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Abstract

A diagrammatic logical calculus for the syllogistic reasoning is introduced and
discussed. We prove that a syllogism is valid if and only if itis provable in the
calculus.

1 Introduction

The aim of the present paper is that of introducing and discussing a diagrammatic log-
ical calculus for syllogistic reasoning. We present suitable linear diagrammatic repre-
sentations of the fundamental Aristotelian categorical propositions and show that they
are closed under the syllogistic canon of inference which isthe deletion of the mid-
dle term, so implemented to let the formalism incorporate simultaneously a graphical
appearance and a naive algorithmic nature, namely that no specific knowledge or par-
ticular ability is needed in order to understand it and use it.
Since our investigation is directed toward a formal approach to logical reasoning with
diagrams we introduce a formal system SYLL for such a calculus. We prove that a
syllogism is valid if and only if it is provable in SYLL, so that in this sense the calculus
is sound and complete. A similar result holds also for the syllogisms that are valid
under existential import. Because of the peculiar form of its diagrammatic syntax, the
calculus supports a criterion for the rejection of the invalid syllogistic arguments on the
base of which the easy retrieving of the traditional rules ofthe syllogism is possible.
Moreover, we show that the laws of the square of opposition are provable in SYLL.
In section 2 we introduce the basics of the syllogistics and describe the diagrammatic
logical system VENN based on the Venn-Peirce diagrams, from[6] and [17].
In section 3 we prove the previous claims about soundness andcompleteness, while
the laws of the square of opposition are discussed in section4.
The possibility of extending the calculus ton-term syllogistic inferences is briefly dis-
cussed in section 5. We point out that other linear diagrammatic formalisms for the
syllogistic reasoning exist, notably [18], [3], [10] and that a category-theoretic point of
view is pursued in [9]. We are aware of possible, interestingdirections of investigation
in connection with Peirce’s Existential Graphs, see [15], while further directions of in-
vestigation could be pursued in connection with computer science, see [14].

I acknowledge Pino Rosolini for the many useful conversations and the anonymous
referees for their many valuable comments.

∗The final publication is available at springerlink.com http://link.springer.com/article/10.1007%2Fs10849-
011-9156-7#page-1
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2 Syllogistic reasoning with diagrams

Syllogistics in its original form dates back to Aristotle, who formalized it as a logi-
cal system in the Prior Analytics. A fundamental reference on the subject is [11], for
example. We here recall some of the basics of syllogistics inits traditional, medieval
systematization. In doing this we introduce some of the terminology and notations that
will be useful in the sequel of the paper. Moreover, we recallthe fundamentals of a
formal diagrammatic-theoretic approach to syllogistics by reviewing briefly the formal
system VENN, see [6], [17] and [16].

We refer to nouns, adjectives or more complicated meaningful expressions of the
natural language asterms, and denote them by using upper case latin letters which we
refer to asterm-variables. Since Aristotle, the following four schemes of propositions
were recognized as fundamental throughout the research in logic:

AAB: EachA is B universal affirmative proposition

EAB: No A is B universal negative proposition

I AB: SomeA is B particular affirmative proposition

OAB: SomeA is notB particular negative proposition

Following the tradition, henceforth we refer to them ascategorical propositions. In
each of them, the term-variableA is the subjectwhereas the term-variableB is the
predicateof the proposition. Thus “Each dog is black” , “No cat is white” , “Each baby
that cry is polite” are examples of categorical propositions.
A syllogismis a logical consequence that involves three categorical propositions that
are distinguished infirst premise, second premiseandconclusion. Moreover, a syl-
logism involves three term-variablesS, P and M in the following precise way:M
does not occur in the conclusion whereas, according to the traditional way of writing
syllogisms,P occurs in the first premise andS occurs in the second premise. The term-
variablesS andP occur as the subject and predicate of the conclusion, respectively, and
are also referred to asminor termandmajor termof the syllogism, whereasM is also
referred to asmiddle term.

Remark 2.1. What we are simply referring to as syllogisms aretraditional syllogisms
in the terminology of [11], where a detailed discussion of the difference between this
notion and that ofAristotelian syllogismcan be found. Such a difference will not affect
the present treatment. We here only mention that in strict terms an Aristotelian syllo-
gism is a proposition of the type “If A and B, then C”, whereas atraditional syllogism
is a logical consequence with two premises and one conclusion like “A, B therefore C”,
which in its entirety does not form a compound proposition. An Aristotelian syllogism
can either be true or false whereas a traditional syllogism can either be valid or not, in
the sense of Tarski, see [12].

