Skip to main content

Exploring Space-Time Tradeoffs in Autonomous Sampling for Marine Robotics

  • Chapter

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 88))

Abstract

In the coastal ocean, biological and physical dynamics vary on spatiotemporal scales spanning many orders of magnitude. At large spatial (O(100km)) and temporal (O(weeks to months)) scales, traditional shipboard and moored measurements are very effective at quantifying mean and varying oceanic properties. At scales smaller than the internal Rossby radius (O(10km) for typical coastal stratification at mid-latitude), horizontal, vertical and temporal inhomogeneity is the rule rather than the exception.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ferrari, R.: A Frontal Challenge for Climate Models. Science 332, 316–317 (2011)

    Article  Google Scholar 

  2. D’Asaro, E., Lee, C., Rainville, L., Harcourt, R., Thomas, L.: Enhanced turbulence and energy dissipation at ocean fronts. Science 10 (March 2011)

    Google Scholar 

  3. Barth, J., Herbert, D., Dale, A., Ullman, D.: Direct observations of along-isopycnal upwelling and diapycnal velocity at a shelfbreak front. J. Physical Oceanography 34, 543–565 (2004)

    Article  Google Scholar 

  4. Levy, M.: Mesoscale variability of phytoplankton and of new production: Impact of the large-scale nutrient distribution. J. Geophysical Research-Oceans 108 (2003)

    Google Scholar 

  5. Levy, M., Klein, P., Jelloul, M.B.: New production stimulated by high-frequency winds in a turbulent mesoscale eddy field. Geophysical Research Letters 36 (2009)

    Google Scholar 

  6. Pallás-Sanz, E., Johnston, T.M.S., Rudnick, D.L.: Frontal dynamics in a California Current System shallow front: 1. Frontal processes and tracer structure. J. Geophysical Research 115 (2010)

    Google Scholar 

  7. Barth, J., Cowles, T., Kosro, P., Shearman, R., Huyer, A., Smith, R.: Injection of carbon from the shelf to offshore beneath the euphotic zone in the california current. J. Geophysical Research-Oceans 107 (2002)

    Google Scholar 

  8. Franks, P.J.: Sink or swim: accumulation of biomass at fronts. Marine Ecology Progress Series, vol. 82, pp. 1–12 (1992)

    Google Scholar 

  9. CANON: Controlled, Agile and Novel Observing Network, http://www.mbari.org/canon/

  10. McGann, C., Py, F., Rajan, K., Thomas, H., Henthorn, R., McEwen, R.: A Deliberative Architecture for AUV Control. In: Intnl. Conf. on Robotics and Automation (ICRA), Pasadena (May 2008)

    Google Scholar 

  11. McGann, C., Py, F., Rajan, K., Ryan, J.P., Henthorn, R.: Adaptive Control for Autonomous Underwater Vehicles. In: Proceedings of Assoc. for the Advancement of AI National Conference, Chicago, IL (2008)

    Google Scholar 

  12. McGann, C., Py, F., Rajan, K., Ryan, J.P., Thomas, H., Henthorn, R., McEwen, R.: Preliminary Results for Model-Based Adaptive Control of an Autonomous Underwater Vehicle. In: Intnl. Symp. on Experimental Robotics (ISER), Athens (2008)

    Google Scholar 

  13. Py, F., Rajan, K., McGann, C.: A Systematic Agent Framework for Situated Autonomous Systems. In: 9th International Conf. on Autonomous Agents and Multiagent Systems, Toronto, Canada (May 2010)

    Google Scholar 

  14. Rajan, K., Py, F.: T-REX: Partitioned Inference for AUV Mission Control. In: Roberts, G.N., Sutton, R. (eds.) Further Advances in Unmanned Marine Vehicles. IEE (2012) (to be Published)

