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Abstract. In this paper we derive a posteriori error estimates for space-time finite element dis-
cretization of parabolic optimization problems. The provided error estimates assess the discretization
error with respect to a given quantity of interest and separate the influence of different parts of the
discretization (time, space, and control discretization). This allows to set up an efficient adaptive
algorithm which successively improves the accuracy of the computed solution by construction of
locally refined meshes for time and space discretizations.
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1. Introduction. In this paper we develop an adaptive algorithm for efficient
solution of time-dependent optimization problems governed by parabolic partial dif-
ferential equations. The optimization problems are formulated in a general setting
including optimal control as well as parameter identification problems. Both, time
and space discretization of the state equation are based on the finite element method
as proposed e.g. in [10, 11]. In [2] we have shown that this type of discretization
allows for a natural translation of the optimality conditions from the continuous to
the discrete level. This gives rise to exact computation of the derivatives required in
the optimization algorithms on the discrete level.

The main goal of this paper is to derive a posteriori error estimates which assess
the error between the solution of the continuous and the discrete optimization problem
with respect to a given quantity of interest. This quantity of interest may coincide
with the cost functional or expresses another goal for the computation. In order to
set up an efficient adaptive algorithm we will separate the influence of the time and
space discretizations on the error in the quantity of interest. This allows to ballance
different types of error and successively to improve the accuracy by construction of
locally refined meshes for time and space discretizations.

The use of adaptive techniques based on a posteriori error estimation is well ac-
cepted in the context of finite element discretization of partial differential equations,
see e.g. [9, 26, 3]. In the last years the application of these techniques is also inves-
tigated for optimization problems governed by partial differential equations. Energy-
type error estimators for the error in the state, control and the adjoint variable are
developed in [19, 20] in the context of distributed elliptic optimal control problems
subject to pointwise control constraints. Recently, these techniques are also applied
in the context of optimal control problems governed by linear parabolic equations,
see [18]. In a recent preprint [23] an anisotropic error estimate is derived for the error
due to the space discretization of an optimal control problem governed by linear heat
equation.

However, in many applications, the error in global norms does not provide useful
error bounds for the error in the quantity of physical interest. In [1, 3] a general
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concept for a posteriori estimation of the discretization error with respect to the cost
functional in the context of optimal control problems is presented. In papers [4, 5],
this approach is extended to the estimation of the discretization error with respect
to an arbitrary functional depending on both the control and the state variable, i.e.
with respect to a quantity of interest. This allows, among other things, an efficient
treatment of parameter identification and model calibration problems. The main con-
tribution of this paper is the extension of these approaches to optimization problems
governed by parabolic partial differential equations.

In this paper, we consider optimization problems under constraints of (nonlinear)
parabolic differential equations

∂tu+A(q, u) = f

u(0) = u0(q).
(1.1)

Here, the state variable is denoted by u and the control variable by q. Both, the
differential operator A and the initial condition u0 may depend on q. This allows a si-
multaneous treatment of both, optimal control and parameter identification problems.
For optimal control problems, the operator A is typically given by

A(q, u) = Ā(u) −B(q),

with a (nonlinear) operator Ā and a (usually linear) control operator B. In parameter
identification problems, the variable q denotes the unknown parameters to be deter-
mined and may enter the operator A in a nonlinear way. The case of initial control is
included via the q-dependent initial condition u0(q).

The target of the optimization is to minimize a given cost functional J(q, u)
subject to the state equation (1.1).

For the numerical solution of this optimization problem the state variable has to
be discretized in space and in time. Moreover, if the control (parameter) space is
infinite dimensional, it has to be discretized, too. For fixed time, space, and control
discretizations this leads to a finite dimensional optimization problem. We introduce
σ as a general discretization parameter including the space, time, and the control
discretization and denote the solution of the discrete problem by (qσ , uσ). For this
discrete solution we derive an a posteriori error estimate with respect to the cost
functional J of the following form:

J(q, u) − J(qσ, uσ) ≈ ηJ
k + ηJ

h + ηJ
d (1.2)

Here, ηJ
k , ηJ

h , and ηJ
d denote the error estimators, which can be evaluated from the

computed discrete solution: ηJ
k assess the error due to the time discretization, ηJ

h due
to the space discretization, and ηJ

d due to the discretization of the control space. The
structure of the error estimate (1.2) allows for equilibration of different discretization
errors within an adaptive refinement algorithm to be described in the sequel.

For many optimization problems the quantity of physical interest coincide with
the cost functional, which explains the choice of the error measure (1.2). However, in
the case of parameter identification or model calibration problems, the cost functional
is only an instrument for the estimation of the unknown parameters. Therefore, the
value of the cost functional in the optimum and the corresponding discretization error
are of secondary importance. This motivates error estimation with respect to a given
functional I depending on the state and the control (parameter) variable. In this
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paper we extend the corresponding results from [4, 5, 27] to parabolic problems and
derive an a posteriori error estimator of the form

I(q, u) − I(qσ, uσ) ≈ ηI
k + ηI

h + ηI
d,

where again ηI
k and ηI

h estimate the temporal and spatial discretization errors and ηI
d

estimates the discretization error due to the discretization of the control space.

In Section 5.2 we will describe an adaptive algorithm based on these error estima-
tors. Within this algorithm the time, space, and control discretizations are separately
refined for efficient reduction of the total error equilibrating different types of the error.
This local refinement relies on the computable representation of the error estimators
as a sum of local contributions (error indicators), see the discussion in Section 5.1.

To the authors knowledge, this is the first paper describing the a posteriori er-
ror estimation for optimization problems governed by parabolic differential equations
including the separation of different types of the discretization error.

The outline of the paper is as follows: In the next section we describe necessary
optimality conditions for the problem under consideration and sketch the Newton-
type optimization algorithm on the continuous level. This algorithm will be applied
on the discrete level for fixed discretizations within an adaptive refinement procedure.
In Section 3 we present the space time finite element discretization of the optimization
problem. Section 4 is devoted to the derivation of the error estimators in a general
setting. In Section 5 we discuss numerical evaluation of these error estimators and the
adaptive algorithm in details. In the last section we present two numerical examples
illustrating the behavior of the proposed methods. The first example deals with
boundary control of the heat equation, whereas the second one is concerned with the
identification of Arrhenius parameters in a simplified gaseous combustion model by
means of point measurements of the concentrations.

2. Optimization. The optimization problems considered in this paper are for-
mulated in the following abstract setting: Let Q be a Hilbert space for the controls
(parameters) with scalar product (·, ·)Q. Moreover, let V and H be Hilbert spaces,
which build together with the dual space V ∗ of V a Gelfand triple V →֒ H →֒ V ∗. The
duality pairing between the Hilbert spaces V and its dual V ∗ is denoted by 〈·, ·〉V ∗

×V

and the scalar product in H by (·, ·)H . A typical choice for these space could be

V =
{
v ∈ H1(Ω)

∣∣∣ v
∣∣
∂ΩD

= 0
}

and H = L2(Ω), (2.1)

where ∂ΩD denotes the part of the boundary of Ω with prescribed Dirichlet boundary
conditions.

For a time interval I = (0, T ) we introduce the Hilbert space X := W (0, T )
defined as

W (0, T ) =
{
v

∣∣ v ∈ L2(I, V ) and ∂tv ∈ L2(I, V ∗)
}
. (2.2)

It is well known that the space X is continuously embedded in C(Ī , H), see e.g. [8].
Furthermore, we use the inner product of L2(I,H) given by

(u, v) := (u, v)L2(I,H) =

T∫

0

(u(t), v(t))H dt (2.3)
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for setting up the weak formulation of the state equation. This is possible since due
to the properties of the Gelfand’s triple the inner product on H is an equivalent
representation of the duality pairing of V and V ∗.

By means of the spatial semi-linear form ā : Q× V × V → R defined for a differ-
ential operator A : Q× V → V ∗ by

ā(q, ū)(ϕ̄) := 〈A(q, ū), ϕ̄〉V ∗×V ,

we can define the semi-linear form a(·, ·)(·) on Q×X ×X as

a(q, u)(ϕ) :=

T∫

0

ā(q, u(t))(ϕ(t)) dt

which is assumed to be three times continuously differentiable and linear in the third
argument.

