Skip to main content

ACO and GA for Parameter Settings of E. coli Fed-Batch Cultivation Model

  • Chapter
Book cover Recent Advances in Computational Optimization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 470))

Abstract

E. coli plays significant role in modern biological engineering and industrial microbiology. In this paper the Ant Colony Optimization algorithm and Genetic algorithm are proposed for parameter identification of an E. coli fed-batch cultivation process model. A system of nonlinear ordinary differential equations is used to model the biomass growth and the substrate utilization. We use real experimental data set from an E. coli MC4110 fed-batch cultivation process for performing parameter optimization. The objective function was formulated as a distance between the model predicted and the experimental data. Two different distances were used and compared – the Least Square Regression and the Hausdorff Distance. The Hausdorff Distance was used for the first time to solve the considered parameter optimization problem. The results showed that better results concerning model accuracy are obtained using the objective function with a Hausdorff Distance between the modeled and the measured data. Although the Hausdorff Distance is more time consuming than the Least Square Distance, this metric is more realistic for the considered problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akpinar, S., Bayhan, G.M.: A Hybrid Genetic Aalgorithm for Mixed Model Assembly Line Balancing Problem with Parallel Workstations and Zoning Constraints. Engineering Applications of Artificial Intelligence 24(3), 449–457 (2011)

    Article  Google Scholar 

  2. Al-Duwaish, H.N.: A Genetic Approach to the Identification of Linear Dynamical Systems with Static Nonlinearities. International Journal of Systems Science 31(3), 307–313 (2000)

    Article  Google Scholar 

  3. Arndt, M., Hitzmann, B.: Feed Forward/feedback Control of Glucose Concentration during Cultivation of Escherichia coli. In: 8th IFAC Int. Conf. on Comp. Appl. in Biotechn, Canada, pp. 425–429 (2001)

    Google Scholar 

  4. Bastin, G., Dochain, D.: On-line Estimation and Adaptive Control of Bioreactors Els. Sc. Publ. (1991)

    Google Scholar 

  5. Benjamin, K.K., Ammanuel, A.N., David, A., Benjamin, Y.K.: Genetic Algorithm using for a Batch Fermentation Process Identification. J. of Applied Sciences 8(12), 2272–2278 (2008)

    Article  Google Scholar 

  6. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  7. Brownlee J.,: Clever Algorithms. Nature-Inspired Programming Recipes, LuLu, p. 436, 978-1-4467-8506-5 (2011)

    Google Scholar 

  8. Carrillo-Ureta, G.E., Roberts, P.D., Becerra, V.M.: Genetic Algorithms for Optimal Control of Beer Fermentation. In: Proc. of the 2001 IEEE International Symposium on Intelligent Control, Mexico City, Mexico, pp. 391–396 (2001)

    Google Scholar 

  9. Chen, S., Lovell, B.C.: Feature space Hausdorff distance for face recognition. In: Proc. of 20th International Conference on Pattern Recognition (ICPR), Istanbul, Turkey, pp. 1465–1468 (2010)

    Google Scholar 

  10. Covert, M.W., Xiao, N., Chen, T.J., Karr, J.R.: Integrating Metabolic, Transcriptional Regulatory, and Signal Transduction Models in Escherichia coli. J. of Bioinformatics 24(18), 2044–2050 (2008)

    Article  Google Scholar 

  11. da Silva, M.F.J., Perez, J.M.S., Pulido, J.A.G., Rodriguez, M.A.V.: AlineaGA - A Genetic Algorithm with Local Search Optimization for Multiple Sequence Alignment. Appl. Intell. 32, 164–172 (2010)

    Article  Google Scholar 

  12. Dorigo, M., Di Caro, G.: The Ant Colony Optimization Meta-heuristic. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Idea in Optimization, pp. 11–32. McGrow-Hill (1999)

    Google Scholar 

  13. Dorigo, M., Stutzle, S.: Ant Colony Optimization. MIT Press (2004)

    Google Scholar 

  14. Fidanova, S.: ACO algorithm with additional reinforcement. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) ANTS 2002. LNCS, vol. 2463, pp. 292–293. Springer, Heidelberg (2002)

    Google Scholar 

  15. Fidanova, S., Lirkov, I.: 3D Protein Structure Prediction. J. Analele Universitatii de Vest Timisoara, Seria Matematica-Informatica XLVII(2), 33–46 (2009) ISSN 1224-970X

    MathSciNet  Google Scholar 

  16. Fidanova, S.: An Improvement of the Grid-based Hydrophobic-hydrophilic Model. Int. J. Bioautomation 14(2), 147–156 (2010) ISSN 1312-451X

    Google Scholar 

  17. Fidanova, S., Alba, E., Molina, G.: Hybrid ACO algorithm for the GPS surveying problem. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2009. LNCS, vol. 5910, pp. 318–325. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley Longman, London (2006)

