Optimization 5

the PDE defining the local shape derivatives is transformed into the Fourier space.
There, the solvability requirement of the PDE and its boundary conditions in the
frequency space defines an implicit function relating wy to wy in . Essentially,
this implicit function is given by the roots of the characteristic polynomial of the
PDE for the local shape derivatives and gives for the Stokes problem:

det dC[a] = v(—w} + wi)wi — v(—w] + wi)wi. (2.4)

Using this method, one can show that the shape Hessian for the Stokes problem is
a pseudo-differential operator of order +1, closely related to the Poincaré-Stecklov
operator. The task of identifying the shape Hessian is thus transformed to finding
an explicit representation of a certain implicit function in the Fourier space.
Finding explicit representations of implicit functions analytically is still in-
feasible for more complex problems. For an empirical determination of the symbol

FI1GURE 2. Initial and optimized Navier-Stokes shapes. Color de-
notes speed.

of the Navier-Stokes shape Hessian see [22, [24], where the operator is found to
be a pseudo-differential operator with the symbol |w|, again closely related to the
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Poincaré-Stecklov operator. We approximate this operator by a damped Laplace-
Beltrami operator for preconditioning these problems, where the damping is de-
termined by the frequency spectrum of the standing waves possible on the given
mesh resolution of the surface. This leads to a significant speed-up of 96% in the
Stokes case and of 80% in the Navier-Stokes case. The speed-up for the Stokes
case is shown in figure [I] and the initial and optimal shapes for the Navier—Stokes
problem can be seen in figure 2} The double vortex behind the initial circle has
been completely removed.

3. Exploitation of Shape Calculus for Supersonic and Transonic
Euler Flow

3.1. Introduction

As the usual cruise speed is Mach 0.7 and more, the incompressible Navier—Stokes
equations considered above are not a sophisticated enough flow model: viscosity
effects become negligible compared to compression effects, which means that we
must now at least consider the compressible Euler equations as a model for the
flow. At transonic and supersonic flow conditions, shock waves form that dominate
the drag of the aircraft. This means not only that the discontinuous solutions
must be computed correctly for the forward and adjoint problem, but also that
the shape derivative must give correct results under a PDE constraint which has
a discontinuous solution. We found that the nodal shape-Newton method works
very well given a discontinuous state. The objective function is now a proper force
minimization and the whole drag optimization problem is stated as:

in Faae(U,Q) = ,n) dS
i Farag (U, ) / (pa,n)
r
2 oU
s.t. i_ZIAi(Up) o, 0 in © (Euler equations)
(u,n) = 0onT (Euler slip condition)
Fig (U, Q) = /(pl,n> ds > o (lift force)
r
L:= / dS < Lg (airfoil contour length)
r
I, = /(y —y.)?dS > I, (airfoil bending stiffness).
r

For 2D applications there is also the additional constraint that the leading edge
is fixed at (0,0)7 and the trailing edge must be fixed at (1,0)7. Otherwise, the
optimization changes the reference length of the airfoil, which would lead to a
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wrong non-dimensionalization of the flow quantities. The contour length constraint
and bending stiffness constraint are usually not engaged at the same time. They
are both not very sophisticated and serve as a substitute for a proper modeling
of the airfoil’s structure. Without them, the solution will either degenerate into a
flat line or will not be of any practical relevance.

Additionally, U := (p, pu1, pus, pus, pE)T is the vector of the unknown state
and denotes the conserved variables, where p is the density of the fluid, u; are the
velocity components, and E is the internal energy of the fluid. Likewise, U, :=
(p,u1,ug,us, E)T denotes the primitive variables which enter the Euler flux Jaco-
bians A; := %g'i of the inviscid fluxes F;. Using the non-conservative formulation of
the Euler equations in terms of the flux Jacobians simplifies the derivation of the
adjoint equations. For a given angle of attack a, we define pg := p - (cos a, sin o)™
and p; := p - (—sina,cosa)’, where p denotes the pressure, which is related to
the conserved variables by the perfect gas law p = (v — 1)p(E — % (u} +u3 + u3)).
Here, ~ is the isentropic expansion factor, i.e. the heat capacity ratio, of air. For
the bending stiffness constraint, y is the y-coordinate of the contour, and y. is the
y-coordinate of the center of mass of the contour.

