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Numerical Analysis of POD A-Posteriori
Error Estimation for Optimal Control

Alina Studinger and Stefan Volkwein

Abstract. In this paper a linear-quadratic optimal control problem gov-
erned by a parabolic equation is considered. To solve this problem nu-
merically a reduced-order approach based on proper orthogonal decom-
position (POD) is applied. The error between the POD suboptimal con-
trol and the optimal control of the original problem is controlled by
an a-posteriori error analysis. In this paper the authors focus on test-
ing the a-posteriori estimate’s validity by means of numerical examples.
An intensive study of the consequences of certain choices that can be
made within the POD basis determination process is carried out and
the findings are discussed.

Mathematics Subject Classification (2010). Primary 35K90, 49K20; Sec-
ondary 65K05.

Keywords. Optimal control, model reduction, proper orthogonal decom-
position, a-posteriori error estimates, primal-dual active set strategy.

1. Introduction

Optimal control problems for partial differential equation are often hard to
tackle numerically because their discretization leads to large scale optimiza-
tion problems. Therefore, different techniques of model reduction were de-
veloped to approximate these problems by smaller ones that are tractable
with less effort. Among them, proper orthogonal decomposition (POD) [20]
and balanced truncation [4] seem to be most widely used in the context of
optimal control. Recently, optimal control problems are also treated by the
reduced basis method; we refer, e.g., to [5, 6, 17].

POD is based on projecting the dynamical system onto subspaces of
basis elements that express characteristics of the expected solution. This is
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in contrast to, e.g., finite element techniques, where the elements are not
correlated to the physical properties of the system they approximate.

In our present work, POD is applied to linear-quadratic optimal control
problems. Linear-quadratic problems are interesting in several respects; in
particular, since they occur in each level of sequential quadratic program-
ming (SQP) methods; see, e.g., [19] from a general viewpoint and [12, 20]
in the context of multilevel reduced-order approximations. We continue the
research on POD a-posteriori error analysis; see [12, 13, 20, 22, 24]. Based
on a perturbation argument it is derived how far the suboptimal control,
computed on the basis of the POD model, is from the (unknown) exact one.
Increasing the number of POD ansatz functions leads to more accurate POD
suboptimal controls. This idea turns out to be numerically very efficient. It is
also successfully applied for other reduced-order approximations; see [21, 25].

Here, we focus on testing the a-posteriori estimate’s validity by means of
numerical examples. We intensively study the consequences of certain choices
that can be made within the POD basis determination process. Let us sum-
marize the key findings here:

• The estimation is very satisfactory and valuable in terms of accuracy,
reliability and efficiency.

• Both the primal-dual active set strategy for solving the control con-
strained optimal control problem and the a-posteriori error estimation
for tracking the error work very well for control box constraints. In case
of active constraints, we discover numerical convergence of the active
sets which is perfect in case of an “optimal” POD basis (computed from
the optimal FE solution) and satisfactory for arbitrary bases.

• In order to obtain good POD suboptimal controls it is not sufficient to
solely increase the number of used POD basis functions. Increasing the
basis rank needs to be combined with basis update strategies, as for
example discussed in [1, 2, 15, 24].

• Enriching the snapshot ensemble by snapshots from the adjoint state is
essential to obtain good approximations for the control.

This paper is organized as follows: In Section 2 we introduce the abstract
linear-quadratic optimal control problem and review first-order necessary op-
timality conditions. The POD method, its application to the optimal control
problem and the a-posteriori error estimate are explained in Section 3. In
Section 4 numerical examples are presented and discussed.

2. The optimal control problem

In this section, we introduce a class of linear-quadratic parabolic optimal
control problems and recall the associated first-order optimality conditions.

2.1. Problem formulation

Let V and H be real, separable Hilbert spaces and suppose that V is dense
in H with compact embedding. By 〈· , ·〉H we denote the inner product in H.
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The inner product in V is given by a symmetric bounded, coercive, bilinear
form a : V × V → R:

〈ϕ,ψ〉V = a(ϕ,ψ) for all ϕ,ψ ∈ V (2.1)

with associated norm ‖ · ‖V =
√

a(· , ·). By identifying H with its dual H ′

it follows that V →֒ H = H ′ →֒ V ′, each embedding being continuous and
dense. Recall that for T > 0 the space W (0, T )

W (0, T ) =
{

ϕ ∈ L2(0, T ;V ) : ϕt ∈ L2(0, T ;V ′)
}

is a Hilbert space endowed with the common inner product [3]. When the
time t is fixed, the expression ϕ(t) stands for the function ϕ(t, ·) considered
as a function in Ω only. Let D be an open and bounded subset in R

m with
m ∈ N. By Uad we denote the closed, convex and bounded subset

Uad =
{

u ∈ L2(D)
∣

∣ua(s) ≤ u(s) ≤ ub(s) for almost all (f.a.a.) s ∈ D
}

,

where ua, ub ∈ L2(D) satisfy ua ≤ ub almost everywhere (a.e.) in D. For
y0 ∈ V , f ∈ L2(0, T ;H) and u ∈ Uad we consider the linear evolution problem

d

dt
〈y(t), ϕ〉H + a(y(t), ϕ) = 〈(f + Bu)(t), ϕ〉H f.a.a. t ∈ [0, T ], ∀ϕ ∈ V,

〈y(0), ϕ〉H = 〈y0, ϕ〉H ∀ϕ ∈ V,
(2.2)

where B : L2(D) → L2(0, T ;H) is a continuous, linear operator.

Example 2.1. Let us present an example for (2.2) which will be studied in
our numerical experiments. Suppose that Ω ⊂ R

2, is an open and bounded
domain with Lipschitz-continuous boundary Γ = ∂Ω. For T > 0 we set
Q = (0, T )×Ω and Σ = (0, T )× Γ. Let H = L2(Ω), V = H1(Ω) and D = Σ.
Then, for given control u ∈ L2(Σ) and initial condition y0 ∈ V we consider

cpyt(t,x)−∆y(t,x) = f̃(t,x) f.a.a. (t,x) ∈ Q, (2.3a)

∂y

∂n
(t, s) + qy(t, s) = u(t, s) f.a.a. (t, s) ∈ Σ, (2.3b)

y(0,x) = y0(x) f.a.a. x ∈ Ω. (2.3c)

In (2.3a) we suppose cp > 0, q ≥ 0 and f̃ ∈ L2(0, T ;H). Setting f = f̃/cp,
introducing the bounded bilinear form a : V × V → R by

a(ϕ,ψ) =
1

cp

∫

Ω

∇ϕ(x) · ∇ψ(x) dx+
q

cp

∫

Γ

ϕ(s)ψ(s) ds for ϕ,ψ ∈ V

and the linear, bounded operator B : L2(Σ) → L2(0, T ;H) by

〈(Bu)(t), ϕ〉H =
1

cp

∫

Γ

u(t, s)ϕ(s) ds for φ ∈ V, t ∈ (0, T ) a.e.

then the weak formulation of (2.3) can be expressed in the form (2.2). ♦

It is known [3] that for every f ∈ L2(0, T ;H), u ∈ L2(D) and y0 ∈ V
there is a unique weak solution y ∈W (0, T ) ∩ C([0, T ];V ) satisfying (2.2).



4 A. Studinger and S. Volkwein

Remark 2.2. Let ŷ0 ∈W (0, T ) be the unique solution to

d

dt
〈ŷ0(t), ϕ〉H + a(ŷ0(t), ϕ) = 〈f(t), ϕ〉H f.a.a. t ∈ [0, T ], ∀ϕ ∈ V,

〈ŷ0(0), ϕ〉H = 〈y0, ϕ〉H ∀ϕ ∈ V.

Moreover, we introduce the linear and bounded operator S : L2(D) →
W (0, T ) as follows: ỹ = Su ∈W (0, T ) is the unique solution to

d

dt
〈ỹ(t), ϕ〉H + a(ỹ(t), ϕ) = 〈(Bu)(t), ϕ〉H f.a.a. t ∈ [0, T ], ∀ϕ ∈ V,

〈ỹ(0), ϕ〉H = 0 ∀ϕ ∈ V.

Then, y = ŷ0 + Su is the weak solution to (2.2). ♦

Next we introduce the cost functional J :W (0, T )× L2(D) → R by

J(y, u) =
1

2
‖y(T )− yd‖2H +

γ

2
‖u‖2L2(D), (2.4)

where yd ∈ H holds. Furthermore, γ > 0 is a regularization parameter.

Remark 2.3. We continue Example 2.3. Then, (2.4) yields the cost functional

J(y, u) =
1

2

∫

Ω

∣

∣y(T )− yd
∣

∣

2
dx+

γ

2

∫ T

0

∫

Γ

|u(t, s)|2 dsdt

for (y, u) ∈W (0, T )× L2(Σ). ♦

The optimal control problem is given by

min J(y, u) subject to (s.t.) (y, u) ∈W (0, T )× Uad solves (2.2). (P)

Applying standard arguments [16] one can prove that there exists a unique
optimal solution x̄ = (ȳ, ū) to (P). Throughout this paper, a bar indicates
optimality.

2.2. First-order optimality conditions

First-order necessary optimality conditions for our parabolic optimal control
problem are well known. We briefly recall them here. Suppose that x̄ = (ȳ, ū)
is the optimal solution to (P). Then there exists a unique Lagrange-multiplier
p̄ ∈ W (0, T ) satisfying together with x̄ the first-order necessary optimality

conditions, which consist of the state equations (2.2), the adjoint equations

− d

dt
〈p̄(t), ϕ〉H + a(p̄(t), ϕ) = 0 f.a.a. t ∈ [0, T ], ∀ϕ ∈ V,

〈p̄(T ), ϕ〉H = 〈yd − ȳ(T ), ϕ〉H ∀ϕ ∈ V
(2.5)

and of the variational inequality

〈γū− B⋆p̄, u− ū〉L2(D) ≥ 0 ∀u ∈ Uad. (2.6)

Here, the linear and bounded operator B⋆ : L2(0, T ;H) → L2(D)′ ∼ L2(D)
stands for the dual operator of B satisfying

〈Bu, ϕ〉L2(0,T ;H) = 〈u,B⋆ϕ〉L2(D) = 〈B⋆ϕ, u〉L2(D)

for all (u, ϕ) ∈ L2(D)× L2(0, T ;H).
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Remark 2.4. We continue the discussion of Example 2.1 and Remark 2.3.
The adjoint equations (2.5) are given by

−cpp̄t(t,x)−∆p̄(t,x) = 0 f.a.a. (t,x) ∈ Q,

∂p̄

∂n
(t, s) + qp̄(t, s) = 0 f.a.a. (t, s) ∈ Σ,

p̄(T,x) = yd(x)− ȳ(T,x) f.a.a. x ∈ Ω.

Moreover, the variational inequality (2.6) has the form

∫ T

0

∫

Γ

(

γū(t, s)− p̄(t, s)
)

(

u(t, s)− ū(t, s)
)

dsdt ≥ 0 for all u ∈ Uad

and B⋆p̄ is given by (B⋆p̄)(t) = (τΓp̄)(t) f.a.a. t ∈ [0, T ], where τΓ : V → L2(Γ)
denotes the common trace operator. ♦

3. The POD Galerkin discretization

Problem (P) is an infinite-dimensional problem. Therefore, we have to dis-
cretize (P) for its numerical solution. For the discretization of the spatial
variable we apply a POD Galerkin approximation, which is discussed now.
Let X denote either the space H or the space V .

3.1. The POD method

Let an arbitrary u ∈ U be chosen such that the corresponding state variable
y = ŷ0 + Su ∈W (0, T ) belongs to C([0, T ];V ) →֒ C([0, T ];X). Then,

V = span
{

y(t) | t ∈ [0, T ]
}

⊆ V ⊂ X. (3.1)

If y0 6= 0 holds, then span {y0} ⊂ V and d = dimV ∈ [1,∞], but V may have
infinite dimension. We define a bounded linear operator Y : L2(0, T ) → X
by

Yϕ =

∫ T

0

ϕ(t)y(t) dt for ϕ ∈ L2(0, T ).

Its Hilbert space adjoint Y⋆ : X → L2(0, T ) satisfying

〈Yϕ, z〉X = 〈ϕ,Y⋆z〉L2(0,T ) for (ϕ, z) ∈ L2(0, T )×X

is given by (Y⋆z)(t) = 〈z, y(t)〉X for z ∈ X and f.a.a. t ∈ [0, T ]. The bounded
linear operator R = YY⋆ : X → V ⊂ X has the form

Rz =
∫ T

0

〈z, y(t)〉X y(t) dt for z ∈ X. (3.2)

Moreover, let K = Y⋆Y : L2(0, T ) → L2(0, T ) be defined by

(

Kϕ
)

(t) =

∫ T

0

〈y(τ), y(t)〉X ϕ(τ) dτ for ϕ ∈ L2(0, T ).
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It is known [11, Section 3] that the operator R is self-adjoint, compact and
non-negative. Thus, that there exists a complete orthonormal basis {ψi}di=1

for V = range (R) ⊆ V and a sequence {λi}di=1 of real numbers such that

Rψi = λiψi for i = 1, . . . , d and λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0. (3.3)

Remark 3.1. 1) The linear, bounded, compact and self-adjoint operator K
has the same eigenvalues {λi}di=1 as the operator R. For all λi > 0 the
corresponding eigenfunctions of K are given by

vi(t) =
1√
λi

(

Y∗ψi

)

(t) =
1√
λi

〈ψi, y(t)〉X f.a.a. t ∈ [0, T ] and 1 ≤ i ≤ ℓ.