Remark 2.1. If the control variable q depends on time, this has to be incorporated
by an obvious modification of the definitions of the semi-linear forms.

After these preliminaries, we pose the state equation in a weak form: Find for
given control q ∈ Q the state variable u ∈ X such that

(∂tu, ϕ) + a(q, u)(ϕ) = (f, ϕ) ∀ϕ ∈ X,

u(0) = u0(q),
(2.4)

where f ∈ L2(0, T ;V ∗) represents the right hand side of the state equation and
u0 : Q → H denotes a three times continuously differentiable mapping describing
parameter-dependent initial conditions.

The cost functional J : Q×X → R is defined using two three times continuously
differentiable functionals J1 : V → R and J2 : H → R by

J(q, u) =

T∫

0

J1(u) dt+ J2(u(T )) +
α

2
‖q − q̄‖2

Q, (2.5)

where the regularization (or cost) term is added which involves α ≥ 0 and a reference
parameter q̄ ∈ Q.

The corresponding optimization problem is formulated as follows:

Minimize J(q, u) subject to the state equation (2.4), (q, u) ∈ Q×X. (2.6)

The question of existence and uniqueness of solutions to such optimization problems
is discussed e.g. in [17, 12, 25]. Throughout the paper, we assume problem (2.6) to
admit a (locally) unique solution.

Provided the existence of a solution operator S : Q ⊃ Q0 → X on an open
subset Q0 containing the optimal solution, we can define the reduced cost functional
j : Q0 → R by j(q) = J(q, S(q)). This definition allows to reformulate problem (2.6)
as an unconstrained optimization problem:

Minimize j(q), q ∈ Q0. (2.7)

For the reduced optimization problem (2.7) we apply Newton’s method to reach
a control q which satisfies the first order necessary optimality condition

j′(q)(τq) = 0, ∀τq ∈ Q.
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Starting with an initial guess q0, the next Newton iterate is obtained by qi+1 = qi+δq,
where the update δq ∈ Q is the solution of the linear problem:

j′′(q)(δq, τq) = −j′(q)(τq), ∀τq ∈ Q. (2.8)

Thus, we need suitable expressions for the first and second derivatives of the reduced
cost functional j. To this end, we introduce the Lagrangian L : Q × X × X → R,
defined as

L(q, u, z) = J(q, u) + (f − ∂tu, z)− a(q, u)(z) − (u(0) − u0(q), z(0))H . (2.9)

With its aid, we obtain the following standard representation of the first derivative
j′(q)(τq):

Theorem 2.1.
• If for given q ∈ Q the state u ∈ X fulfills the state equation

L′

z(q, u, z)(ϕ) = 0, ∀ϕ ∈ X,

• and if additionally z ∈ X is chosen as solution of the adjoint state equation

L′

u(q, u, z)(ϕ) = 0, ∀ϕ ∈ X,

then the following expression of first derivative of the reduced cost functional holds:

j′(q)(τq) = L′

q(q, u, z)(τq)

= α(q − q̄, τq)Q − a′q(q, u)(τq) + (u′0(q)(τq), z(0))H .

Remark 2.2. The optimality system of the considered optimization problem (2.6)
is given by the derivatives of the Lagrangian used in Theorem 2.1 above:

L′

z(q, u, z)(ϕ) = 0, ∀ϕ ∈ X (State equation),

L′

u(q, u, z)(ϕ) = 0, ∀ϕ ∈ X (Adjoint state equation),

L′

q(q, u, z)(ψ) = 0, ∀ψ ∈ Q (Gradient equation).

(2.10)

For the explicit formulation of the dual equation in this setting see e.g. [2].
In the same manner one can gain representations of the second derivatives of j

in terms of the Lagrangian, see e.g. [2] where two different kinds of expressions are
discussed: Either one can build up the whole Hessian and solve the system (2.8) by
an arbitrary linear solver, or one just computes matrix-vector products of the Hessian
times a given vector and uses this to solve (2.8) by the conjugate gradient method.

The presented Newton’s method will be used to solve discrete optimization prob-
lems arising from discretizing the states and the controls as e.g. shown in the following
section. In practical realizations, Newton’s method has to be combined with some
globalizations techniques as line search or trust region to enlarge its area of conver-
gence, see e.g. [22, 7].

Remark 2.3. The solution u of the underlying state equation is typically required
in the whole time interval for the computation of the adjoint solution z. If all data are
stored, the storage grows linearly with respect to the number of time intervals in the
time discretization. For reducing the required memory one can apply checkpointing
techniques, see e.g. [13, 14]. In [2] we analyze such a strategy in the context of space-
time finite element discretization of parabolic optimization problems.



6 Dominik Meidner and Boris Vexler

3. Discretization. In this section, we discuss the discretization of the optimiza-
tion problem (2.6). To this end, we use Galerkin finite element methods in space and
time to discretize the state equation. This allows us to give a natural computable
representation of the discrete gradient and Hessian in the same manner as shown in
Section 2 for the continuous problem. The use of exact discrete derivatives is impor-
tant for the convergence of the optimization algorithms. Moreover, our systematic
approach to a posteriori error estimation relies on using the Galerkin-type discretiza-
tions.

The first of the following subsection is devoted to semi-discretization in time by
continuous Galerkin (cG) and discontinuous Galerkin (dG) methods. Subsection 3.2
deals with the space discretization of the semi-discrete problems arising from time
discretization. For the numerical analysis of these schemes we refer to [10].

The discretization of the control space Q is kept rather abstract by choosing an
finite dimensional subspace Qd ⊂ Q. A possible concretion of this choice is shown in
the numerical examples in Section 6. For the variational discretization concept, where
the control variable is not discretized explicitly, we refer to [15], for a superconvergence
based discretization of the control variable see [21].

3.1. Time Discretization of the States. To define a semi-discretization in
time, let us partition the time interval Ī = [0, T ] as

Ī = {0} ∪ I1 ∪ I2 ∪ · · · ∪ IM

with subintervals Im = (tm−1, tm] of size km and time points

0 = t0 < t1 < · · · < tM−1 < tM = T.

We define the discretization parameter k as a piecewise constant function by setting
k
∣∣
Im

= km for m = 1, . . . ,M .
By means of the subintervals Im, we define for r ∈ N0 two semi-discrete spaces

Xr
k and X̃r

k :

Xr
k =

{
vk ∈ C(Ī , V )

∣∣∣ vk

∣∣
Im

∈ Pr(Im, V )
}
⊂ X

X̃r
k =

{
vk ∈ L2(I, V )

∣∣∣ vk

∣∣
Im

∈ Pr(Im, V ) and vk(0) ∈ H
}

Here, Pr(Im, V ) denotes the space of polynomials up to order r defined on Im with
values in V . Thus, Xr

k consist of piecewise polynomials which are continuous in
time and will be used as trial space in the continuous Galerkin method whereas the
functions in X̃r

k may have discontinuities at the edges of the subintervals Im. This
space will be used in the sequel as test space in the continuous Galerkin method and
as trial and test space in the discontinuous Galerkin method.

3.1.1. Continuous Galerkin (cG) Methods. Using the semi-discrete spaces
defined above, the cG(r) formulation of the state equation can directly stated as: Find
for given control qk ∈ Q a state uk ∈ Xr

k such that

(∂tuk, ϕ) + a(qk, uk)(ϕ) = (f, ϕ) ∀ϕ ∈ X̃r−1
k ,

uk(0) = u0(qk).
(3.1)

Here, the inner product on X has to be extended on X̃r
k via its definition (2.3).
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The corresponding semi-discretized optimization problem reads:

Minimize J(qk, uk) subject to the state equation (3.1), (qk, uk) ∈ Q×Xr
k . (3.2)

Since the state equation semi-discretized by the cG(r) method has the same form
as in the continuous setting, the corresponding Lagrangian is analogically defined on
Q×Xr

k × X̃r−1
k as

L(qk, uk, zk) = J(qk, uk) + (f − ∂tuk, zk) − a(qk, uk)(zk) − (uk(0) − u0(qk), zk(0))H .

3.1.2. Discontinuous Galerkin (dG) Methods. To define the dG(r) dis-

cretization we employ the following definition for functions vk ∈ X̃r
k :

v+
k,m := lim

t→0+
vk(tm + t), v−k,m := lim

t→0+
vk(tm − t) = vk(tm), [vk]m := v+

k,m − v−k,m

Then, the dG(r) semi-discretization of the state equation (2.4) reads: Find for

given control qk ∈ Q a state uk ∈ X̃r
k such that

M∑

m=1

∫

Im

(∂tuk, ϕ)H dt+ a(qk, uk)(ϕ) +
M−1∑

m=0

([uk]m, ϕ
+
m)H = (f, ϕ), ∀ϕ ∈ X̃r

k ,

u−k,0 = u0(qk).

(3.3)

The semi-discrete optimization problem for the dG(r) time discretization has the
form:

Minimize J(qk, uk) subject to the state equation (3.3), (qk, uk) ∈ Q× X̃r
k . (3.4)

Then we pose the Lagrange functional L̃ : Q × X̃r
k × X̃r

k → R associated with the
dG(r) time discretization for the state equation as

L̃(qk, uk, zk) = J(qk, uk) + (f, zk) −

M∑

m=1

∫

Im

(∂tuk, zk)H dt

− a(qk, uk)(zk) −

M−1∑

m=0

([uk]m, z
+
k,m)H − (u−k,0 − u0(qk), z−k,0)H .

3.2. Space Discretization of the States. In this subsection, we first describe
the finite element discretization in space. To this end, we consider two or three
dimensional shape-regular meshes, see e.g. [6]. A mesh consists of quadrilateral or
hexahedral cells K, which constitute a non-overlapping cover of the computational
domain Ω ⊂ Rn, n ∈ {2, 3}. The corresponding mesh is denoted by Th = {K}, where
we define the discretization parameter h as a cellwise constant function by setting
h
∣∣
K

= hK with the diameter hK of the cell K.
On the mesh Th we construct a conform finite element space Vh ⊂ V in a standard

way:

V s
h =

{
v ∈ V

∣∣ v
∣∣
K

∈ Qs(K) for K ∈ Th

}

Here, Qs(K) consists of shape functions obtained via bi- or tri-linear transformations

of polynomials in Q̂s(K̂) defined on the reference cell K̂ = (0, 1)n.
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To obtain the fully discretized versions of the time discretized state equations (3.1)
and (3.3), we utilize the space-time finite element spaces

Xr,s
k,h =

{
vkh ∈ C(Ī , V s

h )
∣∣∣ vkh

∣∣
Im

∈ Pr(Im, V
s
h )

}
⊂ Xr

k

and

X̃r,s
k,h =

{
vkh ∈ L2(I, V s

h )
∣∣∣ vkh

∣∣
Im

∈ Pr(Im, V
s
h ) and vkh(0) ∈ V s

h

}
⊂ X̃r

k .

Remark 3.1. By the above definition of the discrete spaces Xr,s
k,h and X̃r,s

k,h, we
have assumed that the spatial discretization is fixed for all time intervals. However, in
many application problems the use of different meshes T m

h for each of the subintervals
Im will lead to more efficient adaptive discretizations. The consideration of such
dynamically changing meshes can be included in the formulation of the dG(r) schemes
in a natural way. The corresponding formulation of the cG(r) method is more involved
due to the continuity requirement in the trial space. The treatment of dynamic meshes
for parabolic optimization problems within an adaptive algorithm will be analyzed in
a forthcoming paper.

Then, the so called cG(s)cG(r) discretization of the state equation (2.4) can be
stated as: Find for given control qkh ∈ Q a state ukh ∈ Xr,s

k,h such that

(∂tukh, ϕ) + a(qkh, ukh)(ϕ) = (f, ϕ) ∀ϕ ∈ X̃r−1,s
k,h ,

ukh(0) = u0(qkh),
(3.5)

and the cG(s)dG(r) discretization has the form: Find for given control qkh ∈ Q a

state ukh ∈ X̃r,s
k,h such that

M∑

m=1

∫

Im

(∂tukh, ϕ)H dt+ a(qkh, ukh)(ϕ) +
M−1∑

m=0

([ukh]m, ϕ
+
m)H = (f, ϕ), ∀ϕ ∈ X̃r,s

k,h,

u−kh,0 = u0(qkh).

(3.6)
Thus, the optimization problems with fully discretized states are given by

Minimize J(qkh, ukh) subject to the state equation (3.5), (qkh, ukh) ∈ Q×Xr,s
k,h

(3.7)
for the cG(s)cG(r) discretization and by

Minimize J(qkh, ukh) subject to the state equation (3.6), (qkh, ukh) ∈ Q× X̃r,s
k,h

(3.8)
for the cG(s)dG(r) discretization of the state space.

The definition of the Lagrangians L and L̃ for fully discretized states can directly
be transfered from the formulations for semi-discretization in time just by restriction of
the state spacesXr

k and X̃r
k to the subspacesXr,s

k,h and X̃r,s
k,h, respectively. With the aid

of these Lagrangians, the derivatives of the reduced functionals jk(qk) = J(qk, Sk(uk))
and jkh(qkh) = J(qkh, Skh(ukh)) on the different discretization levels can be expressed
in the same manner as described on the continuous level in Theorem 2.1. Thus, we
obtain exact derivatives of the reduced cost functional on the discrete level, see [2] for
details.



Adaptive FEM for Parabolic Optimization Problems 9

Remark 3.2. The dG(r) and cG(r) schemes are known to be time discretization
schemes of order r + 1. The cG(r) schemes lead to a A-stable discretization whereas
the dG(r) schemes are even strongly A-stable.

Remark 3.3. The lower order methods dG(0) and cG(1) can be reinterpreted as
time stepping schemes using numerical integration. Thereby, the dG(0) discretization
leads to variations of the backward Euler scheme depending on the chosen quadra-
ture rule for the righthandside, and the cG(1) discretization results in variants of
the Crank-Nicolson scheme. The exact computation of the derivatives on the discrete
level mentioned above is not disturbed even by the numerical integration. This can
be shown using a duality argument with respect to the inner product based on the
underlying quadrature rule.

3.3. Discretization of the Controls. As proposed in the beginning of the
current section, the discretization of the control space Q is kept rather abstract. It is
done by choosing a finite dimensional subspace Qd ⊂ Q. Then, the formulation of the
state equation, the optimization problems and the Lagrangians defined on the fully
discretized state space can directly be transfered to the level with fully discretized
control and state spaces by replacing Q by Qd. The full discrete solutions will be
indicated by the subscript σ which collects the discretization indices k, h and d.

4. Derivation of the A Posteriori Error Estimator. In this section, we will
establish a posteriori error estimators for the error arising due to the discretization
of the control and state spaces in terms of the cost functional J and an arbitrary
quantity of interest I.

For this, we first recall an abstract result from [3] which we will later use to
establish the desired a posteriori error estimators:

Proposition 4.1. Let Y be a function space and L a differentiable functional
on Y . We seek a stationary point y of L on Y , that is

L′(y)(ŷ) = 0 ∀ŷ ∈ Y. (4.1)

This equation is approximated by a Galerkin method using a finite dimensional sub-
space Y0 ⊂ Y . The discrete problem seeks y0 satisfying

L′(y0)(ŷ0) = 0 ∀ŷ0 ∈ Y0. (4.2)

Then we have for arbitrary ŷ0 ∈ Y0 the error representation

L(y) − L(y0) =
1

2
L′(y0)(y − ŷ0) + R, (4.3)

where the remainder term R is given with e := y − y0 by

R =
1

2

1∫

0

L′′′(y0 + se)(e, e, e) · s · (s− 1) ds.