Themoodof a syllogism is the sequence of the kinds of the categoricalpropositions
by which it is formed. Thefigureof a syllogism is the position of the term-variablesS,
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P andM in it. There are four possible figures as shown in the following table:

fig. 1 fig. 2 fig. 3 fig. 4
first premise MP PM MP PM
second premise SM SM MS MS
conclusion SP SP SP SP

(1)

A syllogism is completely determined by its mood and by its figure together. We write
syllogisms so that their mood and figure can be promptly retrieved, by also letting the
symbol⊢ separate the premises from the conclusion. For example, in the syllogism

AMP,AS M ⊢ AS P

one can recognize from left to right the first premise, the second premise and the con-
clusion, its mood, which isAAA , and its figure, which is the first. The following tables
list the syllogisms that are known to be valid since Aristotle.

Fig. 1 Fig. 2 Fig. 3 Fig. 4
AMP,AS M ⊢ AS P EPM,AS M ⊢ ES P I MP,AMS ⊢ IS P APM,EMS ⊢ ES P

EMP,AS M ⊢ ES P APM,ES M ⊢ ES P AMP, I MS ⊢ IS P I PM,AMS ⊢ IS P

AMP, IS M ⊢ IS P EPM, IS M ⊢ OS P OMP,AMS ⊢ OS P EPM, I MS ⊢ OS P

EMP, IS M ⊢ OS P APM,OS M ⊢ OS P EMP, I MS ⊢ OS P

(2)

Fig. 1 Fig. 2 Fig. 3 Fig. 4 assumption
AMP,AS M ⊢ IS P APM,ES M ⊢ OS P APM,EMS ⊢ OS P some S exists
EMP,AS M ⊢ OS P EPM,AS M ⊢ OS P some S exists

AMP,AMS ⊢ IS P EPM,AMS ⊢ OS P some M exists
EMP,AMS ⊢ OS P some M exists

APM,AMS ⊢ IS P some P exists

(3)

They are 24 in total, divided into two groups of 15 and of 9. Those syllogisms in the
second group are also said to bestrengthened, or valid underexistential import, which
is an explicit assumption of existence of someS, M or P, as indicated.

Terminology 2.2. The syllogisms in table (2) will be henceforth referred to simply as
syllogisms, those in table (3) will be referred to as strengthened syllogisms.

The study of logical reasoning requires to understand that the valid reasoning con-
sists in the correct manipulation of the information no matter the nature of the symbolic
medium, being it diagrammatic, linguistic or both, that is heterogeneous. The correct
manipulation of the information is supported by the employment of sound rules of in-
ference within suitable formal logical systems. In pursuing a diagrammatic approach
to logical reasoning one point is that of making formal what is usually considered as
heuristic.
A paradigmatic example of a formal diagrammatic logical system supporting syllogis-
tic reasoning is the system VENN in [17] and [6], which is based on the Venn-Peirce
diagrams, see also [7]. Here we briefly describe VENN by recalling its diagrammatic
syntactic primitives and its rules of inference. For further details we refer the reader to
loc. cit.

Definition 2.3. Thediagrammatic primitivesof VENN are the following distinct syn-
tactic objects:

line closed curve rectangle shading ⊗ X
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A diagramof VENN is any finite combination of diagrammatic primitives. In par-
ticular, an X-sequenceis a diagram of alternating X’s and lines with an X in each
extremal position, e.g.⊗ ⊗ ⊗ . Diagrams of VENN will be denoted by
calligraphic upper case letters. For convenience, diagrams which are closed curves or
rectangles will be denoted by upper case latin letters. Aregion is any enclosed area
in a diagram. Abasic regionis a region enclosed by a rectangle or a closed curve. A
minimal regionis a region within which no other region is enclosed.

Regions of diagrams are meant to represent sets of individuals. In particular, a
background rectangle is meant to represent a suitable universe of discourse. A shaded
region is understood as empty, whereas a region that contains an X-sequence is under-
stood as non-empty. An X-sequence represents disjunctive existential statements.

The informal procedure for the verification of the validity of a syllogism through
the employment of Venn-Peirce diagrams consists in drawingthe diagrams for the
premises as well as for the conclusion of the syllogism and see if it is possible to read
off the latter from the former. If so, then the syllogism is valid, otherwise it is not. The
crucial step consists in understanding if the diagram for the conclusion is “contained”
in the diagrams for the premises or not. Making formal such a procedure requires to
take into account how each diagram has been constructed, to understand for which rea-
sons the construction of those diagrams is permitted and in particular to understand the
reasons why the derivation of the diagram for the conclusionis permitted. We skip the
formal presentation of how to construct a well-formed diagram in VENN and we refer
the reader to [17].