2) Notice that V ⊂ V implies ψi ∈ V for 1 ≤ i ≤ ℓ. ♦

For ℓ ≤ d the eigenvalues and eigenfunctions of R solve

min

∫ T

0

∥

∥

∥
y(t)−

ℓ
∑

i=1

〈y(t), ψi〉Xψi

∥

∥

∥

2

X
dt s.t. 〈ψj , ψi〉X = δij , 1 ≤ i, j ≤ ℓ. (3.4)

In particular,

∫ T

0

∥

∥

∥
y(t)−

ℓ
∑

i=1

〈y(t), ψi〉X ψi

∥

∥

∥

2

X
dt =

d
∑

i=ℓ+1

λi.

3.2. The discrete POD method

In real computations, we do not have the whole trajectory y(t) for all t ∈
[0, T ]. For that purpose let 0 ≤ t1 < t2 < . . . < tn ≤ T be a given time
grid and let yhj ≈ y(tj) denote approximations in a finite-dimensional space

Xh ⊂ X for y at time instance tj , j = 1, . . . , n. We set Vn = span {yh1 , . . . , yhn}
with dn = dimVn ≤ n. Then, for given ℓ ≤ n we consider the problem

min

n
∑

j=1

αj

∥

∥

∥
yhj −

ℓ
∑

i=1

〈yhj , ψn
i 〉X ψn

i

∥

∥

∥

2

X
s.t. 〈ψn

i , ψ
n
j 〉X = δij , 1 ≤ i, j ≤ ℓ (3.5)

instead of (3.4). In (3.5), the αj ’s stand for the trapezoidal weights

α1 =
t2 − t1

2
, αj =

tj+1 − tj−1

2
for 2 ≤ j ≤ n− 1, αn =

tn − tn−1

2
.

The solution to (3.5) is given by the solution to the eigenvalue problem

Rnψn
i =

n
∑

j=1

αj 〈yhj , ψn
i 〉X yhj = λni ψ

n
i , i = 1, . . . , ℓ,

where Rn : Xh → Vn ⊂ V is a linear, bounded, compact, self-adjoint and
non-negative operator. Thus, there are an orthonormal set {ψn

i }d
n

i=1 of eigen-
functions and corresponding non-negative eigenvalues {λni }d

n

i=1 satisfying

Rnψn
i = λni ψ

n
i , λn1 ≥ λn2 ≥ . . . ≥ λndn > 0. (3.6)

We refer to [14] for the relationship between (3.3) and (3.6).



Numerical Analysis of POD A-Posteriori Error Estimation 7

Remark 3.2. Let Xh be given by the subset span {ϕ1, . . . , ϕm} ⊂ X, where
the ϕi’s are assumed to be linearly independent in X. Then we have

yhj (x) =

m
∑

i=1

Yijϕi(x) ∈ Xh for x ∈ Ω and j = 1, . . . ,m

with real coefficients Yij . In this case the POD basis functions are given by

ψn
j (x) =

m
∑

i=1

Ψijϕi(x) ∈ Xh for x ∈ Ω and j = 1, . . . , ℓ

with real coefficients Ψij . Then we have to determine the coefficient matrix
Ψ = ((Ψij)) ∈ R

m×ℓ. For that purpose we define Y = ((Yij)) ∈ R
m×n

and W = ((〈ϕj , ϕi〉X)) ∈ R
m×m. Moreover, we define the diagonal matrix

D = diag (α1, . . . , αn) ∈ R
n×n and set Ȳ = W 1/2Y D1/2 ∈ R

m×n. Then
Ψ = [u1, . . . , un] can be computed as follows (see, e.g., [23, Section 1.3])

1) Solve the m×m eigenvalue problem

Ȳ Ȳ T
ui = λiui, 1 ≤ i ≤ ℓ, with u

T
i uj = δij , 1 ≤ i, j ≤ ℓ,

for the largest eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λℓ > 0 and compute ui =
W−1/2

ui. Since Ȳ Ȳ
T = W 1/2Y DY TW 1/2 holds, this variant is often

numerically expensive, especially for m≫ n.
2) Solve the n× n eigenvalue problem

Ȳ T Ȳ vi = λivi, 1 ≤ i ≤ ℓ, with v
T
i vj = δij , 1 ≤ i, j ≤ ℓ, (3.7)

for the largest eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λℓ > 0 and set ui =
Y D1/2

vi/
√
λi. To solve (3.7) we apply the Matlab routine eigs and

call this variant ‘eigs’ in Section 4. Note that Ȳ T Ȳ = D1/2Y TWYD1/2

holds and D is a diagonal matrix. Since we do not have to compute
W 1/2, this variant is very attractive for n ≤ m. We will apply this
approach in our numerical experiments.

3) Compute the singular value decomposition (SVD) of Ȳ , i.e., determine
orthonormal vectors {ui}ℓi=1 in R

m and {vi}ℓi=1 in R
n associated with

the largest singular values σ1 ≥ σ2 ≥ . . . ≥ σℓ > 0 satisfying

Ȳ vi = σiui, Ȳ T
ui = σivi, 1 ≤ i ≤ ℓ.

(see, e.g., [18]). It follows that λi = σ2
i and ui = W−1/2

ui. Since this
variant is based on the SVD, we call this variant ‘SVD’ in Section 4.
Although the computation of W 1/2 is costly, the SVD is known to be
more stable. This is due to the fact that the products of Ȳ and Ȳ T

doubles the condition number of the problem compared to the SVD. ♦

3.3. POD Galerkin approximation for (P)

Let y = ŷ0 + Su be the state associated with some control u ∈ U , and let
V be given as in (3.1). We fix ℓ with ℓ ≤ d and compute the first ℓ POD
basis functions ψ1, . . . , ψℓ ∈ V by solving either Rψi = λiψi or Kvi = λvi for
i = 1, . . . , ℓ (see Remark 3.1). Then we define

V ℓ = span
{

ψ1, . . . , ψℓ

}

⊂ V.
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Endowed with the topology in V it follows that V ℓ is a Hilbert space. The
POD Galerkin scheme for the state equation (2.2) leads to the following linear
problem: determine a function yℓ(t) ∈ V ℓ such that

d

dt
〈yℓ(t), ψ〉H + a(yℓ(t), ψ) = 〈(f + Bu)(t), ψ〉H

f.a.a. t ∈ [0, T ], ∀ψ ∈ V ℓ,

〈yℓ(0), ψ〉H = 〈y0, ψ〉H ∀ψ ∈ V ℓ.

