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An adaptive POD approximation method for
the control of advection-diffusion equations

A. Alla and M. Falcone

Abstract. We present an algorithm for the approximation of a finite
horizon optimal control problem for advection-diffusion equations. The
method is based on the coupling between an adaptive POD representa-
tion of the solution and a Dynamic Programming approximation scheme
for the corresponding evolutive Hamilton-Jacobi equation. We discuss
several features regarding the adaptivity of the method, the role of error
estimate indicators to choose a time subdivision of the problem and the
computation of the basis functions. Some test problems are presented
to illustrate the method.
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1. Introduction

The approximation of optimal control problems for evolutionary partial dif-
ferential equations of parabolic and hyperbolic type is a very challenging
topic with a strong impact on industrial applications. Although there is a
large number of papers dealing with several aspects of control problems from
controllability to optimal control, the literature dealing with the numerical
approximation of such huge problems is rather limited. It is worth to note
that when dealing with optimal control problems for parabolic equations we
can exploit the regularity of the solutions, regularity which is lacking for many
hyperbolic equations. We also recall that the main tools is still given by the
Pontryagin maximum principle. This is mainly due to the fact that the dis-
cretization of partial differential equations already involves a large number of
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variables so that the resulting finite dimensional optimization problem easily
reaches the limits of what one can really compute. The forward-backward
system which describes Pontryagin’s optimality condition is certainly below
that limit. However just solving that system one is using necessary conditions
for optimality so, in principle, there is no guarantee that these are optimal
controls. By this approach for general nonlinear control problems we can ob-
tain just open-loop control. One notable exception is the linear quadratic
regulator problem for which we have a closed-loop solution given by the Ric-
cati equation. This explains why the most popular example for the control
of evolutive partial differential equations is the control of the heat equation
subject to a quadratic cost functional.

In recent years, new tools have been developed to deal with optimal control
problems in infinite dimension. In particular, new techniques emerged to re-
duce the number of dimensions in the description of the dynamical system
or, more in general, of the solution of the problem that one is trying to opti-
mize. These methods are generally called reduced-order methods and include
for example the POD (Proper Orthogonal Decomposition) method and re-
duced basis approximation (see [12]). The general idea for all this method
is that, when the solution are sufficiently regular, one can represent them
via Galerkin expansion so that the number of variables involved in this dis-
cretization will be strongly reduced. In some particular case, as for the heat
equation, even 5 basis functions will suffice to have a rather accurate POD
representation of the solution. Having this in mind, it is reasonable to start
thinking to a different approach based on Dynamic Programming (DP) and
Hamilton-Jacobi-Bellman equations (HJB). In this new approach we will first
develop a reduced basis representation of the solution along a reference tra-
jectory and then use this basis to set-up a control problem in the new space
of coordinates. The corresponding Hamilton-Jacobi equation will just need
3-5 variables to represent the state of the system. Moreover, by this method
one can obtain optimal control in feedback form looking at the gradient of
the value function.

However, the solution of HJB equation it is not an easy task from the numeri-
cal point of view: the analytical solution of the HJB equation are non regular
(typically, just Lipschitz continuous). Optimal control problems for ODEs
were solved by Dynamic Programming, both analytically and numerically
(see [1] for a general presentation of this theory). From the numerical point of
view, this approach has been developed for many classical control problems
obtaining convergence results and a-priori error estimates ([4], [6] and the
book [5]). Although this approach suffers from the curse-of-dimensionality
some algorithms in high-dimension are now available ([3] and [2]) and the
coupling with POD reppresentation techniques will allow to attack by this
technique optimal control problems in infinite dimension.

