arXiv:1001.1707v3 [math.LO] 28 Feb 2013

A diagrammatic calculus of syllogisrhs

Ruggero Pagnan
DISI, University of Genova, Italy
ruggero.pagnan@disi.unige.it

Abstract

A diagrammatic logical calculus for the syllogistic reasanis introduced and
discussed. We prove that a syllogism is valid if and only i&iprovable in the
calculus.

1 Introduction

The aim of the present paper is that of introducing and dgngs diagrammatic log-
ical calculus for syllogistic reasoning. We present su@dinear diagrammatic repre-
sentations of the fundamental Aristotelian categoricappsitions and show that they
are closed under the syllogistic canon of inference whidhésdeletion of the mid-
dle term, so implemented to let the formalism incorporateutianeously a graphical
appearance and a naive algorithmic nature, namely thatewfgpknowledge or par-
ticular ability is needed in order to understand it and use it

Since our investigation is directed toward a formal appindadogical reasoning with
diagrams we introduce a formal system SYLL for such a cakuNyve prove that a
syllogism is valid if and only if it is provable in SYLL, so than this sense the calculus
is sound and complete. A similar result holds also for théogjgms that are valid
under existential import. Because of the peculiar form ®fliagrammatic syntax, the
calculus supports a criterion for the rejection of the ifvay/llogistic arguments on the
base of which the easy retrieving of the traditional ruleshef syllogism is possible.
Moreover, we show that the laws of the square of oppositierpasvable in SYLL.

In section 2 we introduce the basics of the syllogistics aggtdbe the diagrammatic
logical system VENN based on the Venn-Peirce diagrams, f6@nd [17].

In section 3 we prove the previous claims about soundness@mg@leteness, while
the laws of the square of opposition are discussed in sedtion

The possibility of extending the calculusrtieterm syllogistic inferences is briefly dis-
cussed in section 5. We point out that other linear diagraticrf@malisms for the
syllogistic reasoning exist, notably [18], [3], [10] andchtta category-theoretic point of
view is pursued in [9]. We are aware of possible, interedfiingctions of investigation
in connection with Peirce’s Existential Graphs, see [15]ilefurther directions of in-
vestigation could be pursued in connection with computemnse, see [14].

| acknowledge Pino Rosolini for the many useful conversetiand the anonymous
referees for their many valuable comments.

*The final publication is available at springerlink.com hitimk.springer.confarticlg10.1007%2Fs10849-
011-9156-7#page-1
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2 Syllogistic reasoning with diagrams

Syllogistics in its original form dates back to Aristotlehw formalized it as a logi-
cal system in the Prior Analytics. A fundamental referengelee subject is [11], for
example. We here recall some of the basics of syllogistidgsitraditional, medieval
systematization. In doing this we introduce some of the iroingy and notations that
will be useful in the sequel of the paper. Moreover, we rettal fundamentals of a
formal diagrammatic-theoretic approach to syllogistigsdviewing briefly the formal
system VENN, see [6], [17] and [16].

We refer to nouns, adjectives or more complicated meanimgforessions of the
natural language a@erms and denote them by using upper case latin letters which we
refer to agerm-variables Since Aristotle, the following four schemes of proposiso
were recognized as fundamental throughout the researoliic |

Aag: EachAis B universal &irmative proposition
Eas: NOAis B universal negative proposition
g SomeAis B particular dfirmative proposition

Oag: SomeAis notB particular negative proposition

Following the tradition, henceforth we refer to themcaadegorical propositions In
each of them, the term-variabke is the subjectwhereas the term-variabR is the
predicateof the proposition. Thus “Each dog is black”, “No cat is whitéEach baby
that cry is polite” are examples of categorical proposiion

A syllogismis a logical consequence that involves three categoricgdqsitions that
are distinguished iffirst premise second premisand conclusion Moreover, a syl-
logism involves three term-variablé&s P and M in the following precise way:M
does not occur in the conclusion whereas, according to #uitimnal way of writing
syllogisms,P occurs in the first premise ai®loccurs in the second premise. The term-
variablesS andP occur as the subject and predicate of the conclusion, régelycand
are also referred to aminor termandmajor termof the syllogism, whereahl is also
referred to asniddle term

Remark 2.1. What we are simply referring to as syllogisms aealitional syllogisms
in the terminology of [11], where a detailed discussion & tlifference between this
notion and that oAristotelian syllogisntan be found. Such afiiérence will not &ect
the present treatment. We here only mention that in stiiotgean Aristotelian syllo-
gism is a proposition of the type “If A and B, then C”, wheredasaalitional syllogism
is a logical consequence with two premises and one concllik®"“A, B therefore C”,
which in its entirety does not form a compound proposition.Axistotelian syllogism
can either be true or false whereas a traditional syllogiameither be valid or not, in
the sense of Tarski, see [12].