    Google Scholar 

  15. Cressie, N.A.C.: Statistics for spatial data. Wiley Interscience (1993)

    Google Scholar 

  16. Das, J., Py, F., Maughan, T., O’Reilly, T., Messie, M., Ryan, J., Rajan, K., Sukhatme, G.: Simultaneous Tracking and Sampling of Dynamic Oceanographic Features with Autonomous Underwater Vehicles and Lagrangian Drifters. In: Intnl. Symp. on Experimental Robotics (ISER), New Delhi, India (2010)

    Google Scholar 

  17. Das, J., Py, F., Maughan, T., Messie, M., O’Reilly, T., Ryan, J., Sukhatme, G.S., Rajan, K.: Coordinated Sampling of Dynamic Oceanographic Features with AUVs and Drifters. Intnl. J. of Robotics Research 31, 626–646 (2012)

    Article  Google Scholar 

  18. Rainville, L., Pinkel, R.: Wirewalker: An autonomous wave-powered vertical profiler. J. Atmos. and Ocean. Technology 18, 1048–1051 (2001)

    Article  Google Scholar 

  19. Pinkel, R., Goldin, M.A., Smith, J.A., Sun, O.M., Aja, A.A., Bui, M.N., Hughen, T.: The Wirewalker: A Vertically Profiling Instrument Carrier Powered by Ocean Waves. J. Atmos. and Ocean. Technology 28(3), 426–435 (2011)

    Article  Google Scholar 

  20. Chavez, F.P., Pennington, J.T., Herlien, R., Jannasch, H., Thurmond, G., Friederich, G.E.: Moorings and Drifters for Real-Time Interdisciplinary Oceanography. Journal of Atmospheric and Oceanic Technology 14(5), 1199–1211 (1997)

    Article  Google Scholar 

  21. Molcard, A., Piterbarg, L.I., Griffa, A., Ozgokmen, T.M., Mariano, A.: Assimilation of drifter observations for the reconstruction of the eulerian circulation field. J. Geophys. Res. 108(C3), 11–121 (2003)

    Article  Google Scholar 

  22. Salman, H., Jones, C., Ide, K.: Using Flow Geometry for Drifter Deployment in Lagrangian data assimilation. Tellus 60A, 321–335 (2008)

    Google Scholar 

  23. Rudnick, D., Perry, M.: ALPS: Autonomous and Lagrangian Platforms and Sensors, Workshop Report. Tech. Rep. (2003), http://www.geo-prose.com/ALPS

  24. Zhang, Y., Bellingham, J.G.: An efficient method of selecting ocean observing locations for capturing the leading modes and reconstructing the full field. Journal of Geophysical Research 113(C4) (April 2008)

    Google Scholar 

  25. Wikle, C.K.: Spatio-temporal Methods in Climatology, pp. 1–12 (September 2011)

    Google Scholar 

  26. Dou, Y., Le, N.D., Zidek, J.V.: Bayesian Empirical Orthogonal Functions. Tech. Rep. (January 2009)

    Google Scholar 

  27. Zhang, Y., Baggeroer, A.B., Bellingham, J.G.: Spectral-Feature Classification of Oceanographic Processes Using an Autonomous Underwater Vehicle. IEEE Journal of Ocean Engineering 26(4), 726–741 (2001)

    Article  Google Scholar 

  28. Handcock, M.S., Stein, M.L.: A Bayesian Analysis of Kriging. Technometrics 35(4), 403–410 (1993)

    Article  Google Scholar 

  29. Wikle, C.K.: Hierarchical Models in Environmental Science. International Statistical Review 71(2), 181–199 (2003)

    Article  MATH  Google Scholar 

  30. Cressie, N., Calder, C.A., Clark, J.S., Hoef, J.M.V., Wikle, C.K.: Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecological Applications 19(3), 553–570 (2009)

    Article  Google Scholar 

  31. Amani, A., Lebel, T.: Lagrangian kriging for the estimation of Sahelian rainfall at small time steps. Journal of Hydrology 192, 125–157 (1997)

    Article  Google Scholar 

  32. Seed, A.W., Bowler, N.: A Model to Generate Stochastic Nowcasts of Rainfall. In: AMS 31st International Conference on Radar Meteorology (August 2003)