Definition 2.4. Therules of inferenceof VENN are the following:

setup: a well-formed diagram with no shadings or X-sequences can beasserted at any
step of a proof.

erasure: a well-formed diagramE is obtained from a well-formed diagramD by this
rule if E results from either erasing a closed curve ofD, or a shading of some
region ofD, or an entire X-sequence ofD. In the first case, a shading filling part
of a minimal region must also be erased.

extension of a sequence:E is obtained fromD by this rule if extra links have been
added to some X-sequence ofD.

erasure of links: E is obtained fromD by this rule if it results fromD by the era-
sure of links in some X-sequence that fall in shaded regions,provided that the
remaining X’s are reconnected.

unification: D is obtained fromD1 andD2 by this rule if every region ofD is in
counterpart relation with a region of eitherD1 or D2 and conversely. If any
region ofD is shaded or has an X-sequence, then it has a counterpart in either
D1 orD2 which is also shaded or has an X-sequence and conversely.

non-emptynessD is obtained fromE by this rule if it has been obtained by the ad-
dition of an X-sequence some link of which falls into every minimal region of
E.

The following are the well-formed diagrams of VENN that correspond to the cate-
gorical proposition:
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AAB:

A B
U

EAB:

A B
U

I AB:

A B
U




OAB:

A B
U




Here are two examples of formal proofs in VENN in which rectangles have been
omitted.

- AMP,AS M ⊢ AS P

M P

S M

unification
⊢

S P

M

erasure of
closed curve

⊢

S P

- AMP, IS M ⊢ IS P

M P

⊗

S M

unification
⊢

S P

M

⊗
⊗

erasure
of link
⊢

S P

M

⊗ extension
⊢

5



extension
⊢

S P

M

⊗

⊗
erasure of

closed curve
⊢ ⊗

S P

For the proof that VENN is sound and complete, we refer the reader to [17] and [6].

3 The calculus

In this section we introduce the formal system SYLL, supporting a diagrammatic logi-
cal calculus for the syllogistic reasoning. A feature of SYLL is that it is heterogeneous,
in the sense that it consists of diagrammatic and linguisticsyntactic objects together.
We will prove that the calculus at issue is sound and complete, in the sense that a
syllogism is valid if and only if it is provable in SYLL.

Definition 3.1. Thediagrammatic primitivesof SYLL are the symbols→,←, •. The
linguistic primitivesof SYLL consist of countably many term-variablesA, B,C, . . ..
Thesyntactic primitivesof SYLL are the diagrammatic or linguistic primitives. To each
scheme of categorical proposition we associate the following schemes ofsyllogistic
diagrams

AAB: A // B EAB: A // • Boo

I AB: A •oo // B OAB: A •oo // • Boo

to be read analogously. Adiagramof SYLL is a finite list of arrow symbols separated
by a single bullet symbol or term-variable, beginning and ending at a term-variable.
Thereversalof a given diagram is the diagram obtained by specular symmetry. A part
of a diagram is a finite list of consecutive components of a diagram.

Examples 3.2. The listsA, A → X, A ← A, A → • → B, X → Y → • ← X are
examples of diagrams. Their reversals areA, X ← A, A → A, B ← • ← A and
X → • ← Y ← X, respectively. The reversals of the syllogistic diagrams are the
diagrams

B Aoo B // • Aoo

B •oo // A B // • •oo // A

Every diagram is a part of itself. In general, a part of a diagram need not be a diagram,
e.g.A→ is a part of the diagramA→ • ← B and it is not a diagram, since it does not
end at a term-variable.

Notation 3.3. Parts of diagrams will be henceforth denoted by calligraphic upper case
letters such asD,E, etc. In order to distinguish explicitly a part with respectto a whole
diagram, we adopt a heterogeneous notation mixing calligraphic upper case letters and
syntactic primitives. For example, the writingD → A refers to a diagram in which the
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part→ A has been distinguished with respect to the remaining partD. Thus, it may be
the case that the whole diagram looks likeX ← • → A, S → A or B → • → A for
example, so that the partD would beX← •, S, B→ •, respectively.

Definition 3.4. A concatenable pairof diagrams is a pair of diagrams (DA,AE) or
(AE,DA) whoseconcatenationis, in both cases, the diagramDAE which is obtained
by overlapping its components on the common extremal term-variableA. A compos-
able pair of diagrams is a concatenable pair (D → A,A → E) or (A → E,D → A),
(D ← A,A← E) or (A← E,D ← A). In the first two cases, a composable pair gives
rise to acompositeD → E obtained by substituting the part→ A→ in the concatena-
tionD → A→ E with the sole, accordingly oriented, arrow symbol→. Analogously,
in the second two cases, a composable pair gives rise to a composite diagramD ← E.
For every natural numbern, n ≥ 3, aconcatenable n-tupleis ann-tuple of diagrams
(E1,E2, . . . ,En) in which, for every 1≤ i < n, the pairs (Ei ,Ei+1) are concatenable
pairs of the same form (DA,AE) or (AE,DA). A composable n-tupleis a concaten-
ablen-tuple of diagrams (E1,E2, . . . ,En) in which, for every 1≤ i < n, (Ei,Ei+1) is
a composable pair. Composition of diagrams extends to composablen-tuples through
the calculation of pairwise composites.

Examples 3.5. For every term-variableA, (A,A) is a concatenable pair whose con-
catenation is the diagramA. It is not a composable pair since no arrow symbols occur.
The pair (A← B,X → B) is not concatenable, thus not composable, whereas the pair
(A ← B, B← X) is concatenable and composable, with compositeA ← X. The pair
(X → A,A ← B) is concatenable but not composable. The pair (X ← B, B ← X) is
concatenable in two different ways by overlapping its components either onB or onX.
Also, it is composable in two different ways giving rise to either the compositeX← X
or the compositeB ← B, respectively. The 3-tuple (X ← B, B← X,A → B) is con-
catenable toA→ B← X← B but it is not composable since the pair (B← X,A→ B)
is not composable. The 3-tuple (X← A, B→ X,X→ A) is not concatenable, since the
pair (X← A, B→ X) is concatenable by overlapping its components onX in extremal
“external” position, whereas the pair (B→ X,X → A) is concatenable by overlapping
its components onX in extremal “internal” position. The 3-tuple (A ← • → X,X →
• ← T,T ← • → H) is concatenable toA ← • → X → • ← T ← • → H and
composable toA← • → X→ • ← • → H.

Definition 3.6. A well-formed diagramof SYLL is defined inductively as follows:

(i) a syllogistic diagram is a well-formed diagram.

(ii) the reversal of a syllogistic diagram is a well-formed diagram.

(iii) a diagram which is the concatenation of a concatenablepair whose components
are well-formed diagrams is a well-formed diagram.

Remark 3.7. Well-formed diagrams are not closed under composition. Indeed, it suf-
fices to consider the composable pair (X → • ← • → A,A → • ← • → Y) for
example, whose components are well-formed but give rise to the composite diagram
X→ • ← • → • ← • → Y which is not well-formed.

The intuition about how to use the syllogistic diagrams and their reversals to verify
the validity of syllogisms is that, given a syllogism, one considers the three syllogis-
tic diagrams or reversals to represent the first premise, thesecond premise and the
conclusion of the syllogism. These involve three distinguished term-variables, usually
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denotedS, P andM, in such a way thatM occurs in both the diagrams in the premises
and does not in the conclusion, whereasS andP occur in the conclusion as well as in
the premises. Verifying the validity of a syllogism consists in calculating the compos-
ite diagram of the concatenation of its premises, if these form a composable pair, and
compare it with the diagram for the conclusion.
For example, the verification of the validity of the syllogism. APM,ES M ⊢ ES P is
suggestively represented by the drawing

S // • Moo Poo

S // • Poo
(4)

whereas the invalidity of the syllogismOPM,EMS ⊢ IS P is confirmed by the fact that
the pair (P← • → • ← M,M → • ← S) although concatenable is not composable.

Remark 3.8. Anticipating 3.9 and 3.15, we haste to remark that in calculating the
composite of a composable pair of diagrams no bullet symbol is deleted, so that the
composite contains as many bullets as in the concatenation of the diagrams in the given
pair. It is useful, when one also takes into account the orientation of the involved arrow
symbols, for rejecting an invalid form of syllogism, which can be rejected with the
linear diagrams in [3] as well, but one has to go through all the 232 invalid moods, as
explained there. For instance, the syllogismOPM,EMS ⊢ IS P is invalid since a single
bullet symbol occurs in the conclusion, whereas three of them occur in the premises.
The syllogismAPM, IS M ⊢ ES P is invalid since the syllogistic diagram for the conclu-
sion contains a single bullet and a pair of arrows convergingto it, whereas a single
bullet and a pair of arrows diverging from it are contained inthe syllogistic diagram for
the second premise.

For every term-variableA, particularly interesting instances of syllogistic diagrams
are the following:

AAA: A // A EAA: A // • Aoo

I AA: A •oo // A OAA: A •oo // • Aoo

whereAAA and I AA are referred to aslaws of identity, used by Aristotle without any
explicit mention, see [11]. As will soonely be clear, the diagram for I AA represents
existential import. The diagram forOAA is an expression of theprinciple of contra-
diction, which fact will be more clearly illustrated in section 4. The diagram forEAA

represents the emptyness ofA.

Definition 3.9. The rules of inference of SYLL are the following:

A // B

B Aoo

A // • Boo

B // • Aoo

A •oo // B

B •oo // A

A •oo // • Boo

B // • •oo // A

DA AE
DAE

AE DA
DAE
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D → A→ E
D → E

D ← A← E
D ← E

where the double line means that the rule can be used top-downas well as bottom-up.
A proof treeof SYLL is a tree where each node is a diagram and each branching is an
instance of a rule of inference. Aformal proof of a syllogism is a proof tree with its
conclusion as the root and with each of its premises as leaves. A syllogism isprovable
in SYLL if there is a formal proof for it.

Remark 3.10. The last four rules in the previous definition can be equivalently substi-
tuted by the following:

D→A A→E
D→E

A→E D→A
D→E

D ← A A← E
D ← E

A← E D ← A
D ← E

Example 3.11. The syllogismAPM,ES M ⊢ ES P is provable, since a formal proof of it
is

S // • Moo

P // M

M Poo

S // • Moo Poo

S // • Poo

A different proof of the same syllogism is

P // M

M Poo S // • Moo

S // • Moo Poo

S // • Poo

Notation 3.12. Proof trees will be also written in line by forgetting some inessential
pieces of information. The proof tree of a syllogismP1,P2 ⊢ C, will be written as
(P1)♯(P2) ⊢ (C). Drawings like (4) will be formally considered as abbreviations of
proof trees that we will henceforth freely use without any further comment.

Lemma 3.13. The composite of a composable pair whose components are syllogistic
diagrams or reversals of them, is a syllogistic diagram in exactly the following cases:

(i) ( S // M , M // P )

(ii) ( S // • Moo , M Poo )

(iii) ( S // M , M // • Poo )

(iv) ( S Moo , M •oo // P )

(v) ( S •oo // M , M // P )

(vi) ( S •oo // M , M // • Poo )
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(vii) ( S Moo , M •oo // • Poo )

(viii) ( S •oo // • Moo , M Poo )

Proof. Clearly, each of the listed composable pairs yields a composite syllogistic di-
agram involving onlyS andP. Conversely, by also keeping in mind remark 3.8, we
proceed by cases:

(a) the only way to obtainS→ P as a composite is by (i), since no bullet symbol is
allowed to occur.

(b) the only way to obtainS → • ← P as a composite is by either (ii) or (iii), since
exactly one bullet symbol must occur with two arrow symbols converging to it.

(c) the only way to obtainS ← • → P as a composite is by either (iv) or (v), since
exactly one bullet symbol must occur with two arrow symbols diverging from it.

(d) the only way to obtainS← • → • ← P as a composite is by either (vi), (vii) or
(viii), since exactly two bullet symbols must occur together with three alternating
arrow symbols.

�

Remark 3.14. It is an easy exercise to read off the well-knownrules of the syllogism
from the list in lemma 3.13, also by taking into account remark 3.8.

(1) From two negative premises nothing can be inferred.

(2) From two particular premises nothing can be inferred.

(3) If the first premise of a syllogism is particular, whereasits second premise is
negative, then nothing can be inferred.

(4) If one premise is particular, then the conclusion is particular.

(5) The conclusion of a syllogism is negative if and only if sois one of its premises.

The next theorem shows that the syllogisms in table (2) are exactly those that are
provable. The proof is purely syntactical and based on lemma3.13. On one hand
we proceed top-down constructing a scheme of formal proof for any syllogism, from
the syllogistic diagrams for its premises. On the other handwe proceed bottom-up by
cases, showing that the provable syllogisms leading to a possible syllogistic conclusion
are among those of table (2).

Theorem 3.15. A syllogism is valid if and only if it is provable in SYLL.

Proof. The syllogistic diagrams for the premises of a syllogism in table (2), or their
reversals, form composable pairs (SA → M,M → BP) or (SA ← M,M ← BP) that
occurr among the ones listed in lemma 3.13 and viceversa. Lemma 3.13 ensures that
the roots of the formal proofs

SA→ M M → BP
SA→ M → BP

SA→ BP

SA← M M ← BP
SA← M ← BP

SA← BP

are the syllogistic diagrams for the conclusion of any syllogism in table (2).
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By lemma 3.13 (i), the only way to obtainAS P as a conclusion of a formal proof is
abbreviated as

S // M // P

S // P

which amounts to the proof-tree (AMP)♯(AS M) ⊢ (AS P) validating the moodAAA in
the first figure.
By lemma 3.13 (ii) and (iii), the only ways to obtainES P as a conclusion of a formal
proof, are abbreviated as