In the sequel, we present the derivation of an error estimator for the fully discrete
optimization problem in the case of discontinuous Galerkin (dG) time discretization
only. The continuous Galerkin (cG) time discretization can be treated in a similar
way.
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4.1. Error Estimator for the Cost Functional. In the sequel, we use the
abstract result of Proposition 4.1 for derivation of error estimators in terms of the
cost functional J :

J(q, u) − J(qσ, uσ)

Here, (q, u) ∈ Q×X denotes the continuous optimal solution of (2.6) and (qσ, uσ) =

(qkhd, ukhd) ∈ Qd × X̃r,s
k,h is the optimal solution of the full discretized problem.

To separate the influences of the different discretizations on the discretization
error we are interested in, we split

J(q, u) − J(qσ, uσ) = J(q, u) − J(qk, uk)

+ J(qk, uk) − J(qkh, ukh)

+ J(qkh, ukh) − J(qσ, uσ),

where (qk, uk) ∈ Q × X̃r
k is the solution of the time discretized problem (3.4) and

(qkh, ukh) ∈ Q× X̃r,s
k,h is the solution of the time and space discretized problem (3.8)

with still undiscretized control space Q.
Theorem 4.2. Let (q, u, z), (qk, uk, zk), (qkh, ukh, zkh), and (qσ, uσ, zσ) be sta-

tionary points of L resp. L̃ on the different levels of discretization, i.e.

L′(q, u, z)(q̂, û, ẑ) = L̃′(q, u, z)(q̂, û, ẑ) = 0, ∀(q̂, û, ẑ) ∈ X ×X ×Q,

L̃′(qk, uk, zk)(q̂k, ûk, ẑk) = 0, ∀(q̂k, ûk, ẑk) ∈ X̃r
k × X̃r

k ×Q,

L̃′(qkh, ukh, zkh)(q̂kh, ûkh, ẑkh) = 0, ∀(q̂kh, ûkh, ẑkh) ∈ X̃r,s
k,h × X̃r,s

k,h ×Q,

L̃′(qσ, uσ, zσ)(q̂σ, ûσ, ẑσ) = 0, ∀(q̂σ, ûσ, ẑσ) ∈ X̃r,s
k,h × X̃r,s

k,h ×Qd.

Then there holds for the errors with respect to the cost functional due to the time,
space, and control discretizations:

J(q, u) − J(qk, uk) =
1

2
L̃′(qk, uk, zk)(q − q̂k, u− ûk, z − ẑk) + Rk

J(qk, uk) − J(qkh, ukh) =
1

2
L̃′(qkh, ukh, zkh)(qk − q̂kh, uk − ûkh, zk − ẑkh) + Rh

J(qkh, ukh) − J(qσ, uσ) =
1

2
L̃′(qσ, uσ, zσ)(qkh − q̂σ, ukh − ûσ, zkh − ẑσ) + Rd.

Here, (q̂k, ûk, ẑk) ∈ X̃r
k × X̃

r
k ×Q, (q̂kh, ûkh, ẑkh) ∈ X̃r,s

k,h× X̃
r,s
k,h×Q, and (q̂σ, ûσ, ẑσ) ∈

X̃r,s
k,h × X̃r,s

k,h ×Qd can be chosen arbitrary and the remainder terms Rk, Rh, and Rd

have the same form as given in Proposition 4.1 for L = L̃.
Proof. Since all the used solution pairs are optimal solutions of the optimization

problem on different discretizations levels, we obtain for arbitrary z ∈ X , zk ∈ X̃r
k ,

and zkh, zσ ∈ X̃r,s
k,h

J(q, u) − J(qk, uk) = L̃(q, u, z)− L̃(qk, uk, zk) (4.4a)

J(qk, uk) − J(qkh, ukh) = L̃(qk, uk, zk) − L̃(qkh, ukh, zkh) (4.4b)

J(qkh, ukh) − J(qσ, uσ) = L̃(qkh, ukh, zkh) − L̃(qσ, uσ, zσ), (4.4c)

whereas the identity

J(q, u) = L(q, u, z) = L̃(q, u, z)
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follows from the fact that the u ∈ X is continuous and thus the additional jump terms
in L̃ compared to L vanish.

To apply the abstract error identity (4.3) on the three righthandsides in (4.4), we
choose the spaces Y and Y0 of Proposition 4.1 as

for (4.4a) : Y = Q× (X ∪ X̃r
k) × (X ∪ X̃r

k) Y0 = Q× X̃r
k × X̃r

k

for (4.4b) : Y = Q× X̃r
k × X̃r

k Y0 = Q× X̃r,s
k,h × X̃r,s

k,h

for (4.4c) : Y = Q× X̃r,s
k,h × X̃r,s

k,h Y0 = Qd × X̃r,s
k,h × X̃r,s

k,h.

Hence, the choice of the second and third pairing of Y0 ⊂ Y is obvious, since we have
X̃r,s

k,h ⊂ X̃r
k and Qd ⊂ Q. For the choice of the spaces for (4.4a), we have to take into

account the fact that X̃r
k 6⊂ X . Thus, to fulfill the prerequisites of Theorem 4.2, we

have chosen the state space in Y as the union of X and X̃r
k . The validity of (4.1) for

this choice is shown by a density argument.
By means of the residuals of the three equations building the optimality sys-

tem (2.10)

ρ̃u(q, u)(ϕ) := L̃′

z(q, u, z)(ϕ),

ρ̃z(q, u, z)(ϕ) := L̃′

u(q, u, z)(ϕ),

ρ̃q(q, u, z)(ϕ) := L̃′

q(q, u, z)(ϕ),

the statement of Theorem 4.2 can be rewritten as

J(q, u) − J(qk, uk) ≈
1

2

(
ρ̃u(qk, uk)(z − ẑk) + ρ̃z(qk, uk, zk)(u− ûk)

)
(4.5a)

J(qk, uk) − J(qkh, ukh) ≈
1

2

(
ρ̃u(qkh, ukh)(zk − ẑkh) + ρ̃z(qkh, ukh, zkh)(uk − ûkh)

)

(4.5b)

J(qkh, ukh) − J(qσ, uσ) ≈
1

2
ρ̃q(qσ, uσ, zσ)(qkh − q̂σ). (4.5c)

Here, we employed the fact, that the terms

ρ̃q(qk, uk, zk)(q − q̂k), ρ̃q(qkh, ukh, zkh)(qk − q̂kh),

ρ̃u(qσ , uσ)(zkh − ẑσ), ρ̃z(qσ, uσ, zσ)(ukh − ûσ)

are zero for the choice

q̂k = q ∈ Q, q̂kh = qk ∈ Q,

ẑσ = zkh ∈ X̃r,s
k,h, ûσ = ukh ∈ X̃r,s

k,h.

This is possible since for the errors J(q, u)−J(qk, uk) and J(qk, uk)−J(qkh, ukh) only
the state space is discretized and for J(qkh, ukh)−J(qσ, uσ) we keep the discrete state
space while discretizing the control space Q.

4.2. Error Estimator for an Arbitrary Functional. We now tend toward
an error estimation of the different types of discretization errors in terms of a given
functional I : Q×X → R describing the quantity of interest.

To this end, we define exterior Lagrangians M : (Q×X×X)2 → R and M̃ : (Q×

X̃r
k × X̃r

k)2 → R as

M(ξ, χ) = I(q, u) + L′(ξ)(χ)
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with ξ = (q, u, z), χ = (p, v, y) and

M̃(ξk, χk) = I(qk, uk) + L̃′(ξk)(χk)

with ξk = (qk, uk, zk), χk = (pk, vk, yk).

Now we are in a similar setting as in the subsection before: We split the total
discretization error with respect to I as

I(q, u) − I(qσ, uσ) = I(q, u) − I(qk, uk)

+ I(qk, uk) − I(qkh, ukh)

+ I(qkh, ukh) − I(qσ , uσ)

and obtain the following theorem:

Theorem 4.3. Let (ξ, χ), (ξk, χk), (ξkh, χkh), and (ξσ , χσ) be stationary points

of M resp. M̃ on the different levels of discretization, i.e.