(3.8)

For every f ∈ L2(0, T ;H), u ∈ L2(D), y0 ∈ V and for every ℓ ∈ N problem
(3.8) admits a unique solution yℓ ∈ H1(0, T ;V ℓ); see [10, Proposition 3.4].
From V ℓ →֒ V it follows that yℓ ∈W (0, T ) holds.
The POD Galerkin approximation for (P) is given by problem

min J(yℓ, u) s.t. (yℓ, u) ∈ H1(0, T ;V ℓ)× Uad solves (3.8). (Pℓ)

Problem (Pℓ) admits a unique optimal solution x̄ℓ = (ȳℓ, ūℓ) that is in-
terpreted as a suboptimal solution to (P). First-order necessary optimality
conditions for (Pℓ) are given by the state equation (3.8) with u = ūℓ, the
adjoint equation

− d

dt
〈p̄ℓ(t), ψ〉H + a(p̄ℓ(t), ψ) = 0 f.a.a. t ∈ [0, T ], ∀ψ ∈ V ℓ,

〈p̄ℓ(T ), ψ〉H = 〈yd − ȳℓ(T ), ψ〉H ∀ψ ∈ V ℓ.
(3.9)

and the variational inequality

〈γūℓ − B⋆p̄ℓ, u− ūℓ〉L2(D) ≥ 0 for all u ∈ Uad.

To solve (Pℓ) we apply a primal-dual active set strategy, which converges
locally superlinearly [7]. Its mesh-independence is proved in [8, 9].

3.4. A-posteriori error estimate for the POD approximation

In this subsection we present the a-posteriori error estimate for the control
variable. The result is taken from [22, Theorem 4.11].

Theorem 3.3. Suppose that (ȳ, ū) is the solution to (P). For an arbitrary

ℓ ≤ d let (ȳℓ, ūℓ) be the optimal solution to (Pℓ). Let ỹ = ŷ0 + Sūℓ and

p̃ = p̃(ūℓ) be the solution to the associated adjoint equation

− d

dt
〈p̃(t), ϕ〉H + a(p̃(t), ϕ) = 0, t ∈ [0, T ], ∀ϕ ∈ V,

〈p̃(T ), ϕ〉H = 〈yd − ỹ(T ), ψ〉H ∀ϕ ∈ V.
(3.10)

Define the residual function ζℓ ∈ L2(D) by

ζℓ(s) =











[

(γūℓ − B⋆p̃)(s)
]

−
on Aℓ

− =
{

s ∈ D
∣

∣ ūℓ(s) = ua(s)
}

,
[

(γūℓ − B⋆p̃)(s)
]

+
on Aℓ

+ =
{

s ∈ D
∣

∣ ūℓ(s) = ub(s)
}

,

−(γūℓ − B⋆p̃)(s) on Jℓ = D \ (Aℓ
− ∪Aℓ

+)

(3.11)
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with [r]− = −min(0, r) and [r]+ = max(0, r). Then

‖ū− ūℓ‖L2(D) ≤
1

γ
‖ζℓ‖L2(D).

Remark 3.4. 1) Notice that ỹ and p̃ must be taken as the solutions to the
(full) state and adjoint equation, respectively, not of their POD-appro-
ximations.

2) In [22] sufficient conditions are presented that limℓ→∞ ‖ζℓ‖L2(D) = 0.

Thus, ‖ζℓ‖L2(D) can be expected smaller than any ε > 0 provided that
ℓ is taken sufficiently large. Motivated by this result, we set up Algo-
rithm 1.

3) Notice that the presented error estimate holds for time-variant, linear-
quadratic optimal control problems. For recent extension to nonlinear
problems we refer to [13] and to [12, 20], where the presented error
estimate is utilized in a multilevel SQP algorithm.

4) To improve the approximation quality of the POD basis, we can combine
the a-posteriori analysis with basis update strategies; see [24].

Algorithm 1 (POD reduced-order method with a-posteriori estimator)

1: Choose u ∈ Uad, an initial number ℓ for POD ansatz functions, a maximal
number ℓmax > ℓ of POD ansatz functions, ε > 0; compute y = ŷ0 + Su.

2: Determine a POD basis of rank ℓmax utilizing the state y = ŷ0 + Su.
3: repeat
4: Build the reduced-order problem (Pℓ) of rank ℓ ≤ ℓmax.
5: Compute the suboptimal control ūℓ.
6: Determine ỹ = ŷ0 + Sūℓ, p̃ (see (3.10)) as well as ζℓ (see (3.11)).
7: if ‖ζℓ‖L2(D) < ε or ℓ = ℓmax then

8: Return ℓ, suboptimal control ūℓ and STOP.
9: else

10: Set ℓ = ℓ+ 1.
11: end if
12: until ℓ > ℓmax

4. Numerical experiments

This chapter is devoted to numerical test examples. First, we turn to the
numerical solution of a given parabolic PDE. We pursue the two different
Galerkin approaches, namely the finite element (FE) Galerkin method and
the POD Galerkin technique, and compare the results in order to see some
different implementation choices that can be taken, to become a sense of
how good these approximate solutions are and to point out some advantages
and drawbacks of the considered methods. From solving one linear parabolic
equation we move on to applying the POD-Galerkin ansatz to (P). Hereby,
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we especially focus on testing the accuracy and efficiency of the POD a-
posteriori estimator reviewed in Section 3.4. For the implementation we use
theMatlab software package (R2010a). In all examples we choose the spatial
domain is Ω = (0, 1) × (0, 1) ⊂ R

2. The time interval of consideration will
always be [0, T ] = [0, 1]. The time integration is carried out by the implicit
Euler method with an equidistant time grid 0 = t0 < t1 < . . . < tn = T ,
where ti = i∆t and ∆t = 1/n.

Run 4.1 (Heat equation). In (2.3) we choose the data y0 ≡ 0, cp = 1, q = 0

and f̃(t,x) = cos(2πx1) cos(2πx2)(1 + 8π2t), (t,x) ∈ Q and x = (x1, x2).
Then, the exact solution is yex(t,x) = t cos(2πx1) cos(2πx2) for (t,x) ∈ Q.
For the FE method we choose piecewise quadratic elements resulting in m =
665 spatial degrees of freedom. The time increment was chosen to be ∆t =
0.01 and we have n = 101. Notice that the discretization error with respect
to the spatial and the time variable is of the same size O(∆t). To compute
the POD basis we compare the variants ‘eigs’ and ‘SVD’; see Remark 3.2.
ChoosingX = H in Section 3.1 the rapid decays of the normalized eigenvalues

λ̄i =
λi

∑n
j=1 λj

=
λi

trace (Ȳ T Ȳ )

and normalized squared singular values σ̄2
i = λ̄i are presented in Figure 1. We
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Figure 1. Run 4.1: Decay of λ̄i for ‘eigs’ (left plot) and σ̄
2
i

for ‘SVD’ (right plot) with X = H.

observe that in the beginning the eigenvalues are equal in deed, whereas the
eigenvalues computed with the SVD keep decreasing when the eigenvalues
for ’eigs’ stagnate at the order of machine precision. The difference between
the ’eigs’ and the ’SVD’ variant shows already for small ℓ in this example
due to the extremely rapid decay of eigenvalues, see Table 1, where

E
y
abs

(ℓ) =

n
∑

j=1

αj ‖yh(tj)− yℓ(tj)‖H , E
y
rel
(ℓ) =

n
∑

j=1

αj

‖yh(tj)− yℓ(tj)‖H
‖yh(tj)‖H

stands for absolute and relative error between FE and POD solution. In fact,
the solution space of the PDE is one-dimensional, since the exact solution
at time t is given by a multiple of cos(2πx1) cos(2πx2) by the factor t. This
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Variant ’eigs’ Variant ’SVD’
ℓ E

y

abs
(ℓ) E

y

rel
(ℓ) λℓ E

y

abs
(ℓ) E

y

rel
(ℓ) λℓ

1 1.3 · 10−07 2.1 · 10−06 8.5 · 10−00 1.3 · 10−07 2.1 · 10−06 8.5 · 10−00

2 1.4 · 10−08 5.8 · 10−07 2.5 · 10−12 1.4 · 10−08 5.8 · 10−07 2.5 · 10−12

5 4.3 · 10−10 1.1 · 10−08 1.1 · 10−15 4.3 · 10−10 1.1 · 10−08 2.0 · 10−16

10 3.2 · 10−13 5.4 · 10−12 4.6 · 10−16 1.6 · 10−13 2.7 · 10−12 1.4 · 10−22

11 6.0 · 10−13 7.8 · 10−12 4.4 · 10−16 2.2 · 10−14 3.4 · 10−13 3.1 · 10−24

14 7.7 · 10−12 3.1 · 10−11 4.4 · 10−16 5.2 · 10−16 2.5 · 10−15 3.5 · 10−29

15 9.9 · 10−12 4.0 · 10−11 4.6 · 10−16 5.5 · 10−16 2.5 · 10−15 3.2 · 10−30

Table 1. Run 4.1: Absolute & relative errors and λℓ for
different ℓ and for ‘eigs’ and ‘SVD’ using X = H.

behaviour is already captured by one mode/basis function. Due to the inaccu-
racy of the numerical method for determining the snapshots, the snapshot ma-
trix Y representing the solution space has a rank greater than one. Thus the
first POD basis function ψ1 is not an exact multiple of cos(2πx1) cos(2πx2),
and the dynamics of the PDE can not be described comprehensively with
only one POD basis function. Hence, increasing the rank of the POD basis
leads the approximation quality to rise.
The fact that the eigenvalues for ‘eigs’ increase starting from ℓ = 14 in-
stead of continuing to decrease like for ‘SVD’ illustrate that the SVD is
more stable than the eigenvalue solver. Since the Ȳ T Ȳ is symmetric, posi-
tive semi-definite, it should only have real non-negative eigenvalues. Due to
rounding errors, eigenvalues that are nearly of the size of the machine pre-
cision (eps = 2.2204 · 10−16) can be mistakenly determined as negative or
complex by eigs.m. For SVD the eigenvalues keep on decreasing since they
are computed as squares of the obtained singular values. This leads also to a
monotone decrease of the quantities Ey

abs
(ℓ) and E

y
rel
(ℓ) for the SVD, whereas

‘eigs’ yields a stagnation of the error for ℓ ≥ 14. A related aspect is the
W -orthonormality of the POD basis vectors. Analytically, we have

ΨT
·,1:ℓWΨ·,1:ℓ − Iℓ

!
= 0,

where Iℓ denotes the ℓ by ℓ identity matrix and Ψ(:, 1 : ℓ) contains the first ℓ
columns of ψ. We estimate the spectral norm ‖ΨT

·,1:ℓWΨ·,1:ℓ−Iℓ‖2 by utilizing
the Matlab routine normest; compare Table 2. We observe that the ‘SVD’

‖ΨT
·,1:ℓWΨ

·,1:ℓ − Iℓ‖2

ℓ Variant ‘eigs’ Variant ‘SVD’

1 8.12 · 10−16 2.66 · 10−15

2 3.51 · 10−05 3.98 · 10−15

5 9.95 · 10−01 3.94 · 10−15

10 9.99 · 10−01 1.05 · 10−14

Table 2. Run 4.1: Spectral norm ‖ΨT
·,1:ℓWΨ·,1:ℓ − Iℓ‖2 for

differnt ℓ and for ‘eigs’ & ‘SVD’ using X = H.

approach fullfils the W -orthogonality far better than the ‘eigs’ variant. From
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Tables 1 and 2, we can deduce that especially for higher POD basis rank
the SVD is more stable or accurate. However, we should mention that the
‘SVD’ variant is more costly than the ‘eigs’ variant, especially if the number
of spatial degrees of freedom m is much bigger that the number n of time
steps. ♦

Run 4.2 (Unconstrained optimal control). In the context of Example 2.1,
Remark 2.3 and Remark 2.4 we choose γ = 10−2, cp = 10, q = 0.01 and

f̃ ≡ 0. The initial condition is y0(x) = 3− 4(x2 − 0.5)2 and the desired state
is yd(x) = 2 + 2 |2x1 − x2| for x = (x1, x2) ∈ Ω. Choosing ua = −∞ = −ub
we have Uad = L2(Σ). We make use of the Matlab PDE toolbox for the
spatial discretization with piecewise linear, continuous finite elements (P1-
Elements) with maximal edge length hmax = 0.06 and thus NFE = 498
degrees of freedom. For the implicit Euler method we choose the step size
∆t = 0.004. The FE optimal control ūh is presented at all times in Figure 2.
The different tested ROM runs vary in the way the POD basis is determined:
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Figure 2. Run 4.2: FE optimal control ūh(t,x) for x =
(x1, 0) ∈ Γ (upper left plot), x = (x1, 1) ∈ Γ (upper right
plot), x = (0, x2) ∈ Γ (lower left plot), x = (1, x2) ∈ Γ
(lower right plot).