To set this paper into perspective we must say that a first tentative in this
direction has been made by Kunisch and co-authors in a series of papers
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[7, 8] for diffusion dominated equations. In particular, in the paper by Ku-
nisch, Volkwein and Xie [I0] one can see a feedback control approach based
on coupling between POD basis approximation and HJB equations for the
viscous Burgers equation. Our contribution here is twofold. The first novelty
is that we deal with advection-diffusion equations. The solutions to these
equations exhibit low regularity properties with respect to non degenerate
diffusion equations so that a rather large number of POD basis functions will
be required to obtain a good approximation if we want to compute the POD
basis just once. Naturally, this increases the number of variable in the HJB
approach and constitutes a is a real bottle-neck. In order to apply the Dy-
namic Programming approach to this problem we have developed an adaptive
technique which allows to recompute the POD basis on different sub-intervals
in order to have always accurate results without an increase of the number
of basis functions. The second contribution of this paper is the way the sub-
intervals are determined. In fact, we do not use a simple uniform subdivision
but rather decide to recompute the POD basis when an error indicator (de-
tailed in Section 4) is beyond a given threshold. As we will show in the sequel,
this procedure seems to be rather efficient and accurate to deal with these
large scale problems.

2. The POD approximation method for evolutive PDEs

We briefly describe some important features of the POD approximation, more
details as well as precise results can be found in the notes by Volkwein [14].
Let us consider a matrix Y € R”*", with rank d < min{m,n}. We will call
y; the j—th column of the matrix Y. We are looking for an orthonormal basis
{;}¢_, € R™ with ¢ < n such that the minimum of the following functional
is reached:

Y 2

Yj — Z<ij¢i>wi

i=1

n

J(fob-"ﬂ/)z)zz

j=1

(2.1)

The solution of this minimization problem is given in the following theorem

Theorem 1. Let Y = [y1,...,yn] € R™*™ be a given matriz with rank
d < min{m,n}. Further, let Y = USVT be the Singular Value Decompo-
sition (SVD) of Y, where U = [¢1,...,¢p] € R™™, V = [v1,...,v,] €
R™ ™ are orthogonal matrices and the matriz X € R™*" is diagonal, ¥ =
diag{o1,...,om}. Then, for any € € {1,...,d} the solution to 18 given
by the left singular vectors {1;}i_,, i.e, by the first £ columns of V.

We will call the vectors {1;}{_;, POD basis of rank £. This idea is really
usefull, in fact we get a solution solving an equation whose dimension is
decreased with respect to the initial one. Whenever it’s possible to compute
a POD basis of rank ¢, we get a problem with much smaller dimension of the
starting one due to the fact ¢ is properly chosen very small.
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Let us consider the following ODEs system

y(s) = Ay(s) + f(s,y(s)), s € (0,T]

(2.2)

y(0) = wo
where yo € R™ A € R™*™ and f : [0,7] x R™ — R™ is continuous and
locally Lipschitz to ensure uniqueness.
The system can be also interpreted as a semidiscrete problem, where
the matrix A represents the discretization in space of an elliptic operator,
say Laplacian for instance. To compute the POD basis functions, first of all
we have to construct a time grid 0 < t; < ... <t, =T and we suppose to
know the solution of at given time ¢;, j = 1,..., N. We call snapshots
the solution at those fixed times. For the moment we will not deal with the
problem of selecting the snapshots sequence which is a difficult problem in
itself, we refer the interested readers to [9]). As soon as we get the snapshots
sequence, by Theorem |1} we will be able to compute our POD basis, namely,

[
{%— } j=1
Let us suppose we can write the solution in reduced form as
¢

4
y'(s) = ny(é’)%' =Y W (s) )y, Vse[0,T]

j=1
substituting this formula into ([2.2]) we obtain the reduced dynamics

360 = 3 A+ 506, 5 € 0.T]

’ ’ (2.3)
4

S 44000 = e

We note that our new problem ([2.3) is a problem for the ¢ < m coefficient
functions yf(s), j=1,... £ Thus, the problem is low dimensional and with
compact notation we get:

§(s) = A%Y'(s) + F(s,5"(s))

where
Al € RE<! with (Az)ij = <A1/Jia¢j>a
yt
y'=1 : |:[0,T] =R
vi
F=(F,...,F)T:]0,T] xR - R,

¢
Fz(s>y)<f sazijj a¢1> fOI‘SE[O,T] y:(ylw"yZ)GRéa
j=1
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finally obtaining the representation of yq in R

(Yo, ¥1)
Yo = : € R
(Yo, ¥e)
In order to apply the POD method to our optimal control problem, the
number ¢ of POD basis functions is crucial. In particular we would like to keep
{ as low as possible still capturing the behaviour of the original dynamics. The

problem is to define an indicator of the accuracy of our POD approximation.
A good choice for this indicator is the following ratio

¢

> 0
_ =1
E) = -
>0
i=1
where the o; are the the singular value obtained by the SVD.