M′(ξ, χ)(ξ̂, χ̂) = M̃′(ξ, χ)(ξ̂, χ̂) = 0, ∀(ξ̂, χ̂) ∈ (Q×X ×X)2,

M̃′(ξk, χk)(ξ̂k, χ̂k) = 0, ∀(ξ̂k, χ̂k) ∈ (Q× X̃r
k × X̃r

k)2,

M̃′(ξkh, χkh)(ξ̂kh, χ̂kh) = 0, ∀(ξ̂kh, χ̂kh) ∈ (Q× X̃r,s
k,h × X̃r,s

k,h)2,

M̃′(ξσ , χσ)(ξ̂σ , χ̂σ) = 0, ∀(ξ̂σ, χ̂σ) ∈ (Qd × X̃r,s
k,h × X̃r,s

k,h)2.

Then there holds for the errors with respect to the quantity of interest due to the time,
space, and control discretizations:

I(q, u) − I(qk, uk) =
1

2
M̃′(ξk, χk)(ξ − ξ̂k, χ− χ̂k) + Rk,

I(qk, uk) − I(qkh, ukh) =
1

2
M̃′(ξkh, χkh)(ξk − ξ̂kh, χk − χ̂kh) + Rh,

I(qkh, ukh) − I(qσ, uσ) =
1

2
M̃′(ξσ, χσ)(ξkh − ξ̂σ, χkh − χ̂σ) + Rd.

Here, (ξ̂k, χ̂k) ∈ (Q × X̃r
k × X̃r

k)2, (ξ̂kh, χ̂kh) ∈ (Q × X̃r,s
k,h × X̃r,s

k,h)2, and (ξ̂σ , χ̂σ) ∈

(Qd × X̃r,s
k,h × X̃r,s

k,h)2 can be chosen arbitrary and the remainder terms Rk, Rh, and

Rd have the same form as given in Proposition 4.1 for L = M̃.

Proof. Due to the optimality of the solution pairings on the different discretization
levels we have the representations

I(q, u) − I(qk, uk) = M̃(ξ, χ) − M̃(ξk, χk) (4.6a)

I(qk, uk) − I(qkh, ukh) = M̃(ξk, χk) − M̃(ξkh, χkh) (4.6b)

I(qkh, ukh) − I(qσ, uσ) = M̃(ξkh, χkh) − M̃(ξσ, χσ), (4.6c)

where the identity

I(q, u) = M(ξ, χ) = M̃(ξ, χ)

again follows from the fact that the u ∈ X is continuous and thus the additional jump
terms in M̃ compared to M vanish.
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Similar to the proof of Theorem 4.2, we choose the spaces Y and Y0 for application
of Proposition 4.1 as

for (4.6a) : Y = (Q× (X ∪ X̃r
k) × (X ∪ X̃r

k))2 Y0 = (Q× X̃r
k × X̃r

k)2

for (4.6b) : Y = (Q× X̃r
k × X̃r

k)2 Y0 = (Q× X̃r,s
k,h × X̃r,s

k,h)2

for (4.6c) : Y = (Q× X̃r,s
k,h × X̃r,s

k,h)2 Y0 = (Qd × X̃r,s
k,h × X̃r,s

k,h)2

and end up with the stated error representations.
To apply Theorem 4.3 for instance to I(qkh, ukh) − I(qσ, uσ), we have to require

that

M̃′(ξσ, χσ)(ξ̂σ, χ̂σ) = 0, ∀(ξ̂σ , χ̂σ) ∈ (X̃r,s
k,h × X̃r,s

k,h ×Qd)
2.

For solving this system, we have consider the concrete form of M̃′:

M̃′(ξσ, χσ)(δξσ, δχσ) =

I ′q(qσ, uσ)(δqσ) + I ′u(qσ, uσ)(δuσ) + L̃′(ξσ)(δχσ) + L̃′′(ξσ)(χσ , δξσ)

Since ξσ = (qσ, uσ, zσ) is the solution of the discrete optimization problem, it fulfills

already L̃′(ξσ)(δχσ) = 0. Thus, the solution triple χσ = (pσ, vσ, yσ) ∈ Qd×X̃
r,s
k,h×X̃

r,s
k,h

has to fulfill

L̃′′(ξσ)(χσ, δξσ) =

− I ′q(qσ, uσ)(δqσ) − I ′u(qσ, uσ)(δuσ), ∀δξσ ∈ Qd × X̃r,s
k,h × X̃r,s

k,h. (4.7)

Solving this system of equations is apart from a different righthandside equivalent to
the execution of one step of a (reduced) SQP-type method.

After splitting yσ = y
(0)
σ + y

(1)
σ , where y

(0)
σ ∈ X̃r,s

k,h is the solution of

L̃′′

zu(ξσ)(y(0)
σ , ϕ) = −I ′u(qσ, uσ)(ϕ), ∀ϕ ∈ X̃r,s

k,h,

we can rewrite system (4.7) in terms of the full discrete reduced Hessian j′′σ(q) as

j′′σ(qσ)(pσ, δqσ) = −I ′q(qσ, uσ)(δqσ) − L′′

zq(ξσ)(y(0)
σ , δqσ), ∀δqσ ∈ Qd,

where j′′σ(qσ)(pσ, δqσ) can be expressed as

L̃′′

qq(ξσ)(pσ, δqσ) + L̃′′

uq(ξσ)(vσ, δqσ) + L̃′′

zq(ξσ)(y(1)
σ , δqσ).

The computation of j′′σ(qσ)(pσ, ·) requires here the solution of the two auxiliary equa-

tions for vσ ∈ X̃r,s
k,h and y

(1)
σ ∈ X̃r,s

k,h:

L̃′′

uz(ξσ)(vσ, ϕ) = −L̃′′

qz(ξσ)(pσ, ϕ), ∀ϕ ∈ X̃r,s
k,h

L̃′′

zu(ξσ)(y(1)
σ , ϕ) = −L̃′′

qu(ξσ)(pσ, ϕ) − L̃′′

uu(ξσ)(vσ, ϕ), ∀ϕ ∈ X̃r,s
k,h

By means of the residuals of the presented equations for p, v and y, i.e.

ρ̃v(ξ, p, v)(ϕ) := L̃′′

uz(ξ)(v, ϕ) + L̃′′

qz(ξ)(p, ϕ)

ρ̃y(ξ, p, v, y)(ϕ) := L̃′′

zu(ξ)(y, ϕ) + L̃′′

qu(ξ)(p, ϕ) + L̃′′

uu(ξ)(v, ϕ) + I ′u(q, u)(ϕ)

ρ̃p(ξ, p, v, y)(ϕ) := L̃′′

qq(ξ)(p, ϕ) + L̃′′

uq(ξ)(v, ϕ) + L̃′′

zq(ξ)(y, ϕ) + I ′q(q, u)(ϕ),
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and the already defined residuals ρ̃u, ρ̃z and ρ̃q the result of Theorem 4.3 can be
expressed as

I(q, u) − I(qk, uk) ≈
1

2

(
ρ̃u(qk, uk)(y − ŷk) + ρ̃z(qk, uk, zk)(v − v̂k)

+ ρ̃v(ξk, pk, vk)(z − ẑk) + ρ̃y(ξk, pk, vk, yk)(u − ûk)
)

I(qk, uk) − I(qkh, ukh) ≈
1

2

(
ρ̃u(qkh, ukh)(yk − ŷkh) + ρ̃z(qkh, ukh, zkh)(vk − v̂kh)

+ ρ̃v(ξkh, pkh, vkh)(zk − ẑkh)

+ ρ̃y(ξkh, pkh, vkh, ykh)(uk − ûkh)
)

I(qkh, ukh) − I(qσ, uσ) ≈
1

2

(
ρ̃q(qσ, uσ, zσ)(pkh − p̂σ) + ρ̃p(ξσ , pσ, vσ, yσ)(qkh − q̂σ)

)
.

As for the estimator for the error in the cost functional, we employed here the fact,
that the terms

ρ̃q(qk, uk, zk)(p− p̂k), ρ̃p(ξk, pk, vk, yk)(q − q̂k),

ρ̃q(qkh, ukh, zkh)(pk − p̂kh), ρ̃p(ξkh, pkh, vkh, ykh)(qk − q̂kh),

ρ̃u(qσ, uσ)(ykh − ŷσ), ρ̃z(qσ, uσ, zσ)(vkh − v̂σ),

ρ̃v(ξσ, pσ, vσ)(zkh − ẑσ), ρ̃y(ξσ, pσ, vσ, yσ)(ukh − ûσ)

vanish if p̂k, q̂k, p̂kh, q̂kh, ŷσ, v̂σ, ẑσ, ûσ are chosen appropriately.

Remark 4.1. As already mentioned in the introduction of this section, we obtain
almost identical results for the time discretization by the continuous Galerkin method
as presented here. The difference simply consists in the tilde on the variables. The
arguments of the proofs keep exactly the same.

Remark 4.2. For the error estimation with respect to the cost function no ad-
ditional equations have to be solved. The error estimation with respect to a given
quantity of interest requires the computation of the auxiliary variables pσ, vσ, yσ.
The additional numerical effort is similar to the execution of one step of the SQP or
Newton’s method.

5. Numerical Realization.

5.1. Evaluation of the Error Estimators. In this subsection, we concretize
the a posteriori error estimator developed in the previous section for the cG(1)cG(1)
and cG(1)dG(0) space-time discretizations on quadrilateral meshes in two space di-
mensions. That is, we consider the combination of cG(1) or dG(0) time discretization
with piecewise bi-linear finite elements for the space discretization. As in the previous
section, we will only present the concrete expressions for the dG time discretization,
the cG discretization can be treated in exactly the same manner.

The error estimates presented in the previous section involve interpolation errors
of the time, space, and the control discretizations. We approximate these errors
using interpolations in higher order finite element spaces. To this end, we introduce
linear operators Πh, Πk, and Πd, which will map the computed solutions to the
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approximations of the interpolation errors:

z − ẑk ≈ Πkzk u− ûk ≈ Πkuk

zk − ẑkh ≈ Πhzkh uk − ûkh ≈ Πhukh

qkh − q̂σ ≈ Πdqσ

y − ŷk ≈ Πkyk v − v̂k ≈ Πkvk

yk − ŷkh ≈ Πhykh vk − v̂kh ≈ Πhvkh

pkh − p̂σ ≈ Πdpσ

For the here considered case of cG(1)cG(1) and cG(1)dG(0) discretizations of the
state space, the operators are chosen depending on the test and trial space as

Πk = I
(1)
k − id with I

(1)
k : X̃0

k → X1
k ,

Πk = I
(2)
2k − id with I

(2)
2k : X1

k → X2
2k,

Πh = I
(2)
2h − id with I

(2)
2h :

{
X1,1

k,h → X1,2
k,2h

X̃0,1
k,h → X̃0,2

k,2h.

The action of the piecewise linear and piecewise quadratic interpolation operators I
(1)
k

and I
(2)
2k in time is depicted in Figures 5.1 and 5.2. The piecewise bi-quadratic spatial

interpolation I
(2)
2h can be easily computed if the underlying mesh provides a patch

structure. That is, one can always combine four (eight) adjacent cells to a macro
cell on which the bi-quadratic interpolation can be defined. An example of such an
patched mesh is shown in Figure 5.3.

tm tm+1tm−1

v

I
(1)
k v

Fig. 5.1. Piecewise Linear Interpolation of a Piecewise Constant Function

The choice of Πd depends on the discretization of the control space Q. If the finite
dimensional subspaces Qd are constructed similar to the discrete state spaces, one can
directly choose for Πd a modification of the operators Πk and Πh defined above. If
for example the controls q only depend on time and the discretization is done with

piecewise constant polynomials, we can choose Πd = I
(1)
d − id. If the control space

Q is already finite dimensional, which is usually the case in the context of parameter
estimation, it is possible to choose Πd = 0 and thus, the estimator for the error
J(qkh, ukh) − J(qσ, uσ) is zero—as well as this discretization error itself.
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tm−1 tm tm+1

v

I
(2)
2k v

Fig. 5.2. Piecewise Quadratic Interpolation of a Piecewise Linear Function

Fig. 5.3. Patched Mesh

In order to make the error representations from the previous section computable,
we replace the residuals linearized on the solution of semi-discretized problems by the
linearization at full discrete solutions.

We finally obtain the following computable a posteriori error estimator for the
cost functional J

J(q, u) − J(qσ, uσ) ≈ ηJ
k + ηJ

h + ηJ
d

with

ηJ
k :=

1

2

(
ρ̃u(qσ, uσ)(Πkzσ) + ρ̃z(qσ, uσ, zσ)(Πkuσ)

)

ηJ
h :=

1

2

(
ρ̃u(qσ, uσ)(Πhzσ) + ρ̃z(qσ, uσ, zσ)(Πhuσ)

)

ηJ
d :=

1

2
ρ̃q(qσ, uσ, zσ)(Πdqσ).

For the quantity of interest I the error estimator is given by:

I(q, u) − I(qσ, uσ) ≈ ηI
k + ηI

h + ηI
d
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with

ηI
k :=

1

2

(
ρ̃u(qσ, uσ)(Πkyσ) + ρ̃z(qσ, uσ, zσ)(Πkvσ)

+ ρ̃v(ξσ , vσ, pσ)(Πkzσ) + ρ̃y(ξσ, vσ, yσ, pσ)(Πkuσ)
)

ηI
h :=

1

2

(
ρ̃u(qσ, uσ)(Πhyσ) + ρ̃z(qσ, uσ, zσ)(Πhvσ)

+ ρ̃v(ξσ , vσ, pσ)(Πhzσ) + ρ̃y(ξσ, vσ, yσ, pσ)(Πhuσ)
)

ηI
d :=

1

2

(
ρ̃q(qσ, uσ, zσ)(Πdpσ) + ρ̃p(ξσ , vσ, yσ, pσ)(Πdqσ)

)
.

To give an impression of the terms that have to be evaluated for the error estima-
tors, we present for the cG(1)dG(0) discretization the explicit form of state residuals
ρ̃u(qσ, uσ)(Πkzσ) and ρ̃u(qσ, uσ)(Πhzσ) and the adjoint residuals ρ̃z(qσ, uσ, zσ)(Πkuσ)
and ρ̃z(qσ, uσ, zσ)(Πhuσ). For simplicity of notation, we assume here q to be inde-
pendent on time. Since we evaluate the arising integrals over time for the residuals
weighted with zσ or uσ by the right endpoint rule and for the residuals weighted

with I
(1)
k zσ or I

(1)
k uσ by the trapezoidal rule, we have to ensure the righthandside f

to be continuous in time, i.e. f ∈ C(Ī , H). Then we obtain with the abbreviations
Um = uσ

∣∣
Im

and Zm = zσ

∣∣
Im

the following parts of the error estimators:

ρ̃u(qσ, uσ)(Πkzσ) =

M∑

m=1

{
(Um − Um−1, Zm − Zm−1)H

+
km

2
ā(qσ, Um)(Zm − Zm−1)

+
km

2
(f(tm−1), Zm−1)H −

km

2
(f(tm), Zm)H

}

ρ̃z(qσ, uσ, zσ)(Πkuσ) =

M∑

m=1

{km

2
ā′u(qσ, Um)(Um, Zm)

−
km

2
ā′u(qσ, Um−1)(Um−1, Zm)

+
km

2
J ′

1(Um−1)(Um−1) −
km

2
J ′

1(Um)(Um)
}

ρ̃u(qσ, uσ)(Πhzσ) =
M∑

m=1

{
km(f(tm), I

(2)
2h Zm − Zm)H

− kmā(qσ, Um)(I
(2)
2h Zm − Zm)

− (Um − Um−1, I
(2)
2h Zm − Zm)H

}

− (U0 − u0(qσ), I
(2)
2h Z0 − Z0)H



18 Dominik Meidner and Boris Vexler

ρ̃z(qσ, uσ, zσ)(Πhuσ) =

M∑

m=1

{
kmJ

′

1(Um)(I
(2)
2h Um − Um)

− kmā
′

u(qσ, Um)(I
(2)
2h Um − Um, Zm)

+ (I
(2)
2h Um−1 − Um−1, Zm − Zm−1)H

}

+ J ′

2(UM )(I
(2)
2h UM − UM ) − (I

(2)
2h UM − UM , ZM )H

For the cG(1)cG(1) discretization the terms that have to be evaluated are very
similar and the evaluation can be treated as presented here for the cG(1)dG(0) dis-
cretization.