    Google Scholar 

  33. Seed, A.W.: A Dynamic and Spatial Scaling Approach to Advection Forecasting. American Meteorological Society 42(3), 381–388 (2003)

    Google Scholar 

  34. Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. Medical Image Analysis 5, 143–156 (2001)

    Article  Google Scholar 

  35. Gneiting, T., Genton, M.G., Guttorp, P.: Geostatistical Space-Time Models, Stationarity, Separability, and Full Symmetry. In: Finkenstaedt, B., Held, L., Isham, V. (eds.) Statistical Methods for Spatio-Temporal Systems, pp. 151–175 (2006)

    Google Scholar 

  36. Taylor, G.I.: The Spectrum of Turbulence. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 164(919), 476–490 (1938)

    Article  Google Scholar 

  37. Genton, M.G.: Separable approximations of space-time covariance matrices. Environmetrics 18(7), 681–695 (2007)

    Article  MathSciNet  Google Scholar 

  38. Bevilacqua, M., Mateu, J., Porcu, E., Zhang, H., Zini, A.: Weighted composite likelihood-based tests for space-time separability of covariance functions. Statistics and Computing 20(3), 283–293 (2009)

    Article  MathSciNet  Google Scholar 

  39. Fuentes, M.: Testing for separability of spatial–temporal covariance functions. Journal of Statistical Planning and Inference 136, 447–466 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mitchell, M.W., Genton, M.G., Gumpertz, M.L.: A likelihood ratio test for separability of covariances. Journal of Multivariate Analysis 97(5), 1025–1043 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Stein, M.L.: Space-Time Covariance Functions. Journal of the American Statistical Association 100(469), 1–13 (2005)

    Article  MathSciNet  Google Scholar 

  42. Abrahamsen, P.: A Review of Gaussian Random Fields and Correlation Functions, Oslo, Norway, Tech. Rep. (April 1997)

    Google Scholar 

  43. Belkin, I.M., Cornillon, P.C., Sherman, K.: Fronts in large marine ecosystems. Progress in Oceanography 81(1-4), 223–236 (2009), Comparative Marine Ecosystem Structure and Function: Descriptors and Characteristics

    Article  Google Scholar 

  44. Das, J., Maughan, T., McCann, M., Godin, M., O’Reilly, T., Messie, M., Bahr, F., Gomes, K., Py, F., Bellingham, J., Sukhatme, G., Rajan, K.: Towards mixed-initiative, multi-robot field experiments: Design, deployment, and lessons learned. In: Proc. Intelligent Robots and Systems (IROS), San Francisco, California (2011)

    Google Scholar 

  45. Das, J., Py, F., Maughan, T., Messie, M., O’Reilly, T., Ryan, J., Sukhatme, G.S., Rajan, K.: Coordinated sampling of dynamic oceanographic features with auvs and drifters. In: Proc. IROS Workshop on Robotics for Environmental Monitoring (WREM 2011), San Francisco, California (2011)

    Google Scholar 

  46. Lucas, A., Dupont, C.L., Tai, V., Largier, J.L., Palenik, B., Franks, P.J.S.: The Green Ribbon: Multiscale physical control of phytoplankton productivity and community structure over a narrow continental shelf. Limnology & Oceanography 56, 611–626 (2011)

    Article  Google Scholar 

  47. Lucas, A., Franks, P.J.S., Dupont, C.L.: Horizontal Internal-tide Fluxes support elevated phytoplankton productivity over the inner continental shelf. Limnology & Oceanography: Fluids & Environments 1, 56–74 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Graham, R., Py, F., Das, J., Lucas, D., Maughan, T., Rajan, K. (2013). Exploring Space-Time Tradeoffs in Autonomous Sampling for Marine Robotics. In: Desai, J., Dudek, G., Khatib, O., Kumar, V. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 88. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00065-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00065-7_55

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00064-0

  • Online ISBN: 978-3-319-00065-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics