Skip to main content

A Hierarchical Clustering Approach to Modularity Maximization

  • Conference paper
  • First Online:
Algorithms from and for Nature and Life
  • 2884 Accesses

Abstract

The problem of uncovering clusters of objects described by relationships that can be represented with the help of graphs is an application, which arises in fields as diverse as biology, computer science, and sociology, to name a few. To rate the quality of clusterings of undirected, unweighted graphs, modularity is a widely used goodness-of-fit index. As finding partitions of a graph’s vertex set, which maximize modularity, is NP-complete, various cluster heuristics have been proposed. However, none of these methods uses classical cluster analysis, where clusters based on (dis-)similarity data are sought. We consider the lengths of shortest paths between all vertex pairs as dissimilarities between the pairs of objects in order to apply standard cluster analysis methods. To test the performance of our approach we use popular real-world as well as computer generated benchmark graphs with known optimized cluster structure. Our approach is simple and compares favourably w.r.t. results known from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, G., & Kempe, D. (2008). Modularity-maximizing graph communities via mathematical programming. European Physical Journal B, 66, 409–418.

    Article  MathSciNet  MATH  Google Scholar 

  • Arenas, A., Duch, J., Fern\(\acute{\text{a}}\)ndez, A., & G\(\acute{\text{o}}\)mez, S. (2007). Size reduction of complex networks preserving modularity. New Journal of Physics, 9, 176.

    Google Scholar 

  • Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of community hierarchies in large networks. Journal of Statistical Mechanics, 10, P10008.

    Article  Google Scholar 

  • Brandes, U., & Erlebach, T. (Eds.). (2005). Network analysis: methodological foundations. In Lecture notes in computer science (Vol. 3418). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Brandes, U., Delling, D., Gaertler, M., Goerke, R., Hoefer, M., Nikoloski, Z., & Wagner, D. (2007). On finding graph clusterings with maximum modularity. In Lecture notes in computer science (Vol. 4769, pp. 121–132). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Brandes, U., Delling, D., Gaertler, M., Goerke, R., Hoefer, M., Nikoloski, Z., & Wagner, D. (2008). On modularity clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2), 172–188.

    Article  Google Scholar 

  • Clauset, A., Newman, M. E., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70, 066111.

    Article  Google Scholar 

  • Djidjev, H. N. (2008). A scalable multilevel algorithm for graph clustering and community structure detection. In Lecture notes in computer science (Vol. 4936, pp. 117–128). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Duch, J., & Arenas, A. (2005). Community detection in complex networks using extremal optimization. Physical Review E, 72, 027104.

    Article  Google Scholar 

  • Floyd, R. W. (1962). Algorithm 97: shortest path. Communications of the ACM, 5(6), 345–345.

    Article  Google Scholar 

  • Fortunato, S., & Barthélemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences, 104(1), 36–41.

    Article  Google Scholar 

  • Good, B. H., de Montjoye, Y.-A., & Clauset, A. (2010). The performance of modularity maximization in practical contexts. Physical Review E, 81, 046106.

    Article  MathSciNet  Google Scholar 

  • Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193–218.

    Article  Google Scholar 

  • Kim, Y., Son, S.-W., & Jeong, H. (2010). LinkRank: finding communities in directed networks. Physical Review E, 81, 016103.

    Article  Google Scholar 

  • Lancichinetti, A., Fortunato, S., & Radicchi, F. (2008). Benchmark graphs for testing community detection algorithms. Physical Review E, 78, 046110.

    Article  Google Scholar 

  • Leicht, E. A., & Newman, M. E. (2008). Community structure in directed networks. Physical Review Letters, 100, 118703.

    Article  Google Scholar 

  • Li, Z., Zhang, S., Wang, R.-S., Zhang, X.-S., & Chen, L. (2008). Quantitative function for community detection. Physical Review E, 77, 036109.

    Article  Google Scholar 

  • Ma, X., Gao, L., Yong, X., & Fu, L. (2010). Semi-supervised clustering algorithm for community structure detection in complex networks. Physica A, 389, 187–197.

    Article  Google Scholar 

  • Mann, C. F., Matula, D. W., & Olinick, E. V. (2008). The use of sparsest cuts to reveal the hierarchical community structure of social networks. Social Networks, 30, 223–234.

    Article  Google Scholar 

  • Nascimento, M. C., & de Carvalho, A. C. (2010). Spectral methods for graph clustering – a survey. European Journal of Operational Research, 211(2), 221–231.

    Article  Google Scholar 

  • Newman, M. E. (2004a). Fast algorithm for detecting community structure in networks. Physical Review E, 69, 066133.

    Article  Google Scholar 

  • Newman, M. E. (2004b). Analysis of weighted networks. Physical Review E, 70, 056131.

    Article  Google Scholar 

  • Newman, M. E. (2006). Finding community structure in networks using the eigenvectors of matrices. Physical Review E, 74, 036104.

    Article  MathSciNet  Google Scholar 

  • Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69, 026113.

    Article  Google Scholar 

  • Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying communities in networks. Proceedings of the National Academy of Sciences, 101(9), 2658–2663.

    Article  Google Scholar 

  • Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences, 105, 1118–1123.

    Article  Google Scholar 

  • Schuetz, P., & Caflisch, A. (2008). Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement. Physical Review E, 77, 046112.

    Article  Google Scholar 

  • Warshall, S. (1962). A theorem on Boolean matrices. Journal of the ACM, 9(1), 11–12.

    Article  MathSciNet  MATH  Google Scholar 

  • Xiang, J., Hu, K., & Tang, Y. (2008). A class of improved algorithms for detecting communities in complex networks. Physica A, 387, 3327–3334.

    Article  Google Scholar 

  • Zhu, Z., Wang, C., Ma, L., Pan, Y., & Ding, Z. (2008). Scalable community discovery of large networks. In Proceedings of the 2008 ninth international conference on web-age information management, Zhangjiajie, China, pp. 381–388.

    Google Scholar 

  • Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33(4), 452–473.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Gaul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Gaul, W., Klages, R. (2013). A Hierarchical Clustering Approach to Modularity Maximization. In: Lausen, B., Van den Poel, D., Ultsch, A. (eds) Algorithms from and for Nature and Life. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Cham. https://doi.org/10.1007/978-3-319-00035-0_7

Download citation

Publish with us

Policies and ethics