S // • Moo Poo

S // • Poo

S // M // • Poo

S // • Poo

The leftmost can be read as either the proof tree (APM)♯(ES M) ⊢ (ES P) or the proof tree
(APM)♯(EMS) ⊢ (ES P) which validate the moodAEE in the second and fourth figures,
respectively. The rightmost can be read as either the proof tree (EMP)♯(AS M) ⊢ (ES P)
or the proof tree (EPM)♯(AS M) ⊢ (ES P) which validate the moodEAE in the first and
second figures, respectively.
By lemma 3.13 (iv) and (v), the only ways to obtainIS P as a conclusion of a formal
proof are abbreviated as

S Moo •oo // P

S •oo // P

S •oo // M // P

S •oo // P

The leftmost can be read as either the proof tree (I MP)♯(AMS) ⊢ (IS P) or the proof
tree (I PM)♯(AMS) ⊢ (IS P) which validate the moodIAI in the third and fourth figures,
respectively. The rightmost can be read as either the proof tree (AMP)♯(IS M) ⊢ (IS P)
or the proof tree (AMP)♯(I MS) ⊢ (IS P) that validate the moodAII in the first and third
figures, respectively.
By lemma 3.13 (vi), (vii) and (viii), the only ways to obtainOS P as a conclusion of a
formal proof are abbreviated as

S •oo // M // • Poo

S •oo // • Poo

S Moo •oo // • Poo

S •oo // • Poo

S •oo // • Moo Poo

S •oo // • Poo

The first can be read as any of the proof trees (EMP)♯(IS M) ⊢ (OS P), (EPM)♯(IS M) ⊢
(OS P), (EMP)♯(I MS) ⊢ (OS P), (EPM)♯(I MS) ⊢ (OS P), that validate the moodEIO in
all the figures. The second can be read as the proof tree (OMP)♯(AMS) ⊢ (OS P) that
validates the moodOAO in the third figure. The third can be read as the proof tree
(APM)♯(OS M) ⊢ (OS P) validating the moodAOO in the second figure. �

Next is the extension of theorem 3.15 to the strengthened syllogisms.
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Definition 3.16. Let SYLL+ denote the formal system which is obtained from SYLL
by the addition of the rule

A •oo // A

to the rules in definition 3.9 and with suitably extended notions of proof tree, formal
proof and provability.

Lemma 3.17. The composite of a composable triple whose components are syllogistic
diagrams, reversals of them or existential imports, is a syllogistic diagram in exactly
the following cases:

(i) ( S •oo // S , S // M , M // P )

(ii) ( S Moo , M •oo // M , M // P )

(iii) ( S Moo , M Poo , P •oo // P )

(iv) ( S •oo // S , S // M , M // • Poo )

(v) ( S •oo // S , S // • Moo , M Poo )

(vi) ( S Moo , M •oo // M , M // • Poo )

Proof. On one hand, it is clear that each of the listed composable triples yields a syllo-
gistic diagram as a composite. On the other hand, by also keeping in mind remark 3.8,
we proceed by cases:

(a) there is no way to obtainS → P as the composite of a composable triple as in
the statement, because of the occurrence of one indelible bullet symbol in any
existential import forS, M or P.

(b) there is no way to obtainS → • ← P as the composite of composable triple as
in the statement, because of the presence of one indelible bullet symbol in any
existential import forS, M or P together with two arrow symbols diverging from
it.

(c) the only ways to obtainS← • → P as the composite of composable triple as in
the statement, under an existential import forS, M or P, is by either (i), (ii) or
(iii), since exactly one bullet symbol must occur in the composite together with
two morphisms diverging from it.

(d) there is no way to obtainS ← • → • ← P as the composite of a composable
triple as in the statement under an existential import forP, since such a composite
would be of the formSD← • → P which by no means can beS← • → • ← P.
The only ways to obtainS ← • → • ← P as a composite, under an existential
import for S or M is by either (iv), (v) or (vi), since exactly two bullet symbols
must occur in the composite, together with three alternating morphisms.

�

We end this section with the theorem which is the extension oftheorem 3.15 to the
strengthened syllogisms. Its proof is completely analogous to the previous and is left
to the reader, who is invited to carry it out on the base of lemma 3.17.