Themoodof a syllogism is the sequence of the kinds of the categopicadositions
by which it is formed. Thdigureof a syllogism is the position of the term-variab®s



P andM in it. There are four possible figures as shown in the follaytable:

fig. 1| fig. 2 | fig. 3 | fig. 4
first premise MP PM MP PM )
second premise¢ SM SM MS MS

conclusion SP SP SP SP

A syllogism is completely determined by its mood and by itsifegtogether. We write
syllogisms so that their mood and figure can be promptlyeedd, by also letting the
symbol+ separate the premises from the conclusion. For examplieeigytlogism

Awmp,Asm+ Asp

one can recognize from left to right the first premise, th@sdgremise and the con-
clusion, its mood, which i8AA , and its figure, which is the first. The following tables
list the syllogisms that are known to be valid since Aristotl

Fig. 1 Fig. 2 Fig. 3 Fig. 4

Amp,Asmt Asp | Epm,AsmtFEsp | Imp,Ans Flsp Apwm, Ems F Esp
Emp,Asmt+ Esp | Apm,EsmFEsp | Amp,lns Flsp Ipm,Ams + lsp (2)
Awmp,lsmt Isp Epm,lsm+Osp | Omp,Aus + Osp | Epm,Ims + Osp
Emp,lsmFOsp | Apm;OsmtF Osp | Evp,Ims +Osp

Fig. 1 Fig. 2 Fig. 3 Fig. 4 assumption
Amp,AsmF Isp Apm,EsmF Osp Apm,Ems F Osp | some S exists
Emp,Asm + Osp Epm,Asm + Osp some S exists (3)
Amp,Ams F lsp Epm,Ams F Osp | some M exists
Emp,Ams + Osp some M exists
Apm,Ams + lsp some P exists

They are 24 in total, divided into two groups of 15 and of 9. 3&aeyllogisms in the
second group are also said todteengthenedor valid underexistential importwhich
is an explicit assumption of existence of soB\eM or P, as indicated.

Terminology 2.2. The syllogisms in table (2) will be henceforth referred tmgly as
syllogisms, those in table (3) will be referred to as strieged syllogisms.

The study of logical reasoning requires to understand tieavalid reasoning con-
sists in the correct manipulation of the information no metithe nature of the symbolic
medium, being it diagrammatic, linguistic or both, that etdrogeneous. The correct
manipulation of the information is supported by the emplewntof sound rules of in-
ference within suitable formal logical systems. In purguindiagrammatic approach
to logical reasoning one point is that of making formal wisatsually considered as
heuristic.

A paradigmatic example of a formal diagrammatic logicatsyssupporting syllogis-
tic reasoning is the system VENN in [17] and [6], which is lthea the Venn-Peirce
diagrams, see also [7]. Here we briefly describe VENN by fiegpits diagrammatic
syntactic primitives and its rules of inference. For furttletails we refer the reader to
loc. cit.

Definition 2.3. Thediagrammatic primitive®f VENN are the following distinct syn-
tactic objects:

—— line chosed curve rectangle shading ® X




A diagramof VENN is any finite combination of diagrammatic primitivetn par-
ticular, an Xsequenceas a diagram of alternating X's and lines with an X in each
extremal position, e.g® —— ® —— ® . Diagrams of VENN will be denoted by
calligraphic upper case letters. For convenience, diagnahich are closed curves or
rectangles will be denoted by upper case latin lettergeglonis any enclosed area
in a diagram. Abasic regionis a region enclosed by a rectangle or a closed curve. A
minimal regionis a region within which no other region is enclosed.

Regions of diagrams are meant to represent sets of indigidua particular, a
background rectangle is meant to represent a suitablengeieé discourse. A shaded
region is understood as empty, whereas a region that cerdaiX-sequence is under-
stood as non-empty. An X-sequence represents disjunctiseeatial statements.