1) To generate the snapshots for the POD method we have to solve (2.3)
for a reference control u = uref . We consider three different reference
controls:
1a) u1

ref
(t, s) = exp(t)( 12 |2x1 − x2| + 1

3 (sin(πx2) − 1)) for (t, s) ∈ Σ,
s = (x1, x2) (see Figure 3);

1b) u2
ref
(t,x) = uh(t,x) for (t,x) ∈ Σ (see Figure 2).

The reference control u1
ref

is plotted in Figure 3.
2) The snapshot ensemble to be represented well by the POD basis can

now be taken from the solution yref of the state equation with u =
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ui
ref
, i = 1, 2, which is called Variant 1. If we want/need to enrich the

approximation space, we also solve the adjoint equation with y = yref
and then consider a snapshot ensemble consisting of snapshots from both
the state and the adjoint equation. This approach is called Variant 2.
Let us note that another possibility would be to use two different bases
which is not considered in this thesis.

3) For the POD basis computation we choose
3a) ‘eigs’ includes solving Ȳ T Ȳ v = λv with Ȳ =W 1/2Y D1/2;
3b) ‘SVD’ involves the singular value decomposition of Ȳ .
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Figure 3. Run 4.2: u1
ref

for x = (x1, 0) ∈ Γ (upper left
plot), x = (x1, 1) ∈ Γ (upper right plot), x = (0, x2) ∈ Γ
(lower left plot), x = (1, x2) ∈ Γ (lower right plot).

Moreover, the POD basis can be computed for the choices X = H or X = V .
First, we choose u1

ref
for the snapshot generation and use ‘eigs’ to determine

the POD basis based on a snapshot ensemble from both the state and the
adjoint equation (Variant 2). In order to get a first idea of how many POD
basis functions we should use in the POD-Galerkin ansatz for the state and
the adjoint state variable, we look at the decay of the eigenvalues; see Figure 4.
Naturally, in the case of the V -norm the eigenvalues decay slower than with
the discrete H-norm. The decay plot shows where the eigenvalues stagnate.
Usually, from that number of POD basis functions on, we can not further
or significantly improve the approximation errors any more. Theoretically,
increasing the POD basis rank leads to a decrease in approximation error
values. Nevertheless, we have to pay attention if we use the not so stable
method ’eigs’ for POD basis computation. The instability can be detected in
the right-hand side plot of Figure 4 for ℓ > 60. Note that due to the slower
decay of eigenvalues with the H1-norm implementations those errors are still
decreasing for up to ℓ = 70 POD basis functions. The instability sets in later.
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Figure 4. Run 4.2: Decay of λ̄i for X = H and X = V
(left plot) and decay of the a-posteriori error estimator, the
absolute as well as the relative errors using u1

ref
and ‘eigs’.

Let us define the quantities

Eu
abs(ℓ) =

n
∑

j=0

αj ‖ūh(tj)− ūℓ(tj)‖L2(Γ),

Eu
rel(ℓ) =

n
∑

j=0

αj

‖ūh(tj)− ūℓ(tj)‖L2(Γ)

‖ūh(tj)‖L2(Γ)

The errors which occurred between the (sub-)optimal controls within the first
two ROM runs compared to the FE based approaches are listed in Table 3.
The obtained results for the POD suboptimal controls are not satisfying.

X = H X = V

ℓ ‖ζℓ‖/γ E
u
abs

(ℓ) E
u
rel
(ℓ) ‖ζℓ‖/γ E

u
abs

(ℓ) E
u
rel
(ℓ)

1 1.2 · 10+1 3.8 · 10−0 7.8 · 10−1 1.2 · 10+1 3.8 · 10−0 7.8 · 10−1

5 1.5 · 10−0 6.1 · 10−1 1.1 · 10−1 2.4 · 10−0 9.8 · 10−1 1.8 · 10−1

10 4.5 · 10−1 2.5 · 10−1 4.5 · 10−2 4.4 · 10−1 2.5 · 10−1 4.6 · 10−2

20 5.3 · 10−1 2.2 · 10−1 4.1 · 10−2 5.5 · 10−1 2.1 · 10−1 3.9 · 10−2

30 1.7 · 10−1 1.1 · 10−1 1.8 · 10−2 1.7 · 10−1 1.1 · 10−1 1.8 · 10−2

50 1.2 · 10−1 7.4 · 10−2 1.2 · 10−2 1.2 · 10−1 7.5 · 10−2 1.2 · 10−2

60 9.9 · 10−2 6.6 · 10−2 1.1 · 10−2 5.8 · 10−2 4.2 · 10−2 6.8 · 10−3

70 9.4 · 10−1 9.3 · 10−1 2.6 · 10−1 5.2 · 10−2 3.9 · 10−2 6.2 · 10−3

Table 3. Run 4.2: A-posteriori estimator, absolute and rel-
ative errors in the control variable for X = H and X = V
and for different ℓ using u1

ref
an ‘eigs’.

The problem is that increasing the number of utilized POD basis functions
does not yield better results, it even leads to meaningless results due to the
instability of the ‘eigs’ method. Even if we consider the ‘SVD’ approach, the
error values do not continue to decrease significantly. They somehow stag-
nate which is of course better than with the ‘eigs’ method, but still does not
yield a satisfying approximation quality. This is due to the fact that the POD
basis is chosen poorly. The generated snapshots for basis determination do
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not reflect the dynamics of the optimally controlled trajectory, since the ref-
erence control is not chosen well enough. Next, we select a better – somehow
“optimal” – admissible reference control uref for snapshot generation, namely
the FE optimal control. The POD basis is now determined with u2

ref
= ūh,

X = V and snapshots from both the state and the adjoint equation. Using
‘SVD’ Table 4 presents the deviation of the POD suboptimal controls/states
from the FE optimal solutions depending on the number ℓ of used POD ba-
sis functions. From Table 4 we can conclude that the POD basis should not

ℓ ‖ζℓ‖/γ E
u
abs

(ℓ) E
u
rel
(ℓ) E

y

abs
(ℓ) E

y

rel
(ℓ)