Theorem 3.18.A strengthened syllogism is valid if and only if it is provable in SYLL+.
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4 On the Square of Opposition

We here want to point out the existing connections between the so far described calcu-
lus and the laws of thesquare of opposition

AXY

contradiction
❇

❇
❇

❇
❇

❇

❇
❇

❇
❇

❇
❇subalternation

��
✤

✤

✤

✤

✤

✤

✤

✤

✤

contrariety
❴❴❴❴❴❴❴❴❴ EXY

subalternation

��
✤

✤

✤

✤

✤

✤

✤

✤

✤

I XY

⑤
⑤

⑤
⑤

⑤
⑤

⑤
⑤

⑤
⑤

⑤
⑤

subcontrariety
❴❴❴❴❴❴❴❴❴ OXY

in which

- AXY andOXY, as well asEXY and I XY, arecontradictorybecause they negate
each other and in turn cannot hold together.

- under existential import,AXY and I XY as well asEXY andOXY, aresubaltern
becauseI XY is provable fromAXY andOXY is provable fromEXY, but not the
converse, in both cases.

- under existential importAXY andEXY arecontrariesbecause the negation of each
of them is provable from the other, but not the converse.

- under existential importI XY andOXY aresubcontrariesbecause each of them is
provable from the negation of the other, but not the converse.

The laws of contradiction are the logical consequencesAXY,OXY ⊢ OXX, EXY, I XY ⊢

OXX and this is the reason why we look atOXX as expressing contradiction in SYLL.
The remaining laws are condensed into the logical consequencesAXY, I XX ⊢ I XY,
EXY, I XX ⊢ OXY since they immediately provide the laws of subalternation.They ex-
press the laws of contrariety becauseI XY is the negation ofEXY andOXY is the negation
of AXY. They express the laws of subcontrariety sinceAXY is the negation ofOXY and
EXY is the negation ofI XY.

Proposition 4.1. The laws of the square of opposition are provable in SYLL+.

Proof. The laws of contradiction are provable by the proof trees (AXY)♯(OXY) ⊢ (OXX),
(EXY)♯(I XY) ⊢ (OXX). The remaining laws correspond to the proof trees (AXY)♯(I XX) ⊢
(I XY), (EXY)♯(I XX) ⊢ (OXY). Both the proofs cannot be reversed since one bullet symbol
occurs inI XY and no bullet symbols occur inAXY, two bullet symbols occur inOXY and
one bullet symbol occurs inEXY. �

5 Further discussion

In this section we discuss informally the idea behind the syllogistic diagrams, specifi-
cally the meaning of the arrow and bullet symbols, and the possibility of extending the
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calculus ton-term syllogisms,n ≥ 1.

Concerning the first topic, we do not have a complete answer and think that the
subject deserves an investigation. Anyway, we can say that the syllogistic diagrams
firstly came out of an attempt to represent diagrammaticallythe degrees of agreement
and disagreement among terms of the natural language, as conveyed by the categorical
propositions. The syntactic primitives that constitute them were employed since the
beginning and, in our opinion, one of their features is that they support an intensional
interpretation of terms, namely as concepts, rather than anextensional one, namely as
classes of individuals, which fact could be appreciable, see [4] and [1] for example.
On the other hand, the controversy on the Aristotelian theory of syllogism being ex-
tensional or intensional could be considered as a futile one, see [11]. In recent times
we went aware of De Morgan’s paper [2], in which the so called “spicular notation”
for the syllogistics was introduced, but also see [8]. De Morgan’s aim was, among
others, to extend Aristotle’s syllogistics to complemented terms. The complement of
a termA is the term that means non-A, which De Morgan was used to denote with the
corresponding lower case lettera. The syntactic primitives of De Morgan’s system are
the symbols), (, ., together with countably many term-variablesA, a, B, b,C, c . . .. De
Morgan lets a term-variable be enclosed by a parethesis, as in A) or (A, to express
universal quantification, that is “allAs”, whereas he lets a term-variable be excluded
by a parethesis, as in)A or A(, to mean particular quantification, namely “someAs”.
In modern jargon, a term-variable is said to be distributed in the first case and undis-
tributed in the second. Furthermore, he lets an even number of dots, or none at all,
between parentheses, express affirmation or agreement of terms, whereas he lets an
odd number of dots express negation or disagreement of terms. The following are the
fundamental categorical propositions how they appear in the spicular notation:

AAB: A )) B EAB: A ).( B

I AB: A () B OAB: A (.( B

which accordingly should now be read

AAB: All As are someBs

EAB: All As are not allBs

I AB: SomeAs are someBs

OAB: SomeAs are not allBs

We don’t want to go now into a detailed comparison between oursystem SYLL
and De Morgan’s, but rather to point out that a way to give meaning to the syntactic
primitives of SYLL could be based on the observation that thepossibility of making
a distinction between a term being distributed or not, as well as between affirmative
and negative modes of predication, is supported by our diagrammatic formalism too,
together with the possibility of handling complements of terms. Indeed, in our for-
malism a term-variableA should be considered as distributed if fitting in a part such
asA → or← A, whereas it should be considered as undistributed if fittingin a part
such asA← or→ A. A term-variableA should be considered as occurring in negated
form if fitting in a part such asA → • or • ← A, both of which may be abbreviated