As much £(¢) is close to one as much our approximation will be im-

proved. This is strictly related to the truncation error due to the projection
of y; onto the space generated by the orthonormal basis {¢}¢_;, in fact:

n 2 d
J(¢13"'7’(/}Z Z Zyj7¢l = Z 0'7,'2

i=1 i=0+1

(2.4)

3. An optimal control problem

We will present this approach for the finite horizon control problem. Consider
the controlled system

y(s) = f(y(s),uls),s), se(@T] (3.1)

y(t) =z € R, ’
we will denote by y : [t,T] — R™ its the solution, by u the control u : [t,T] —
R™ f:R®™ x R™ — R", s € (¢,T] and by

U={u:[0,T] - U}

the set of admissible controls where U C R™ is a compact set. Whenever
we want to emphasize the depence of the solution from the control u we will
write y(t;u). Assume that there exists a unique solution trajectory for
provided the controls are measurable (a precise statement can be found in
[1]). For the finite horizon optimal control problem the cost functional will
be given by

min Joo(0) = [ Lylsu)u(s) e ds+gu(T) (32

where L : R®™ x R™ — R is the running cost and A > 0 is the discount factor.
The goal is to find a state-feedback control law u(t) = ®(y(t),t), in terms of
the state equation y(t), where ® is the feedback map. To derive optimality
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conditions we use the well-known dynamic programming principle due to
Bellman (see [I]). We first define the value function:

;= inf .
v(z,t) == nf Jo(u) (3.3)
Proposition 3.1 (DPP). For all z € R"and 0 < 7 < t then:

o(2, ) = min {[ L(y(s), u(s), s)e > ds + v(y,t — T)} L (34)

ueU

Due to (3.4) we can derive the Hamilton-Jacobi-Bellman equations (HIB):

ov

- E(y’ t) = {Lnel}} {L(y’ U, t) + V’U(yv t) ! f(ya U, t)} : (35)

This is nonlinear partial differential equation of the first order which is hard
to solve analitically although a general theory of weak solutions is available
[1]. Rather we can solve it numerically by means of a finite differences or
semi-Lagrangian schemes (see the book [B] for a comprehensive analysis of ap-
proximation schemes for Hamilton-Jacobi equations). For a semi-Lagrangian
discretization one starts by a discrete version of (HJB) by discretizing the
underlined control problem and then project the semi-discrete scheme on a
grid obtaining the fully discrete scheme

ot = meilr}[AtL(xi, nAt,u) + I (z; + At F(x;,tn,u)))

v = g(;).

with z; = iAx, t, = nAt, v} ;== v(x;,t,) and I[-] is an interpolation operator
which is necessary to compute the value of v™ at the point z; + At F(x;, ¢y, u)
(in general, this point will not be a node of the grid). The interested reader
will find in [6] a detailed presentation of the scheme and a priori error esti-
mates for its numerical approximation.

Note that, we also need to compute the minimum in order to get the
value vf“. Since v™ is not a smooth function, we compute the minimum by
means of a minimization method which does not use derivatives (this can be
done by the Brent algorithm as in [3]).

As we already told the HJB allows to compute the optimal feedback
via the value function, but there are two major difficulties: the solution of
an HJB equation are in general non-smooth and the approximation in high
dimension is not feasible. The request to solve an HJB in high dimension
comes up naturally whenever we want to control evolutive PDEs. Just to
give an idea, if we build a grid in [0, 1] X [0, 1] with a discrete step Az = 0.01
we have 10* nodes: to solve an HJB in that dimension is simply impossible.
Fortunatelly, the POD method allows us to obtain reduced models even for
complex dynamics. Let us focus on the following abstract problem:

L) b + aly(s), 9) = (B(s), @y Vo€V
s (3.6)

y(t) =% € H7
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where B : U — V' is a linear and continuous operator. We assume that a
space of admissible controls U, is given in such a way that for each u € U,q
and yg € H there exists a unique solution y of . V and H are two Hilbert
spaces, with (-,-)g we denote the scalar product in H; a : VxV — R : is
symmetric coercive and bilinear. Then, we introduce the cost functional of
the finite horizon problem

T
Tl i= [ Ly(s)uls),9)e™ ds + u(D))
t
where L : V x U x [0,T] — R. The optimal control problem is
min Jy, +(w) (3.7)

uEUGq
subject to the constraint: Yy € Wioe(0,T; V) x U solves (3.6)
with Wiee(0,T) = (pso W(0,T), where W(0,T') is the standard Sobolev

space:
W(0,T) = {p € L*(0,T;V),p; € L*(0,T;V")}.

The model reduction approach for an optimal control problem is based
on the Galerkin approximation of dynamic with some informations on the
controlled dynamic (snapshots). To compute a POD solution for we
make the following ansatz

I

Y (w5) = Y wi(s)ii(x). (3.8)

i=1
where {1}¢_, is the POD basis computed as in the previous section.
We introduce mass and stiffness matrix:

M = ((my;)) € R with my; = (35, i) u,
S = ((sij)) € R with my; = a(4;, ),
and the control map b: U — R’ is defined by:
u — b(u) = (b(u);) € R® with b(u); = (Bu, ;) x.
The coefficients of the initial condition y*(0) € R are determined by w;(0) =
(wo)i = (yo,¥)x, 1 < i < ¥, and the solution of the reduced dynamic
problem is denoted by w’(s) € Rf. Then, the Galerkin approximation is
given by
min qug’t(u) (3.9)
with u € U,q and w solves the following equation:
W'(s) = F(w(s),u(s),s) s>0,
(3.10)
w*(0) = wf.

The cost functional is defined:

T () = /0 L(w(s), u(s), s)e* dt + g(w'(T)),
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with w’ and y¢ linked to (3.8) and the nonlinear map F : R x U — R’ is
given by

F(w* u,s) = M~Y(—=Sw'(s) + b(u(s))).
The value function v*, defined for the initial state wo € RY,

b, L : 0
vi(wo,t) = inf Jo(u)

and w? solves (3.9) with the control u and initial condition wy.

We give an idea how we have computed the intervals for reduced HJB. HJBs
are defined in R™, but we have restricted our numerically domain YT, which
is a bounded subset of R™. This is justified since y + AtF(y,u) € T}, for each
y € Ty and u € Uyq. We can chose Tp, = [a1,b1] X [az,b2] X ... [as, be] with
ay > as > ... > ag. How should we compute these intervals [a;, b;]?

Ideally the intervals should be chosen so that the dynamics contains all the
components of the controlled trajectory. Moreover, they should be encapsu-
lated because we expect that their importance should decrease monotonically
with their index and that our interval lengths decrease quickly.

Let us suppose to discretize the space control U = {uy,...,up} where U is
symmetric, to be more precise if u € U = —u € U.

¢
Hence, if y*(s) = Z( (8), )b = Zl 1 w;i(s)Y;, as a consequence, the coef-
=1

ficients w;(s) € [al,bz] We consider the trajectories solution y(s,u;) such
that the control is constant u(s) = u; for each ¢;, j = 1,..., M. Then, we

have
¢

yz(sauj) = Z< (3 ’LL]) d)z>'¢)z

i=1
We write y*(s, u;) to stress the dependence on the constant control u;. Each

trajectory y*(s, u;) has some coefficients w( )( t)fori=1,...,¢,5=1,..., M.

The coefficients wU )( ) will belong to intervals of the type [wz(-j ),ng )] where
we chose for i = 1,...,4, a;,b; such that:

a; = min{ﬂgl) EM)}

b; = max{WZ(.l), .. (M)}

Then, we have a method to compute the intervals and we turn our attention to
the numerical solution of an optimal control problem for evolutive equation,
as we will see in the following section.