The presented a posteriori error estimators are directed towards two aims: assess-
ment of the discretization error and improvement of the accuracy by local refinement.
For the second aim the information provided by the error estimator have to be local-
ized to cellwise or nodewise contributions (local error indicators). For details of the
localization procedure we refer e.g. to [3].

5.2. Adaptive Algorithm. Goal of the adaption of the different types of dis-
cretizations has to be the equilibrated reduction of the corresponding discretization
errors. If a given tolerance TOL has to be reached, this can be done by refining
each discretization as long as the value of this part of the error estimator is greater
than 1/3TOL. We want to present here a strategy which will equilibrate the different
discretization errors even if no tolerance is given.

Aim of the equilibration algorithm presented in the sequel is to obtain discretiza-
tion such that

|ηk| ≈ |ηh| ≈ |ηd|

and to keep this property during the further refinement. Here, the estimators ηi

denote the estimators ηJ
i for the cost functional J or ηI

i for the quantity of interest I.
For doing this equilibration, we choose an “equilibration factor” e ≈ 1−5 and pro-

pose the following strategy: We compute a permutation (a, b, c) of the discretization
indices (k, h, d) such that

|ηa| ≥ |ηb| ≥ |ηc|,

and define the relations

γab :=

∣∣∣∣
ηa

ηb

∣∣∣∣ ≥ 1, γbc :=

∣∣∣∣
ηb

ηc

∣∣∣∣ ≥ 1.

Then we decide by means of Table 5.1 in every repetition of the adaptive refinement
algorithm given by Algorithm 5.1 which discretization shall be refined. For every
discretization to be adapted we select by means of the local error indicators the cells
for refinement. For this purpose there are several strategies available, see e.g. [3].

Algorithm 5.1 (Adaptive Refinement Algorithm).

1: Choose an initial triple of discretizations Tσ0 , σ0 = (k0, h0, d0) for the space-time
discretization of the states and an appropriate discretization of the controls and
set n = 0.

2: loop

3: Compute the optimal solution pair (qσn
, uσn

)
4: Evaluate the a posteriori error estimators ηkn

, ηhn
and ηdn

.
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5: if ηkn
+ ηhn

+ ηdn
≤ TOL then

6: break

7: else

8: Determine the discretization(s) to be refined by means of Table 5.1.
9: end if

10: Refine Tσn
→ Tσn+1 depending on the size of ηkn

, ηhn
, and ηdn

to equilibrate
the three discretization errors.

11: Increment n.
12: end loop

Table 5.1
Equilibration Strategy

Relation between the estimators Discretizations to be refined

γab ≤ e and γbc ≤ e a, b, and c
γbc > e a and b

else (γab > e and γbc ≤ e) a

6. Numerical Examples. This section is devoted to the numerical validation of
the theoretical results presented in the previous sections. This will be done by means
of an optimal control problem with time-dependent boundary control (cf. Subsec-
tion 6.1) and a parameter estimation problem (cf. Subsection 6.2).

6.1. Example 1: Neumann Boundary Control Problem. We consider the
linear parabolic state equation on the two-dimensional unit square Ω := (0, 1)2 with
final time T = 1 given by

∂tu− ν∆u + u = f in Ω × I,

∂nu(x, t) = 0 on Γ0 × I,

∂nu(x, t) = q(i)(t) on Γi × I, i = 1, 2

u(x, 0) = 0 on Ω.

(6.1)

The control q = (q(1), q(2)) acts as only time-depended boundary control of Neumann
type on two parts of the boundary denoted by Γ1 and Γ2. Thus, the control space Q
is chosen as [L2(I)]2 and the spaces V and H used in the definition of the state space
X are set to V = H1(Ω) and H = L2(Ω).

Γ2Γ1

Γ0

Γ0

Fig. 6.1. Example 1: Computational Domain Ω
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As cost functional J to be minimized subject to the state equation we choose the
functional

J(q, u) :=
1

2

T∫

0

∫

Ω

(u(x, t) − 1)2 dx dt+
α

2

T∫

0

{q21(t) + q22(t)} dt

of tracking type endowed with a L2(I)-regularization.
For the computations, the righthandside f is chosen as

f(x, t) = 10t exp

(
1 −

1

1 − 100‖x− x̃‖2

)
, x̃ =

(
2

3
,
1

2

)

and the parameters α and ν are set to

α = 0.1, ν = 0.1.

The discretization of the state space is done here via the cG(1)cG(1) space-time
Galerkin method which is a variant of the Crank-Nicolson scheme. Consequently,
the state is discretized in time by piecewise linear and the adjoint state by piecewise
constant polynomials. The controls are discretized using piecewise constant polyno-
mials on a partition of the time interval I which has to be at most as fine as the time
discretization of the states.

Remark 6.1. If the discretization of the control is chosen such that the gradient
equation

∫

Γi

z(x, t) dx + αq(i)(t) = 0, i = 1, 2, t ∈ I

can be fulfilled pointwise on the discrete level, the residual ρq of this equation as well
as the error due to discretization of the control space vanish, cf. (4.5c). Thus, it is
only reasonable to discretize the controls at most as fine as the adjoint state.

In Table 6.1 we show the development of the discretization error and the a poste-
riori error estimators during an adaptive run with local refinement of all three types
of discretizations. Here, M denotes the number of time steps, N denotes the number
of nodes in the spatial mesh, and dimQd is the number of degrees of freedom for the
discretization of the control. The effectivity index given in the last column of this
table is defined as usual by

Ieff :=
J(q, u) − J(qσ, uσ)

ηJ
k + ηJ

h + ηJ
q

.

The table also demonstrates the desired equilibration of the different discretization
errors and the sufficient quality of the error estimators.

A comparison of the error J(q, u)−J(qσ, uσ) for the different refinement strategies
is depicted in Figure 6.2:

• “uniform”: Here, we apply uniform refinement of all discretizations after each
run of the optimization loop.

• “uniform equilibration”: Here, we also allow only for uniform refinements
but use the error estimators within the equilibration strategy (Table 5.1) to
decide which discretizations have to be refined.
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Table 6.1
Example 1: Local Refinement with Equilibration

M N dimQd ηJ
k ηJ

h ηJ
q ηJ

k + ηJ
h + ηJ

q J(q, u) − J(qσ, uσ) Ieff

64 25 16 −9.7 ·10−05 2.0 ·10−03 −8.5 ·10−04 1.088 · 10−03 −2.567 · 10−04 −0.2360
64 81 20 −1.1 ·10−04 −1.0 ·10−03 −3.2 ·10−04 −1.543 · 10−03 −7.818 · 10−04 0.5065
64 289 20 −1.3 ·10−04 −4.8 ·10−04 −3.2 ·10−04 −9.458 · 10−04 −8.009 · 10−04 0.8468
74 813 32 −4.7 ·10−05 −2.2 ·10−05 −1.3 ·10−04 −2.058 · 10−04 −2.116 · 10−04 1.0285
74 813 48 −4.8 ·10−05 −2.2 ·10−05 −7.7 ·10−05 −1.476 · 10−04 −1.493 · 10−04 1.0109
87 2317 76 −2.7 ·10−05 1.1 ·10−05 −2.9 ·10−05 −4.516 · 10−05 −4.559 · 10−05 1.0094
104 8213 128 −1.8 ·10−05 2.7 ·10−06 −1.3 ·10−05 −2.931 · 10−05 −2.842 · 10−05 0.9696
208 8213 128 −4.3 ·10−06 2.7 ·10−06 −1.5 ·10−05 −1.674 · 10−05 −1.661 · 10−05 0.9923
208 8213 192 −4.2 ·10−06 2.7 ·10−06 −7.0 ·10−06 −8.573 · 10−06 −8.335 · 10−06 0.9722

• “local equilibration”: Here, we combine local refinement of all discretizations
with the proposed equilibration strategy.