14



asa. Thus we observe in passing that in our opinion the giving of an explicit encond-
ing of negated terms through the syntactic primitives of SYLL is one of its remarkable
features. On the other hand, a term-variableA is in positive form if fitting in a part
such as• → A or A ← •. For example, in the syllogistic diagram forAAB the term-
variableA is distributed whereas the term-variableB is not, or in that forEAB both the
term-variables are distributed and negated, and similarlyfor the remaining syllogistic
diagrams. Moreover, the rereading of the syllogistic diagrams under this perspective is
in line with what happens for the linear diagrams in [3] for what concerns the obver-
sion of the categorical propositions. By obversion “NoA is B” is equivalent to “Each
A is non-B” whereas “SomeA is notB” is equivalent to “SomeA is non-B”, which fact
is clearly expressed by the appearance of the syllogistic diagrams forEAB andOAB.
By the introduction of complemented terms in syllogistics,De Morgan was able to in-
troduce four more categorical propositions and also to let the particular and universal
affirmative modes of predication be the fundamental ones. We conjecture that SYLL
supports such an extension too, through the introduction offour further corresponding
syllogistic diagrams. Finally, we end this digression by mentioning that each syllogistic
diagram can be also more naively conceived as an “abstract copula”:

[. . . ] a formal mode of joining two terms which carries no meaning, and
obeys no law except such as is barely necessary to make the forms of
inference follow. See [2].

We end by briefly discussing the possibility of extending thecalculus ton-term
syllogisms. This seems to be a peculiarity of syllogistic reasoning with linear diagrams,
as observed in [3].For every natural numbern, n ≥ 1, ann-term syllogism is a logical
consequenceP1, . . . ,Pn−1 ⊢ Pn in which all thePi ’s are categorical propositions such
that for every 1≤ i < n − 1 the categorical propositionsPi and Pi+1 have exactly
one term-variable in common. Thus, ann-term syllogism involves exactlyn term-
variablesA1, . . . ,An, with A1 in Pn−1 andAn in P1, which are the subject and predicate
of Pn, respectively. The total number of validn-term syllogisms is 3n2 − n, see [13],
where such a formula was obtained by rejecting the invalid moods on the base of the
traditional rules of the syllogism. The same formula has been reobtained by direct
calculation in [18] and [5]. We conjecture that our system allows the retrieving of
this result and moreover the extension of theorems 3.15 and 3.18 to the case ofn-term
syllogisms, but leave the investigation of these topics to asubsequent paper. For the
time being, the description of the validn-term syllogisms forn = 1, 2 follows. For
n = 1 there is exactly one figure, that isA1A1 and only two valid moods for it, that isA
andI so that, as observed in [11] and [13], the only valid 1-term syllogisms are⊢ AA1A1

and⊢ I A1A1, that is the laws of identity we hinted at in section 3. Forn = 2 there are
two figures, as shown in the table

fig. 1 fig. 2
premise A1A2 A1A2

conclusion A1A2 A2A1

and ten valid 2-term syllogisms, six in the first figure and four in the second, as follows:

figure 1: AA1A2 ⊢ AA1A2, EA1A2 ⊢ EA1A2, I A1A2 ⊢ I A1A2, OA1A2 ⊢ OA1A2, and thelaws of
subalternationAA1A2 ⊢ I A1A2, EA1A2 ⊢ OA1A2 which both hold under existential
import onA1.
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figure 2: EA1A2 ⊢ EA2A1, I A1A2 ⊢ I A2A1 which are thelaws of simple conversion, and
AA2A1 ⊢ I A1A2, EA2A1 ⊢ OA1A2 which are thelaws of conversion per accidens, that
hold under existential import onA2 andA1, respectively.

In order to retrieve the law of identity⊢ AA1A1 the rule

A1
// A1

has to be added in definition 3.9. Forn = 2, the laws of subalternation have been
already proved in the previous section and, excluding the laws of conversion per acci-
dens, the remaining syllogisms are immediate. We prove the laws of conversion per
accidens:

- AA2A1 ⊢ I A1A2

A2 •oo // A2 A2
// A1

A2 • //oo A2
// A1

A2 •oo // A1

A1 •oo // A2

- EA2A1 ⊢ OA1A2

A2
// • A1

oo A1 •oo // A1

A2 • A1
oo • //oo A1

A2
// • •oo // A1

A1 •oo // • A2
oo
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