1 1.1 · 10+01 3.4 · 10−00 6.9 · 10−01 1.7 · 10−01 5.8 · 10−02

5 2.4 · 10−00 1.1 · 10−00 2.2 · 10−01 5.2 · 10−02 1.8 · 10−02

15 2.5 · 10−02 2.5 · 10−02 5.4 · 10−03 3.6 · 10−04 1.2 · 10−04

20 2.8 · 10−03 2.8 · 10−03 6.0 · 10−04 5.1 · 10−05 1.8 · 10−05

40 2.1 · 10−06 2.1 · 10−06 4.5 · 10−07 1.9 · 10−08 6.4 · 10−09

60 8.0 · 10−10 8.0 · 10−10 1.8 · 10−10 5.4 · 10−12 1.9 · 10−12

70 7.0 · 10−12 7.0 · 10−12 1.5 · 10−12 5.0 · 10−14 1.7 · 10−14

90 3.8 · 10−13 1.9 · 10−13 3.7 · 10−14 2.9 · 10−14 9.8 · 10−15

Table 4. Run 4.2: A-posteriori estimator, absolute and rel-
ative errors in the control and state variable for X = V and
for different ℓ using u2

ref
.

be chosen arbitrarily if we want to obtain a very good approximation qual-
ity. The POD based solver with somehow “optimal” reference control u2

ref

(Table 4) yields considerably better results than with more or less arbitrary
reference control u1

ref
(Table 3). Table 4 emphasizes the good quality of the

POD a-posteriori error estimator. We can also observe that the a posteriori
estimator constitutes a reliable upper bound if the ’eigs’ approach was taken
for basis determination, see Table 5. As long as there is still enough new

‘SVD’ ‘eigs’

ℓ ‖ζℓ‖/γ E
u
abs

(ℓ)
λℓ

tr(Ȳ Ȳ T )
‖ζℓ‖/γ E

u
abs

(ℓ)
λℓ

tr(Ȳ Ȳ T )

40 2.1 · 10−06 2.1 · 10−06 1.1 · 10−14 2.1 · 10−06 2.1 · 10−06 1.1 · 10−14

60 8.0 · 10−10 8.0 · 10−10 5.1 · 10−22 2.5 · 10−08 2.5 · 10−08 1.7 · 10−16

70 7.0 · 10−12 7.0 · 10−12 8.1 · 10−26 2.0 · 10−09 2.0 · 10−09 8.6 · 10−17

90 3.8 · 10−13 1.9 · 10−13 3.1 · 10−30 2.7 · 10−09 2.5 · 10−09 1.1 · 10−16

Table 5. Run 4.2: A-posteriori estimator, absolute error in
the control variable and normalized eigenvalues for X = V ,
for the variants ‘SVD’ as well as ‘eigs’ and for different ℓ
using u2

ref
.

information content, meaning that the eigenvalues are still “big” enough so
that rounding errors do not jeopardize the decreasing order of eigenvalues
and the nearly W -orthogonality, than the ‘eigs’ and ‘SVD’ approaches yield
the same eigenvalues and the same suboptimal solutions. This is the case up
to ℓ scarcely above 40. From then on, the POD basis determination using
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‘eigs’ is not stable any more and does not yield approximation errors as good
as the ‘SVD’ approach, see Table 5. Table 6 gives a summary of the CPU
times. Notice that ℓ = 20 POD basis functions are sufficient for an approxi-

CPU time in s

FE solver 1240.87
ROM solver

snapshot generation (state & adjoint) 1.62
POD basis computation with . . .
. . . eigs (ℓ = 90) 1.75
. . . SVD (ℓ = 90) 6.57
PDASS incl. assembly of all matrices with . . .
. . . ℓ = 20 1.78
. . . ℓ = 90 29.41
a-posteriori error estimation 2.81

Table 6. Run 4.2: CPU times in seconds.

mation of the exact optimal control by the POD suboptimal control, since the
POD solutions cannot be significantly better than the FE solution since it is
based on FE snapshots and FE matrices. The FE discretization error cannot
be overcome by the POD solutions. In case of ℓ = 20 and ‘eigs’, the overall
CPU time needed to compute the POD suboptimal control is 5.15 seconds
and thus about 240 times smaller than the CPU time needed to compute
the ”truth”/FE optimal control.

Finally, we compare the approximation quality of the POD basis if only
snapshots from the state (Variant 1) or if snapshots from the state and the
adjoint equation (Variant 2) are utilized. Even with “optimal” reference con-
trol u2

ref
= ūh, snapshots based solely on the state equation are not sufficient

for getting good results with the POD ansatz; see Table 7. From Table 7 we

‖ūh − ūℓ‖
L2(Σ)

ℓ Variant 2, X = V Variant 1, X = V Variant 1, X = H Variant 2, X = H

1 3.4 · 10−0 3.4 · 10−0 3.4 · 10−0 3.4 · 10−0

5 1.1 · 10−0 1.1 · 10−0 1.0 · 10−0 9.8 · 10−1

10 1.7 · 10−1 8.8 · 10−1 8.5 · 10−1 5.9 · 10−2

20 2.8 · 10−3 6.5 · 10−1 6.5 · 10−1 1.7 · 10−3

30 1.2 · 10−4 6.0 · 10−1 6.0 · 10−1 9.9 · 10−5

50 1.1 · 10−7 5.1 · 10−1 5.1 · 10−1 2.4 · 10−7

60 2.5 · 10−8 5.0 · 10−1 1.7 · 10+2 1.8 · 10−8

70 2.0 · 10−9 5.0 · 10−1 5.3 · 10−1 2.0 · 10−7

Table 7. Run 4.2: Absolute errors in the control variable for
different choices of the snapshot ensemble, for X, for ‘eigs’
and for different ℓ.

conclude that the inclusion of adjoint information into the snapshot ensem-
ble according to Variant 2 is essential to obtain good approximations for the
controls. This is due to the fact that the optimality condition directly relates
the control onto the adjoint state variable. Hence, it is important to also cap-
ture the dynamics of the adjoint equation in order to have a good snapshot
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ensemble and thus a good POD basis. This coincides with theoretical results,
see [10]. The eigenvalues decay slower for X = V than for X = H, since
there is more information from the snapshot ensemble that gets incorporated
into the POD basis. That is why the error values decay slower for small
ℓ. Nevertheless, for higher ℓ this higher information content leads to more
“stability” and thus monotonously decreasing error values instead of severe
oscillations. Summarizing, the choice of X = V and the snapshot ensemble
from both the state and the adjoint equation leads to the best performance
of the POD-Galerkin ansatz for solving the optimal control problem. ♦