It shows for example, that to reach a discretization error of 4 · 10−5 the uniform
refinement needs about 70 times the number of degrees of freedom the fully adaptive
refinement needs.

1e-05

1e-04

0.001

10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

E
rr

o
r

M ·N · dimQd

uniform
uniform equilibration

local equilibration

Fig. 6.2. Example 1: Comparison of Different Refinement Strategies

In Table 6.2 we present the numerical justification for splitting the total discretiza-
tion error in three parts regarding the discretization of time, space, and control: The
table demonstrates the independence of each part of the error estimator on the refine-
ment of the other parts. This feature is especially important to reach a equilibration
of the discretization errors by applying the adaptive refinement algorithm.

6.2. Example 2: Parameter Estimation. The state equation for the follow-
ing example is taken from [16]. It describes the major part of gaseous combustion
under the low Mach number hypothesis. Under this assumption, the motion of the
fluid becomes independent from temperature and species concentration. Hence, one
can solve the temperature and the species equation alone specifying any solenoidal
velocity field.

Introducing the dimensionless temperature θ = T−Tunburnt

Tburnt−Tunburnt
, denoting by Y the
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Table 6.2
Example 1: Independence of One Part of the Error Estimator on the Refinement of the other

Parts

M N dimQd ηJ
k ηJ

h ηJ
q

256 289 16 −4.9104 ·10−04 −8.6152 ·10−04

512 289 16 −4.9110 ·10−04 −8.6232 ·10−04

1024 289 16 — −4.9111 ·10−04 −8.6251 ·10−04

2048 289 16 −4.9111 ·10−04 −8.6256 ·10−04

4096 289 16 −4.9112 ·10−04 −8.6258 ·10−04

1024 25 16 −3.8360 ·10−07 −8.7015 ·10−04

1024 81 16 −4.3463 ·10−07 −8.5900 ·10−04

1024 289 16 −4.5039 ·10−07 — −8.6251 ·10−04

1024 1089 16 −4.5529 ·10−07 −8.6398 ·10−04

1024 4225 16 −4.6096 ·10−07 −8.6432 ·10−04

4096 289 16 −2.8171 ·10−08 −4.9112 ·10−04

4096 289 32 −3.0332 ·10−08 −4.8826 ·10−04

4096 289 64 −3.1317 ·10−08 −4.8688 ·10−04 —
4096 289 128 −3.1704 ·10−08 −4.8651 ·10−04

4096 289 256 −3.1828 ·10−08 −4.8642 ·10−04

species concentration, and assuming constant diffusion coefficients yields

∂tθ − ∆θ = ω(Y, θ) in Ω × I,

∂tY −
1

Le
∆Y = −ω(Y, θ) in Ω × I,

(6.2)

where the Lewis number Le is the ratio of diffusivity of heat and diffusivity of mass.
We use a simple one-species reaction mechanism governed by an Arrhenius law

ω(Y, θ) =
β2

2Le
Y e

β(θ−1)
1+α(θ−1) ,

in which an approximation for large activation energy has been employed.

Here, we consider a freely propagating laminar flame described by (6.2) and its
response to a heat absorbing obstacle, a set of cooled parallel rods with rectangular
cross section (cf. Figure 6.3). Thus, the boundary condition are chosen as

θ = 1 on ΓD × I,

Y = 0 on ΓD × I,

∂nθ = 0 on ΓN × I,

∂nY = 0 on ΓN × I,

∂nθ = −kθ on ΓR × I,

∂nY = 0 on ΓR × I,

where the heat absorption is modeled by Robin boundary conditions on ΓR.

The initial condition is the analytical solution of an one-dimensional right-travel-
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p1
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p3

p4

ΓN

ΓN

ΓR

ΓR

ΓN

ΓN

ΓD ΓN

Fig. 6.3. Example 2: Computational Domain Ω and Measurement Points pi

ing flame in the limit β → ∞ located left of the obstacle:

θ(0, x) =

{
1, for x1 ≤ x̃1

ex̃1−x1 , for x1 > x̃1

on Ω,

Y (0, x) =

{
0, for x1 ≤ x̃1

1 − eLe(x̃1−x1), for x1 > x̃1

on Ω.

For the computations, the occurring parameters are set to

Le = 1, β = 10, k = 0.1, x̃1 = 9

whereas the parameter α occurring in the Arrhenius law will be the objective of the
parameter estimation.

To use the same notations as in the theoretical parts of this article, we define the
pair of solution components u := (θ, Y ) ∈ û +X2 and denote the parameter α to be
estimated by q ∈ Q := R. For definition of the state space X we use the spaces V
and H as given by (2.1). The function û is defined to fulfill the prescribed Dirichlet
data as û

∣∣
ΓD

= (1, 0).
The unknown parameter α is estimated here using information from pointwise

measurements of θ and Y at four measurement points pi ∈ Ω (i = 1, . . . , 4) at final
time T = 60. This parameter identification problem can be formulated as a cost
functional of least squares type:

J(q, u) =
1

2

4∑

i=1

{
(θ(pi, T ) − θ̃i)

2 + (Y (pi, T ) − Ỹi)
2
}

The values of artificial measurements θ̃i and Ỹi (i = 1, . . . , 4) are obtained from a
reference solution computed with fine discretizations.

The consideration of point measurements does not fulfill the assumption on the
cost functional in (2.5), since the point evaluation is not bounded as a functional on
H = L2(Ω). Therefore, the point functionals here may be understood as regularized
functionals defined on L2(Ω). For an a priori error analysis of an elliptic parameter
identification problems with pointwise measurements we refer to [24].

For this type of parameter estimation problems one is usually not interested in
reducing the discretization error measured in terms of the cost functional. The focus
is rather on reducing the error in the parameter q to be estimated. Hence, we use the
quantity of interest I given by

I(q, u) = q
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and apply the techniques presented in Section 4.2 for estimating the discretization
error with respect to I. Since the control space Q in this application is given as
Q = R, it is not necessary to discretize Q. Thus, there is no discretization error due
to the Q-discretization and the a posteriori error estimator consists only of ηI

k and ηI
h.

The results of a computation with equilibrated adaption of the space and time
discretization using cG(1)dG(0) are shown in Table 6.3. The discretization parameters
M and N as well as the effectivity index Ieff are defined as in Example 1.

Table 6.3
Example 2: Local Refinement with Equilibration

M N ηI
k ηI

h ηI
k + ηI

h I(q, u) − I(qkh, ukh) Ieff

512 269 −8.4 ·10−03 4.3 ·10−02 3.551 · 10−02 −2.859 · 10−02 −0.8051
512 685 −9.0 ·10−03 5.2 ·10−03 −3.778 · 10−03 −4.854 · 10−02 12.8480
690 1871 −3.7 ·10−03 −1.4 ·10−02 −1.860 · 10−02 −3.028 · 10−02 1.6280
968 5611 −2.9 ·10−03 −6.3 ·10−03 −9.292 · 10−03 −1.104 · 10−02 1.1885
1036 14433 −2.7 ·10−03 −2.3 ·10−03 −5.118 · 10−03 −5.441 · 10−03 1.0630
1044 43979 −2.7 ·10−03 −8.3 ·10−04 −3.613 · 10−03 −3.588 · 10−03 0.9932

Similar to Example 1, we compare in Figure 6.4 the fully adaptive refinement
with equilibration and uniform refinements with and without equilibration. By local
refinement of all involved discretizations we reduce the necessary degrees of freedom
to reach a total error of 10−2 by a factor of 11 compared to a uniform refinement
without equilibration.

0.01

100000 1e+06 1e+07 1e+08

E
rr

o
r

M ·N

uniform
uniform equilibration

local equilibration

Fig. 6.4. Example 2: Comparison of Different Refinement Strategies

Finally, we present in the Figures 6.5 and 6.6 a typical locally refined spatial
mesh and a distribution of the time step size obtained by the space-time-adaptive
refinement.
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