The numerous mappings of the pressure p to the conserved variables U makes
the derivation of the shape derivative non-trivial. In fact, the shape derivative for
this problem was long sought after for the benefits stated above. In the engineer-
ing literature often called “surface formulation of the gradient”, there have been
previous attempts to find the shape derivative [4, [7, [TT], 28] The surface measure
variation dS. must be considered, because a boundary integral objective function
requires a partial integration on the surface of submanifolds, which usually in-
troduces additional curvature terms. Considering this, the shape derivative of the
Euler drag reduction is given by

dFarag()[V] = / (V,n) [(Vpa n,n) + £(pa,n)] + (pa — A\Ugu)dn[V] dS  (3.1)
T

= /(V, ny [(Vpg n,n) + divr(pg — AUgu)] dS,
r

where A solves the adjoint Euler equations:

fAlTaixl)\ - AQT(%A - AgTa%SA =0in Q

and the wall boundary condition

()\2, )\3, /\4) n —+ ng = 0
on the wing. Here, Uy := (p, pu1, pug, pus, pH)T are the conserved variables with
the last component replaced by the enthalpy pH = pE + p. Also, divr denotes
the divergence in the tangent space of I', which is sometimes also called “surface
divergence”. Also, k denotes additive mean curvature. Thus, a correct computation
of the shape derivative also requires discrete differential geometry, as the curvature
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and normal variation or surface divergence must be computed correctly on the
given CFD mesh.

The following results were achieved with the DLR flow solver TAU, which
is an unstructured finite volume code, in Euler mode. It features an implementa-
tion of the continuous adjoint and is also the production code of Airbus, making
the following computations examples of real world applications. The Hessian is a
pseudo-differential operator of order +2. For the smoothing procedure we always
employed the Laplace-Beltrami operator.

3.2. Supersonic Airfoil Optimization

The first test was conducted for a fully supersonic flow at no angle of attack
and no lift constraint. The fully supersonic case is considered easier, because the
initial NACAO0012 airfoil produces a detached bow shock due to its blunt nose.
Thus, the state is continuous where the shape derivative must be evaluated. The

FicUre 3. Non-lifting optimization, supersonic flow Mach 2.0.
NACAO0012 airfoil deforms to a Haack Ogive shape. Color denotes
pressure.

shapes can be seen in figure 8] We have the automatic formation of a sharp leading
edge without user intervention. The strong detached bow shock of the blunt nose
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FIGURE 4. Speed-up in CPU time due to shape Hessian precon-
ditioning, shape derivative, and one-shot.

body is transformed to a weaker attached shock of a body with a sharp leading
edge. The optimal shape, a Haack Ogive, was expected from the literature, as
it is analytically known from simpler supersonic inviscid flow models that such
shapes are optimal, making this an excellent test to gauge the method against.
The correct shape was very efficiently found: From an initial Cp = 9.430 - 1072,
the optimal Cp = 4.721-10~2 was found with 2.5 times the cost of the simulation
alone. Using the shape Hessian, the shape derivative, and a one-shot approach, we
can solve this problem in about 100 seconds. The classical approach of solving a
non-linear optimization problem post discretization requires 2.77 hours. The CPU
time reduction of one-shot, shape derivative, and shape Hessian are all cumulative,
making the nodal one-shot approach 99% faster. The effects of each ingredient can
be seen in figure [4

3.3. Onera M6 Wing Optimization

We conclude with the optimization of the Onera M6 wing in three dimensions.
During cruise condition of Mach 0.83 and 3.01° angle of attack, the wing features
a lift coefficient of Cy, = 2.761 - 10~! and a drag coefficient of Cp = 1.057 - 10~ 2.
This drag is mainly created due to two interacting shock waves on the upper side
of the wing. Thus, in this three dimensional application, the wing shape must be
optimized such that the shock waves vanish while at the same time maintaining
liftt and internal volume, which adds another constrained compared to the prob-
lem considered above. We conduct a multi-level optimization using all CFD mesh
surface nodes as design parameter. The coarse mesh features 18, 285 surface nodes
and a finer mesh is created adaptively during the optimization with has 36, 806
surface nodes. Surface finite elements in a curved space are used to compute the
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Laplace—Beltrami operator for the Hessian approximation. Likewise, the curvature
is computed by discretely constructing the second fundamental tensor IT similar
to [21]. The resulting optimal shapes are shown in figure [5| The optimized wing

_r

FIGURE 5. Initial and optimized Onera M6 wing. Color denotes
pressure. The upper surface shock waves are completely removed.

is shock free with a drag coefficient of Cp = 7.27 - 1072 and maintains lift with
Cr =2.65-10"1.

4. Conclusions

Large scale aerodynamic shape optimization was considered. While usually the
actual computation of optimal shapes is based on a parametric approach, here we
focus on a non-parametric shape sensitivity analysis in order to very efficiently
compute the shape gradients. Paired with a one-shot optimization approach, this
creates a highly efficient numerical scheme exploiting the nature of shape opti-
mization problems, e.g. the possibility of computing the gradient using surface
quantities alone. The resulting loss of regularity is treated using higher order op-
timization methods where the shape Hessian is approximated using operator sym-
bols. Both the incompressible Navier—Stokes equations as well as the compressible
Euler equations are considered as a model for the fluid and both the shape opti-
mization of obstacles in a flow channel as well as super- and transsonic airfoil and
wing optimizations are presented.
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