Run 4.3 (Constrained optimal control). We take the same configuration as
in Run 4.2, but now we choose the control constraints ua ≡ −0.5 and ub ≡ 2.
Like in Run 4.2 we make use of the Matlab PDE toolbox for the spatial
discretization with piecewise linear, continuous finite elements with 498 de-
grees of freedom. For temporal discretization, we use the equidistant time
increment ∆t = 0.004. The FE solver needs 5 iterations of the primal-dual
active set strategy and requires 3435.82 seconds. The optimal control, ūh is
displayed in Figure 5. We now test if the implemented ROM solver works
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Figure 5. Run 4.3: FE optimal control ūh(t,x) for x =
(x1, 0) ∈ Γ (upper left plot), x = (x1, 1) ∈ Γ (upper right
plot), x = (0, x2) ∈ Γ (lower left plot), x = (1, x2) ∈ Γ
(lower right plot).

properly when there are active box constraints given for the control u. For
this, we discuss the results from two different ROM runs. They only vary
in the choice of the reference control, first we take the reference control

u1
ref
(t, s) = exp(t)

(

1
2 |2x1 − x2| + sin(πx2)

3 − 1
3

)

and second we take the FE

optimal control ūh for snapshot generation. In both cases we use X = V ,
the snapshot ensemble from both state and adjoint equation and the ‘eigs’
method for POD basis computation.
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Note that u1
ref

6∈ Uad holds. Nevertheless, we will see that we still get
good results, for higher ℓ the errors are even smaller than in the unrestricted
case with this reference control. In Table 8 we present the POD a-posteriori
error estimate, the absolute and the relative error in the control variable for
different number ℓ of POD basis functions. Taking more POD basis function,

ℓ ‖ζℓ‖/γ Eu
abs

(ℓ) Eu
rel
(ℓ) E

y
abs

(ℓ) E
y
rel
(ℓ)

1 1.2 · 10+1 2.2 · 10−0 7.6 · 10−1 1.9 · 10−1 6.7 · 10−2

5 1.3 · 10−0 9.1 · 10−1 3.0 · 10−1 9.6 · 10−2 3.3 · 10−2

10 6.2 · 10−1 3.7 · 10−1 1.3 · 10−1 6.7 · 10−2 2.3 · 10−2

20 5.9 · 10−1 3.2 · 10−1 1.1 · 10−1 3.8 · 10−2 1.3 · 10−2

30 1.2 · 10−1 7.7 · 10−2 2.6 · 10−2 2.1 · 10−2 7.1 · 10−3

50 1.9 · 10−2 1.7 · 10−2 5.5 · 10−3 1.5 · 10−2 5.2 · 10−3

60 1.4 · 10−2 1.2 · 10−2 3.8 · 10−3 1.3 · 10−2 4.3 · 10−3

70 1.2 · 10−2 1.1 · 10−2 3.5 · 10−3 1.2 · 10−2 4.3 · 10−3

90 1.1 · 10−2 9.7 · 10−3 3.2 · 10−3 1.2 · 10−2 4.2 · 10−3

Table 8. Run 4.3: A-posteriori estimator, absolute and rel-
ative errors for the control and state variable for X = V and
different number ℓ of POD basis functions.

into the POD-Galerkin ansatz of the state and adjoint state variable makes
the errors for the control variable descend. This behaviour also becomes evi-
dent for the absolute deviation of the POD suboptimal state yℓ from the FE
optimal state ȳh as well as for the relative error values.

The FE optimal control is restricted by ua at a total amount of 3110
many boundary nodes over all times and prescribed by ub at a total amount
of 8410 boundary nodes over all times. In Table 9 we can see how many
(diffua) boundary node values are determined by ua in either the POD sub-
optimal control or in the FE optimal control, but not in both. The differently

ℓ 5 10 15 20 30 40 50 60 70 80 90 100

diffua 998 818 548 596 106 27 24 19 18 18 17 15
diffub 700 457 412 415 112 31 33 25 23 23 24 24

Table 9. Run 4.3: Number of differences in restricted node
values of the POD suboptimal controls ūℓ in comparison to
the FE optimal control ūh using u1

ref
and X = V .

restricted boundary node values by ub are counted and stated in diffub. This
table shows that the POD suboptimal control ūℓ and the FE optimal control
ūh get restricted/fixed equally at an increasing number of boundary nodes
with increasing number ℓ of POD basis functions used to compute ūℓ. Note
that e.g. for ℓ = 100 there are only 15 differences in lower restricted node
values meaning that more than 99 % of the 3110 FE restricted values (by ua)
are replicated by the ROM optimal control solver. The same ratio holds true
for the values which are fixed by ub.
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Now we utilize snapshots generated by the reference control uref = ūh.
The very good approximation quality can be seen from Table 10. Again, we

ℓ ‖ζℓ‖/γ E
u
abs

(ℓ) E
u
rel
(ℓ) E

y

abs
(ℓ) E

y

rel
(ℓ)

1 1.2 · 10+1 2.1 · 10+0 7.20 · 10−1 1.4 · 10−1 4.9 · 10−2

5 6.5 · 10−1 5.6 · 10−1 1.88 · 10−1 2.3 · 10−2 7.9 · 10−3

15 2.7 · 10−2 2.7 · 10−2 9.0 · 10−3 7.12 · 10−4 2.5 · 10−4

20 7.5 · 10−3 7.3 · 10−3 2.4 · 10−3 1.97 · 10−4 6.9 · 10−5

40 3.9 · 10−4 3.9 · 10−4 1.3 · 10−4 8.09 · 10−6 2.8 · 10−6

60 8.3 · 10−5 8.3 · 10−5 2.8 · 10−5 1.61 · 10−6 5.6 · 10−7

70 3.0 · 10−5 3.0 · 10−5 1.0 · 10−5 6.02 · 10−7 2.1 · 10−7

90 3.7 · 10−6 3.7 · 10−6 1.3 · 10−6 1.21 · 10−7 4.2 · 10−8

130 3.9 · 10−8 3.9 · 10−8 1.3 · 10−8 4.49 · 10−9 1.6 · 10−9

Table 10. Run 4.3: A-posteriori estimator, absolute and
relative errors for the control and state variable for X = V
and different number ℓ of POD basis functions.

check if the values of the POD suboptimal control are restricted at the same
boundary nodes as the FE optimal control and how this changes depending
on the number ℓ of used POD basis functions, see Table 11. The active sets

l 5 10 15 20 30 40 50 60 70 80 90 100 110 120 130

diffua 1021 311 74 28 5 2 0 0 0 0 0 0 0 0 0
diffub 324 147 37 8 0 0 0 0 0 0 0 0 0 0 0

Table 11. Run 4.3: Number of differences in restricted node
values of the POD suboptimal controls ūℓ in comparison to
the FE optimal control ūh using u2

ref
and X = V .

within the reduced order method coincide with those within the FE approach
for ℓ ≥ 50. Compared to the results associated with u1

ref
in Table 9, the

more prudent choice of the reference control and the POD basis leads to
more/earlier harmony of restricted values. ♦
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