The informal procedure for the verification of the validitiyasyllogism through
the employment of Venn-Peirce diagrams consists in drawhegdiagrams for the
premises as well as for the conclusion of the syllogism ardfdeis possible to read
off the latter from the former. If so, then the syllogism is vatitherwise it is not. The
crucial step consists in understanding if the diagram ferabinclusion is “contained”
in the diagrams for the premises or not. Making formal suchoggdure requires to
take into account how each diagram has been constructeddeystand for which rea-
sons the construction of those diagrams is permitted andriicplar to understand the
reasons why the derivation of the diagram for the conclusigrermitted. We skip the
formal presentation of how to construct a well-formed déagiin VENN and we refer
the reader to [17].

Definition 2.4. Therules of inferencef VENN are the following:

setup: a well-formed diagram with no shadings or X-sequences casberted at any
step of a proof.

erasure: a well-formed diagran® is obtained from a well-formed diagraf by this
rule if & results from either erasing a closed curve/gfor a shading of some
region ofD, or an entire X-sequence &1. In the first case, a shading filling part
of a minimal region must also be erased.

extension of a sequence§ is obtained fromD by this rule if extra links have been
added to some X-sequence®f

erasure of links: & is obtained from®D by this rule if it results fromD by the era-
sure of links in some X-sequence that fall in shaded regipresyided that the
remaining X's are reconnected.

unification: D is obtained fromD; and D, by this rule if every region ofD is in
counterpart relation with a region of eith@r, or D, and conversely. If any
region of D is shaded or has an X-sequence, then it has a counterpattién ei
D1 or D, which is also shaded or has an X-sequence and conversely.

non-emptyness® is obtained from& by this rule if it has been obtained by the ad-

dition of an X-sequence some link of which falls into everynimal region of
&.

The following are the well-formed diagrams of VENN that @aspond to the cate-
gorical proposition:



A B A B
Anpg: Eag:
U U
A B A B
I aB: OAB:

Here are two examples of formal proofs in VENN in which recfias have been
omitted.
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For the proof that VENN is sound and complete, we refer thdeetn [17] and [6].

3 The calculus

In this section we introduce the formal system SYLL, supipgra diagrammatic logi-
cal calculus for the syllogistic reasoning. A feature of $¥& that it is heterogeneous,
in the sense that it consists of diagrammatic and lingusstitactic objects together.
We will prove that the calculus at issue is sound and complet¢he sense that a
syllogism is valid if and only if it is provable in SYLL.

Definition 3.1. Thediagrammatic primitive®f SYLL are the symbols-, <, . The
linguistic primitivesof SYLL consist of countably many term-variablésB,C, .. ..

Thesyntactic primitive®f SYLL are the diagrammatic or linguistic primitives. Tooka
scheme of categorical proposition we associate the fafigueichemes osyllogistic
diagrams

Apg: A——B Eag: A——>e<—B

| aB: A<—e——>B OABZ A . o B

to be read analogously. diagramof SYLL is a finite list of arrow symbols separated
by a single bullet symbol or term-variable, beginning andieg at a term-variable.
Thereversalof a given diagram is the diagram obtained by specular symymétpart

of a diagram is a finite list of consecutive components of grdia.

Examples 3.2.The listsA, A - X,A < A A—> e > B X—>Y > e« Xare
examples of diagrams. Their reversals &eX « A, A - A, B « ¢ « Aand
X — o « Y « X, respectively. The reversals of the syllogistic diagramesthe
diagrams

B<——A B——=e<—A

B<——@o—>A B ° ° A

Every diagram is a part of itself. In general, a part of a dhiagneed not be a diagram,
e.g.A — is a part of the diagrarA — e «— B and it is not a diagram, since it does not
end at a term-variable.

Notation 3.3. Parts of diagrams will be henceforth denoted by calligrapipper case
letters such a®, &, etc. In order to distinguish explicitly a part with respeca whole
diagram, we adopt a heterogeneous notation mixing cafliigcaupper case letters and
syntactic primitives. For example, the writif — A refers to a diagram in which the



part— A has been distinguished with respect to the remainingfaithus, it may be
the case that the whole diagram looks Ike— ¢ — A/S — AorB — ¢ — Afor
example, so that the paf would beX < o, S, B — e, respectively.

Definition 3.4. A concatenable paiof diagrams is a pair of diagram®@, AS) or
(AE, DA) whoseconcatenations, in both cases, the diagra®AS which is obtained
by overlapping its components on the common extremal tarableA. A compos-
able pairof diagrams is a concatenable pad - A,A - E)or (A - E,D — A),
(D—AAEor (A& D« A). Inthe first two cases, a composable pair gives
rise to acompositeD — & obtained by substituting the pa#t A — in the concatena-
tion D — A — & with the sole, accordingly oriented, arrow symbel Analogously,
in the second two cases, a composable pair gives rise to acsi@piagran® « &.
For every natural number, n > 3, aconcatenable n-tupless ann-tuple of diagrams
(&1,82,...,8n) in which, for every 1< i < n, the pairs &, E;1) are concatenable
pairs of the same formZA, ASE) or (AS, DA). A composable n-tuples a concaten-
ablen-tuple of diagrams&s, &, . .., &) in which, for every 1< i < n, (&, &) is
a composable pair. Composition of diagrams extends to cealpen-tuples through
the calculation of pairwise composites.

Examples 3.5. For every term-variabld, (A, A) is a concatenable pair whose con-
catenation is the diagram It is not a composable pair since no arrow symbols occur.
The pair & «— B, X — B) is not concatenable, thus not composable, whereas the pair
(A « B,B « X) is concatenable and composable, with composite X. The pair

(X - A A « B) is concatenable but not composable. The pdir{ B,B « X) is
concatenable in two fierent ways by overlapping its components eitheBar on X.
Also, it is composable in two fierent ways giving rise to either the composite— X

or the compositd « B, respectively. The 3-tupleX(« B,B « X,A — B) is con-
catenable t?A —» B « X « B but it is not composable since the pai & X, A — B)

is not composable. The 3-tupl¥ ¢ A, B — X, X — A) is not concatenable, since the
pair (X < A, B — X) is concatenable by overlapping its componentXon extremal
“external” position, whereas the paB (- X, X — A) is concatenable by overlapping
its components oiX in extremal “internal” position. The 3-tuplé\(«— ¢ —» X X —

e — T, T « e — H)is concatenabletd «— ¢ > X - ¢ « T «— ¢ —» H and
composabletd\ «— ¢ - X — e — ¢ — H.

Definition 3.6. A well-formed diagranof SYLL is defined inductively as follows:
(i) a syllogistic diagram is a well-formed diagram.
(ii) the reversal of a syllogistic diagram is a well-formadgram.

(iii) a diagram which is the concatenation of a concatenphlewhose components
are well-formed diagrams is a well-formed diagram.

Remark 3.7. Well-formed diagrams are not closed under compositioneduldit suf-
fices to consider the composable pafr & ¢ «— ¢ - AA - o « o — Y) for
example, whose components are well-formed but give risegabmposite diagram
X — e «— o — o «— e — Y which is not well-formed.

The intuition about how to use the syllogistic diagrams dadrtreversals to verify
the validity of syllogisms is that, given a syllogism, oneasilers the three syllogis-
tic diagrams or reversals to represent the first premises¢icend premise and the
conclusion of the syllogism. These involve three distisged term-variables, usually



denotedS, P andM, in such a way thaM occurs in both the diagrams in the premises
and does not in the conclusion, wher&andP occur in the conclusion as well as in
the premises. Verifying the validity of a syllogism consist calculating the compos-
ite diagram of the concatenation of its premises, if thesefa composable pair, and
compare it with the diagram for the conclusion.

For example, the verification of the validity of the syllogis Apy, Esm + Esp is
suggestively represented by the drawing

S ° M P

(4)

S— s>e<~—P

whereas the invalidity of the syllogis@pm, Ens + Isp is confirmed by the fact that
the pair P — ¢ —» ¢« — M, M — e « S) although concatenable is not composable.

Remark 3.8. Anticipating 3.9 and 3.15, we haste to remark that in cattudathe
composite of a composable pair of diagrams no bullet syn#dkieted, so that the
composite contains as many bullets as in the concatendttbe diagrams in the given
pair. It is useful, when one also takes into account the tatem of the involved arrow
symbols, for rejecting an invalid form of syllogism, whichrcbe rejected with the
linear diagrams in [3] as well, but one has to go through &l2B2 invalid moods, as
explained there. For instance, the syllogi€py, Eps + Ispis invalid since a single
bullet symbol occurs in the conclusion, whereas three ahtbecur in the premises.
The syllogismApy, Ism F Espis invalid since the syllogistic diagram for the conclu-
sion contains a single bullet and a pair of arrows converginig, whereas a single
bullet and a pair of arrows diverging from it are containethia syllogistic diagram for
the second premise.

For every term-variablé, particularly interesting instances of syllogistic diagns
are the following:

Apna: A——A Eaa: A——se<—A

| ap: A<—e——>A OAAZ A ° [ A

whereAaa andlaa are referred to alaws of identity used by Aristotle without any
explicit mention, see [11]. As will soonely be clear, thegiam forlaa represents
existential import. The diagram f@aa is an expression of thprinciple of contra-
diction, which fact will be more clearly illustrated in section 4. &tiagram folEaa
represents the emptyness/f

Definition 3.9. The rules of inference of SYLL are the following:

A——B A—s>e<— B
B~———A B——=eo<—A
A<—eo—>B A . ° B
B<—e——=A B ° °

DA A&E A& DA
DAE DAE



D->A->E D—A§
D—-E D&

where the double line means that the rule can be used top-dewuell as bottom-up.
A proof treeof SYLL is a tree where each node is a diagram and each brapchan
instance of a rule of inference. #rmal proof of a syllogism is a proof tree with its
conclusion as the root and with each of its premises as leAveglogism isprovable
in SYLL if there is a formal proof for it.

Remark 3.10. The last four rules in the previous definition can be equividyesubsti-
tuted by the following:

D-A A-E A—-E D-A
D—-E D—-E
DA A— & A—& DA
D& D&

Example 3.11. The syllogismApy, Esm + Espis provable, since a formal proof of it

IS
P——M

S— s>e<~<—M M~——P

S . M P

S— s>e<~— P

A different proof of the same syllogism is

P——M
M<~—P S—se<~—M

S ° M P

S——e<~—P

Notation 3.12. Proof trees will be also written in line by forgetting somessential
pieces of information. The proof tree of a syllogistp, P, + C, will be written as
(PD#(P2) + (C). Drawings like (4) will be formally considered as abbréigas of
proof trees that we will henceforth freely use without ansttier comment.

Lemma 3.13. The composite of a composable pair whose components acgsyit
diagrams or reversals of them, is a syllogistic diagram mcéy the following cases:

() (S—=M,M—=P)
(i) (S—>=e~—M, M=——P)
(i) (S—=M, M—>=e<~—P)
V) (S<— M, M<~—o—>P)
V) (S<—e——>M, M——=P)

(Vi) (S<—e¢——>M, M——>e<—P)



(Vi) (S<— M, M . . P)

(viii) ('S . . M, M=<—P)

Proof. Clearly, each of the listed composable pairs yields a cortgegllogistic di-
agram involving onlyS andP. Conversely, by also keeping in mind remark 3.8, we
proceed by cases:

(a) the only way to obtai® — P as a composite is by (i), since no bullet symbol is
allowed to occur.

(b) the only way to obtais — e <« P as a composite is by either (ii) or (iii), since
exactly one bullet symbol must occur with two arrow symbaleverging to it.

(c) the only way to obtails < ¢ — P as a composite is by either (iv) or (v), since
exactly one bullet symbol must occur with two arrow symbaledying from it.

(d) the only way to obtails < ¢ — e «— P as a composite is by either (vi), (vii) or
(viii), since exactly two bullet symbols must occur togetiwéh three alternating
arrow symbols.

O

Remark 3.14. It is an easy exercise to reaff the well-knownrules of the syllogism
from the list in lemma 3.13, also by taking into account rekaB.

(1) From two negative premises nothing can be inferred.
(2) From two particular premises nothing can be inferred.

(3) If the first premise of a syllogism is particular, wheré@ssecond premise is
negative, then nothing can be inferred.

(4) If one premise is particular, then the conclusion isipalar.
(5) The conclusion of a syllogism is negative if and only ifis@ne of its premises.

The next theorem shows that the syllogisms in table (2) aaethxthose that are
provable. The proof is purely syntactical and based on ler8rt8. On one hand
we proceed top-down constructing a scheme of formal praoéfiy syllogism, from
the syllogistic diagrams for its premises. On the other haagroceed bottom-up by
cases, showing that the provable syllogisms leading to silplessyllogistic conclusion
are among those of table (2).

Theorem 3.15. A syllogism is valid if and only if it is provable in SYLL.

Proof. The syllogistic diagrams for the premises of a syllogismaible (2), or their
reversals, form composable pai&fl - M,M — BP) or (SA «— M, M « BP) that
occurr among the ones listed in lemma 3.13 and viceversamam13 ensures that
the roots of the formal proofs

SA—->M M — BP SA «— M M « BP
SA—- M- BP SA— M« BP
SA — BP SA « BP

are the syllogistic diagrams for the conclusion of any gim in table (2).

10



By lemma 3.13 (i), the only way to obtaiks p as a conclusion of a formal proof is
abbreviated as

S—sM——P

S——P

which amounts to the proof-treé (;p)i(Asm) F (Asp) validating the mooddAA in
the first figure.

By lemma 3.13 (ii) and (iii), the only ways to obtalfs p as a conclusion of a formal
proof, are abbreviated as

S ° M P S M ° P
S ° P S ° P

The leftmost can be read as either the proof thea)#(Es m) + (Esp) or the proof tree
(Apm)#(Ewms) + (Esp) which validate the moodEE in the second and fourth figures,
respectively. The rightmost can be read as either the preefEyvp)i(Aswm) + (Esp)
or the proof treeEpm)#(Aswm) + (Esp) which validate the moo&AE in the first and
second figures, respectively.

By lemma 3.13 (iv) and (v), the only ways to obtdip as a conclusion of a formal
proof are abbreviated as

S M ° P S ° M P
S ° P S ° P

The leftmost can be read as either the proof tleg)ti(Ams) + (Isp) or the proof
tree (pm)H(Awms) + (Isp) which validate the mootAl in the third and fourth figures,
respectively. The rightmost can be read as either the preef@up)i(Ism) + (Isp)
or the proof treeAmp)ti(lms) + (Isp) that validate the moodll in the first and third
figures, respectively.

By lemma 3.13 (vi), (vii) and (viii), the only ways to obtaidsp as a conclusion of a
formal proof are abbreviated as

S ° M ° P
S ° ° P
S M . ° P
S ° ° P
S ° ° M P
S ° ° P

The first can be read as any of the proof treeg)ti(Ism) F (Osp), (Epm)i(lsm) +
(Osp), (EMp)ﬁ(l MS) F (Osp), (EPM)ﬁ(l MS) F (Osp), that validate the moo#&IO in
all the figures. The second can be read as the proof @gg)f(Ams) + (Osp) that
validates the moo®AO in the third figure. The third can be read as the proof tree
(Apm)#(Oswm) + (Osp) validating the moodOO in the second figure. m]

Next is the extension of theorem 3.15 to the strengthendaggyins.

11



Definition 3.16. Let SYLL* denote the formal system which is obtained from SYLL
by the addition of the rule

A<—eo——=A
to the rules in definition 3.9 and with suitably extended masi of proof tree, formal
proof and provability.

Lemma 3.17. The composite of a composable triple whose components bogisgic
diagrams, reversals of them or existential imports, is bgidtic diagram in exactly
the following cases:

Q) (S . S.,s M, M P)

i) (S=— M, M<=—e¢——>M, M——=P)

(i) (S<— M, M P,P . P)
(iv) (S . S.S M, M . P)
(v) (S . S,S . M, M<——P)

Vi) (S=— M, M<=~—e¢——>M, M——>e<—P)

Proof. On one hand, it is clear that each of the listed composalplesryields a syllo-
gistic diagram as a composite. On the other hand, by alsdargapmind remark 3.8,
we proceed by cases:

(a) there is no way to obtai® — P as the composite of a composable triple as in
the statement, because of the occurrence of one indelitit Bymbol in any
existential import foiS, M or P.

(b) there is no way to obtai8 — e « P as the composite of composable triple as
in the statement, because of the presence of one indelibét bymbol in any
existential import foiS, M or P together with two arrow symbols diverging from
it.

(c) the only ways to obtai < e — P as the composite of composable triple as in
the statement, under an existential import¥rM or P, is by either (i), (ii) or
(iii), since exactly one bullet symbol must occur in the casipe together with
two morphisms diverging from it.

(d) there is no way to obtaiB < e — e «— P as the composite of a composable
triple as in the statement under an existential imporPf@ince such a composite
would be of the forn8D « ¢ — Pwhichbynomeanscan @&« ¢ —» ¢ «— P.
The only ways to obtail$ < ¢ — e «— P as a composite, under an existential
import for S or M is by either (iv), (v) or (vi), since exactly two bullet syniso
must occur in the composite, together with three altergatiorphisms.

i

We end this section with the theorem which is the extensighedrem 3.15 to the
strengthened syllogisms. Its proof is completely analegotthe previous and is left
to the reader, who is invited to carry it out on the base of len3117.