4. Adapting POD approximation

We now present an adaptive method to compute POD basis. Since our final
goal is to obtain the optimal feedback law by means of HJB equations, we
will have a big constraint on the number of variables in the state space for
numerical solution of an HJB.

We will see that, for a parabolic equation, one can try to solve the problem
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with only three/four POD basis functions; they are enough to describe the
solution in a rather accurate way. In fact the singular values decay pretty
soon and it’s easier to work with a really low-rank dimensional problem.
On the contrary, hyperbolic equations do not have this nice property for
their singular values and they will require a rather large set of POD basis
functions to get accurate results. Note that we can not follow the approach
suggested in [13] because we can not add more basis functions when it turns
to be necessary due to the constraint already mentioned. Then, it is quite
natural to split the problem into subproblems having different POD basis
functions. The crucial point is to decide the splitting in order to have the same
number of basis functions in each subdomain with a guaranteed accuracy in
the approximation.

Let us first give an illustrative example for the parabolic case, considering a
1D advection-diffusion equation:

{ Ys(x, 8) — eYza(x, 8) + cyz(x,8) =0 (4.1)
y(x, O) = yo(l‘), ’
with « € [a,b],s € [0,T],¢,¢c € R.

We use a finite difference approximation for this equation based on an explicit
Euler method in time combined with the standard centered approximation
of the second order term and with an up-wind correction for the advection
term. The snapshots will be taken from the sequence generated by the finite
difference method. The final time is 7' = 5, moreover a = —1, b = 4. The
initial condition is yo(z) = bz — 522, when 0 < = < 1, 0 otherwise.

For e = 0.05 and ¢ = 1 with only 3 POD basis functions, the approximation
fails (see Figure . Note that in this case the advection is dominating the
diffusion, a low number of POD basis functions will not suffice to get an
accurate approximation (Figure 1.b). However, the adaptive method which
only uses 3 POD basis functions will give accurate results (Figure 1.d).

The idea which is behind the adaptive method is the following: we do not
consider all the snapshots together in the whole interval [0, 7] but we group
them. Instead of taking into account the whole interval [0, 7], we prefer to
split it in sub-intervals

[07 T} = Uf:O[Tk; Tk—i—l]

where K is a-priori unknown, Ty = 0,7k = T and T}, = t; for some . In this
way, choosing properly the length of the k—th interval [T, Tk+1], we consider
only the snapshots falling in that sub-interval, typically there will be at least
three snapshots in every sub-interval. Then we have enough informations
in every sub-interval and we can apply the standard routines (explained in
Section 2) to get a "local” POD basis.

Now let us explain how to divide our time interval [0,7]. We will choose
a parameter to check the accuracy of the POD approximation and define a
threshold. Above that threshold we loose in accuracy and we need to compute
anew POD basis. A good parameter to check the accuracy is £(¢) (see (2-4))),
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FIGURE 1. Equation (£.1)):(a) solved with finite difference;
(b) POD-Galerkin approximation with 3 POD basi; (c)
solved via POD-Galerkin approximation with 5 POD basis;
(d) Adapting 3 POD basis functions.

as it was suggested by several authors. The method to define the splitting of
[0,T] and the size of every sub-interval works as follows. We start computing
the SVD of the matrix Y that gives us informations about our dynamics in
the whole time interval. We check the accuracy at every t;, ¢ =1,... N, and
if at t; the indicator is above the tolerance we set T7 = t;, and we divide the
interval in two parts, [0,7}) and (77, T]. Now we just consider the snapshots
related the solution up to the time T;. Then we iterate this idea until the
indicator is below the threshold. When the first interval is found, we restart
the procedure in the interval [T},T] and we stop when we reach the final
time T. Note that the extrema of every interval coincide by construction
with one of our discrete times t; = iAt so that the global solution is easily
obtained linking all the sub-problems which always have a snapshot as initial
condition. A low value for the threshold will also guarantee that we will not
have big jumps passing from one sub-interval to the next.
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This idea can be applied also when we have a controlled dynamic (see (5.1)).
First of all we have to decide how to collect the snapshots, since the control
u(t) is completely unknown. One can make a guess and use the dynamics
and the functional corresponding to that guess, by these informations we
can compute the POD basis. Once the POD basis is obtained we will get
the optimal feedback law after having solved a reduced HJB equation as we
already explained. Let us summarize the method in the following step-by-step
presentation.