Theorem 3.18.A strengthened syllogism is valid if and only if it is provati SYLL".
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4 On the Square of Opposition

We here want to point out the existing connections betweessdifar described calcu-
lus and the laws of thequare of opposition

contrariety

Axy——————-—-—~- Exy
N 7
oo 7
N 7
[ N s [
\ h e \
. N4 .- .
subalternation contradiction | subalternation
\ , N \
\ / N \
\ g h \
7 N
v - NY
Ixy— = ———— - — — XY

in which

- Axy andOxy, as well asExy andlyy, arecontradictorybecause they negate
each other and in turn cannot hold together.

- under existential importAxy andlxy as well asExy and Oxy, aresubaltern
becausdxy is provable fromAxy andOxy is provable fromEyy, but not the
converse, in both cases.

- under existential imporxy andExy arecontrariesbecause the negation of each
of them is provable from the other, but not the converse.

- under existential impoityy andOxy aresubcontrariedecause each of them is
provable from the negation of the other, but not the converse

The laws of contradiction are the logical consequerfegs Oxy + Oxx, Exy, Ixy +
Oxx and this is the reason why we look@x as expressing contradiction in SYLL.
The remaining laws are condensed into the logical consemseXyy, Ixx F Ixy,
Exy, Ixx + Oxy since they immediately provide the laws of subalternatibhey ex-
press the laws of contrariety becaligeis the negation ofExy andOxy is the negation
of Axy. They express the laws of subcontrariety siAgg is the negation 0Oxy and
Exy is the negation ofy.

Proposition 4.1. The laws of the square of opposition are provable in SY.LL

Proof. The laws of contradiction are provable by the proof tréesd#(Oxy) + (Oxx),
(Exy)i(Ixy) + (Oxx). The remaining laws correspond to the proof trees{ti(l xx) +
(Ixvy), (Exy)#(Ixx) F (Oxy). Both the proofs cannot be reversed since one bullet symbol
occurs inlxy and no bullet symbols occur iy, two bullet symbols occur i@xy and
one bullet symbol occurs iByy. O

5 Further discussion

In this section we discuss informally the idea behind théogystic diagrams, specifi-
cally the meaning of the arrow and bullet symbols, and theipdiy of extending the
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calculus ton-term syllogismsn > 1.

Concerning the first topic, we do not have a complete answeitlank that the
subject deserves an investigation. Anyway, we can say ftirasyllogistic diagrams
firstly came out of an attempt to represent diagrammati¢ca#ydegrees of agreement
and disagreement among terms of the natural language, esyashby the categorical
propositions. The syntactic primitives that constituterthwere employed since the
beginning and, in our opinion, one of their features is thaytsupport an intensional
interpretation of terms, namely as concepts, rather thaaxeensional one, namely as
classes of individuals, which fact could be appreciable,[d4¢ and [1] for example.
On the other hand, the controversy on the Aristotelian thebsyllogism being ex-
tensional or intensional could be considered as a futile see [11]. In recent times
we went aware of De Morgan’s paper [2], in which the so callgpi¢ular notation”
for the syllogistics was introduced, but also see [8]. De @¢#ors aim was, among
others, to extend Aristotle’s syllogistics to complemetierms. The complement of
a termA is the term that means nok-which De Morgan was used to denote with the
corresponding lower case leti@rThe syntactic primitives of De Morgan’s system are
the symbols, (, -, together with countably many term-variabls, B,b,C,c.... De
Morgan lets a term-variable be enclosed by a parethesisy A% or (A, to express
universal quantification, that is “afs”, whereas he lets a term-variable be excluded
by a parethesis, as M or A(, to mean particular quantification, namely “so&’.

In modern jargon, a term-variable is said to be distributethe first case and undis-
tributed in the second. Furthermore, he lets an even nunfbdots, or none at all,
between parentheses, exprefiirration or agreement of terms, whereas he lets an
odd number of dots express negation or disagreement of t&rhesfollowing are the
fundamental categorical propositions how they appeardrsfiicular notation:

Aag: A)) B Eas: A)-(B

gz AQOB Oag: AC(C-(B
which accordingly should now be read

Aag: All As are somés
Eag: All As are not alBs
I ag: SOMeAs are somés

Oag: SomeAs are not alBs

We don’t want to go now into a detailed comparison betweensyatem SYLL
and De Morgan’s, but rather to point out that a way to give nreato the syntactic
primitives of SYLL could be based on the observation thatgbssibility of making
a distinction between a term being distributed or not, as asbetween firmative
and negative modes of predication, is supported by our dmagratic formalism too,
together with the possibility of handling complements afite. Indeed, in our for-
malism a term-variablé should be considered as distributed if fitting in a part such
asA — or « A whereas it should be considered as undistributed if fitting part
such asA « or —» A. A term-variableA should be considered as occurring in negated
form if fitting in a part such a®\ — e or ¢ «— A, both of which may be abbreviated
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asa. Thus we observe in passing that in our opinion the givingoé&eplicit encond-
ing of negated terms through the syntactic primitives of §Yd.one of its remarkable
features. On the other hand, a term-variafdlis in positive form if fitting in a part
such ass — Aor A « e. For example, in the syllogistic diagram fing the term-
variableA is distributed whereas the term-varialdés not, or in that folEag both the
term-variables are distributed and negated, and simifarlyhe remaining syllogistic
diagrams. Moreover, the rereading of the syllogistic chags under this perspective is
in line with what happens for the linear diagrams in [3] foratlsoncerns the obver-
sion of the categorical propositions. By obversion “Nés B” is equivalent to “Each
Ais nonB" whereas “Som@&\ is notB” is equivalent to “Some\ is nonB”, which fact
is clearly expressed by the appearance of the syllogistigrdms forEag and Oag.
By the introduction of complemented terms in syllogistids, Morgan was able to in-
troduce four more categorical propositions and also tahletdarticular and universal
affirmative modes of predication be the fundamental ones. Wgctume that SYLL
supports such an extension too, through the introductidowffurther corresponding
syllogistic diagrams. Finally, we end this digression byntiening that each syllogistic
diagram can be also more naively conceived as an “abstrpotad

[...] a formal mode of joining two terms which carries no miegn and
obeys no law except such as is barely necessary to make tims fofr
inference follow. See [2].

We end by briefly discussing the possibility of extending tiaéculus ton-term
syllogisms. This seems to be a peculiarity of syllogistas@ning with linear diagrams,
as observed in [3].For every natural numben > 1, ann-term syllogism is a logical
consequencBy,..., Py1 + Py in which all theP;’s are categorical propositions such
that for every 1< i < n — 1 the categorical propositior3 and P;.; have exactly
one term-variable in common. Thus, afterm syllogism involves exactlp term-
variablesAy, ..., Ay, with A; in P,_1 andA, in P1, which are the subject and predicate
of Py, respectively. The total number of valigterm syllogisms is 82 — n, see [13],
where such a formula was obtained by rejecting the invalidasmn the base of the
traditional rules of the syllogism. The same formula hasnbesmbtained by direct
calculation in [18] and [5]. We conjecture that our systemovas the retrieving of
this result and moreover the extension of theorems 3.15 d@it8 the case ai-term
syllogisms, but leave the investigation of these topics sulasequent paper. For the
time being, the description of the validterm syllogisms fom = 1,2 follows. For
n = 1 there is exactly one figure, thatAgA; and only two valid moods for it, that i&
andl! so that, as observed in [11] and [13], the only valid 1-terflogysms are- Aa,a,
andr | a4,, that is the laws of identity we hinted at in section 3. FRot 2 there are
two figures, as shown in the table

fig. 1| fig. 2
premise AA | AlA
conclusion| AjA; | AxAq

and ten valid 2-term syllogisms, six in the first figure andrfiouthe second, as follows:

figure 1: AAlAz F AA1A2' EAlAz F EAlAz’ |A1A2 F IAlAz’ OAlAz F OAlAz’ and thdaws of
subalternatiorAa,a, F 14, Ean, F Onsa, Which both hold under existential
import onA;.
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figure 2: Ean, F Eaagy lags, F 1a,a, Which are thdaws of simple conversigorand
Apa F L a a0 Eaga, F Onga, Which are thdaws of conversion per acciderbat
hold under existential import of; andA, respectively.

In order to retrieve the law of identity Ap, 4, the rule

A]_%Al

has to be added in definition 3.9. For= 2, the laws of subalternation have been
already proved in the previous section and, excluding tvs laf conversion per acci-
dens, the remaining syllogisms are immediate. We provea¥vs bf conversion per
accidens:

- Apa F A,

Ap<——eo——=A Ao —= A

Ay L4 As A

Ab<—0o—> A

Al%.%AZ

- Ena F Onga,

Ab——se<— A Al<—0o—— A
Ao . Aq . Aq
Ao . . AL
A . . A
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