ALGORITHM

Start: Inizialization

Step 1: collect the snapshots in [0,T]

Step 2: divide [0,7] according to &£(¢)

For i=0 to N-1

Do
Step 3: apply SVD to get the POD basis in each sub-interval [t;,t;11]
Step 4: discretize the space of controls
Step 5: project the dynamics onto the (reduced) POD space
Step 6: select the intervals for the POD reduced variables
Step 7: solve the corresponding HJB in the reduced space

for the interval [t;,t;41]

Step 8: go back to the original coordinate space

End

5. Numerical experiments

In this section we present some numerical tests for the controlled heat equa-
tion and for the advection-diffusion equation with a quadratic cost functional.
Consider the following advection-diffusion equation:

{ Ys(x, 8) — eYza(x, 8) + cyn(z, 8) = u(s) (5.1)

y(x,0) = yo(x),

with z € [a,b], s € [0,T], ¢ € Ry and ¢ € R.

Note that changing the parameters ¢ and ¢ we can obtain the heat equation
(¢ = 0) and the advection equation (¢ = 0). The functional to be minimized
is

T
<%AMNZAIMWQ*%%MF+MMMF@, (5:2)

i.e. we want to stay close to a reference trajectory 7 while minimizing the norm
of u. Note that we dropped the discount factor setting A = 0. Typically in our
test problems ¥ is obtained by applying a particular control @ to the dynamics.
The numerical simulations reported in this papers have been made on a server
SUPERMICRO 8045C-3RB with 2 cpu Intel Xeon Quad-Core 2.4 Ghz and 32
GB RAM under SLURM (https://computing.1llnl.gov/linux/slurm/).
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Test 1: Heat equation with smooth initial data. We compute the snapshots
with a centered/forward Euler scheme with space step Az = 0.02, and time
step At = 0.012, e = 1/60,¢ = 0, R = 0.01 and T = 5. The initial condition
is yo(x) = bz — 5z?, and y(z,s) = 0. In Figure [2| we compare four different
approximations concerning the heat equation: (a) is the solution for u(t) =
0, (b) is its approximation via POD (non adaptive), (c) is the direct LQR
solution computed by MATLAB without POD and, finally, the approximate
optimal solution obtained coupling POD and HJB. The approximate value
function is computed for At = 0.1 Az = 0.1 whereas the optimal trajectory
as been obtained with At = 0.01. Test 1, and even Test 2, have been solved
in about half an hour of CPU time.

Note that in this example the approximate solution is rather accurate because
the regularity of the solution is high due to the diffusion term. Since in the
limit the solution tends to the average value the choice of the snapshots
will not affect too much the solution, i.e. even with a rough choice of the
snapshots will give us a good approximation. The difference between Figure
2¢ and Figure 2d is due to the fact that the control space is continuous for
2c¢ and discrete for 2d.

Test 2: Heat equation with no-smooth intial data. In this section we change
the initial condition with a function which is only Lipschitz continuos: yo(z) =
1 — |z|. According to Test 1, we consider the same parameters. (see Figure
).
Riccati’s equation has been solved by a MATLAB LQR routine. Thus, we
have used the solution given by this routine as the correct solution in order to
compare the errors in L' and L? norm between the reduced Riccati’s equa-
tion and our approach based on the reduced HJB equation. Since we do not
have any information, the snapshots are computed for = 0. This is only a
guess, but in the parabolic case fits well due to the diffusion term.

As in Test 1, the choice of the snapshots does not effect strongly the ap-

LT L?

yl@R _ o POD+LRR | (0221 | 0.0172

yLQ@F _ o POD+HIB | (0204 | 0.0171

TABLE 1. Test 2: L' and L? errors at time 7 for the optimal
approximate solution.

proximation due to the asymptotic behavior of the solution. The presence of
a Lipschitz continuous initial condition has almost no influence on the global
error (see Table 1).
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FIGURE 2. Test 1:(a) Heat Equation without control; (b)
Heat Equation without control, 3 POD basis; (¢) Con-
trolled solution with LQR-MATLAB; (d) Approximate so-
lution POD (3 basis functions) + HIB.

Test 3: Advection-Diffusion equation. The advection-diffusion equation needs
a different method. We can not use the same § we had in the parabolic case,
mainly because in Riccati’s equation the control is free and is not bounded, on
the contrary when we solve an HJB we have to discretize the space of controls.
We modified the problem in order to deal with bang-bang controls. We get
¥ in just plugging in the control @ = 0. We have considered the control
space corresponding only to three values in [—1,1], then U = {—1,0,1}. We
first have tried to get a controlled solution, without any adaptive method
and, as expected, we obtained a bad approximation (see Figure . From
Figure [4] it’s clear that POD with four basis functions is not able to catch
the behavior of the dynamics, so we have applied our adaptive method.

We have consider: T' = 3,Ax = 0.1,At = 0.008, a = —1, b = 4, R =
0.01. According to our algorithm, the time interval [0,3] was divided into
[0,0.744] U [0.744,1.496] U [1.496, 3]. As we can see our last interval is bigger
than the others, this is due to the diffusion term (see Figure 5. The L?—error
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3N o 05

FIGURE 3. Test 2: (a) exact solution for u = 0; (b) Exact
solution for 4 = 0 POD (3 basis functions); (c¢) Approxi-
mate optimal solution for LQR-MATLAB; (d) Approximate
solution POD (3 basis functions)+ HJIB.

FIGURE 4. Test 3: Solution § on the left, approximate solu-
tion on the right with POD (4 basis functions)
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FIGURE 5. Test 3: Solution for u = 0 (left), approximate
optimal solution (right).

is 0.0761, and the computation of the optimal solution via HJB has required
about six hours of CPU time. In Figure 4 we compare the exact solution
with the numerical solution based on a POD representation. Note that, in
this case, the choice of only 4 basis functions for the whole interval [0, T
gives a very poor result due to the presence of the advection term. Looking
at Figure 5 one can see the improvement of our adaptive technique which
takes always 4 basis functions in each sub-interval.

In order to check the quality of our approximation we have computed the
numerical residual, defined as:

R(y) = [lys(w, 5) — ey (z, 5) + cyu(x, 5) — u(s)].

The residual for the solution of the control problem computed without our
adaptive technique is 1.1, whereas the residual for the adaptive method is
2 % 1072. As expected from the pictures, there is a big difference between
these two value.

Test 4: Advection-Diffusion equation. In this test we take a different 7,
namely the solution of corresponding to the control

-1 0<t«1
i) =4 0 1<t<?2
1 2<t<3.

We want to emphasize we can obtain nice results when the space of controls
has few element. The parameters were the same used in Test 3. The L2 —error
is 0.09, and the time was the same we had in Test 3. In Figure [6] we can see
our approximation. In Figure 6 one can see that the adaptive technique can
also deal with discontinuous controls.

In this test, the residual for the solution of the control problem without
our adaptive technique is 2, whereas the residual for the adaptive method
is 3 % 1072, Again, the residual shows the higher accuracy of the adaptive
routine.
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FIGURE 6. Test 4: Solution for u (left), approximate optimal
solution (right).

6. Conclusions

As we have discussed, a reasonable coupling between POD and HJB equation
can produce feedback controls for infinite dimensional problem. For advec-
tion dominated equations that simple idea has to be implemented in a clever
way to be successful. It particular, the application of an adaptive technique
is crucial to obtain accurate approximations with a low number of POD basis
functions. This is still an essential requirement when dealing with the Dy-
namic Programming approach, which suffers from the curse-of-dimensionality
although recent developments in the methods used for HJB equations will al-
low to increase this bound in the next future (for example by applying patchy
techniques).

Another important point is the discretization of the control space. In
our examples, the number of optimal control is rather limited and this will be
enough for problems which have a bang-bang structure for optimal controls.
In general, we will need also an approximation of the control space via reduced
basis methods. This point as well as a more detailed analysis of the procedure
outlined in this paper will be addressed in our future work.
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