    Google Scholar 

  19. Holland, J.H.: Adaptation in Natural and Artificial Systems, 2nd edn. MIT Press, Cambridge (1992)

    Google Scholar 

  20. Houck, C.R., Joines, J.A., Kay, M.G.: A Genetic Algorithm for Function Optimization: A Matlab Implementation. Genetic Algorithm Toolbox Toutorial (1996), http://read.pudn.com/downloads152/ebook/662702/gaotv5.pdf

  21. Jiang, L., Ouyang, Q., Tu, Y.: Quantitative Modeling of Escherichia coli Chemotactic Motion in Environments Varying in Space and Time. PLoS Comput. Biol. 6(4), e1000735 (2010), doi:10.1371/journal.pcbi.1000735

    Google Scholar 

  22. Karelina, T.A., Ma, H., Goryanin, I., Demin, O.V.: EI of the Phosphotransferase System of Escherichia coli: Mathematical Modeling Approach to Analysis of Its Kinetic Properties. Journal of Biophysics 2011, Article ID 579402 (2011), doi:10.1155/2011/579402

    Google Scholar 

  23. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science, New Series 220(4598), 671–680 (1983)

    MathSciNet  MATH  Google Scholar 

  24. Kumar, S.M., Giriraj, R., Jain, N., Anantharaman, V., Dharmalingam, K.M.M., Sheriffa, B.: Genetic algorithm based PID controller tuning for a model bioreactor. Indian Chemical Engineer 50(3), 214–226 (2008)

    Google Scholar 

  25. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 2nd Exended edn. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

  26. Nutanong, S., Jacox, E.H., Samet, H.: An Incremental Hausdorff Distance Calculation Algorithm. Proc. of the VLDB Endowment 4(8), 506–517 (2011)

    Google Scholar 

  27. Opalka, N., Brown, J., Lane, W.J., Twist, K.-A.F., Landick, R., Asturias, F.J., Darst, S.A.: Complete Structural Model of Escherichia coli RNA Polymerase from a Hybrid Approach. PLoS Biol. 8(9), e1000483 (2010), doi:10.1371/journal.pbio.1000483

    Google Scholar 

  28. Paplinski, J.P.: The Genetic Algorithm with Simplex Crossover for Identification of Time Delays. Intelligent Information Systems, 337–346 (2010)

    Google Scholar 

  29. Parker, B.S.: Demonstration of using Genetic Algorithm Learning. Information Systems Teaching Laboratory (1992)

    Google Scholar 

  30. Pardalos, P.M., Resende, M.G.C.: Handbook of Applied Optimization. Oxford University Press (2002)

    Google Scholar 

  31. Petersen, C.M., Rifai, H.S., Villarreal, G.C., Stein, R.: Modeling Escherichia coli and Its Sources in an Urban Bayou with Hydrologic Simulation Program – FORTRAN. Journal of Environmental Engineering 137(6), 487–503 (2011)

    Article  Google Scholar 

  32. Ranganath, M., Renganathan, S., Gokulnath, C.: Identification of Bioprocesses using Genetic Algorithm. Bioprocess Engineering 21, 123–127 (1999)

    Article  Google Scholar 

  33. Roeva, O.: Parameter estimation of a monod-type model based on genetic algorithms and sensitivity analysis. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2007. LNCS, vol. 4818, pp. 601–608. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  34. Roeva, O., Pencheva, T., Hitzmann, B., Tzonkov, S.: A Genetic Algorithms Based Approach for Identification of Escherichia coli Fed-batch Fermentation. Int. J. Bioautomation 1, 30–41 (2004)

    Google Scholar 

  35. Roeva, O.: A Modified Genetic Algorithm for a Parameter Identification of Fermentation Processes. Biotechnology and Biotechnological Equipment 20(1), 202–209 (2006)

    Google Scholar 

  36. Roeva, O.: Multipopulation genetic algorithms: A tool for parameter optimization of cultivation processes models. In: Boyanov, T., Dimova, S., Georgiev, K., Nikolov, G. (eds.) NMA 2006. LNCS, vol. 4310, pp. 255–262. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  37. Roeva, O.: Improvement of Genetic Algorithm Performance for Identification of Cultivation Process Models. In: Advances Topics on Evolutionary Computing, Book Series: Artificial Intelligence Series-WSEAS, pp. 34–39 (2008)

    Google Scholar 

  38. Roeva, O., Slavov, T.: Fed-batch cultivation control based on genetic algorithm PID controller tuning. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) NMA 2010. LNCS, vol. 6046, pp. 289–296. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  39. Rote, G.: Computing the minimum Hausdorff distance between two point sets on a line under translation. Information Processing Letters 38, 123–127 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schuegerl, K., Bellgardt, K.-H.: Bioreaction Engineering: Modeling and Control. Springer, Heidelberg (2000)

    Book  Google Scholar 

  41. Shmygelska, A., Hoos, H.H.: An ant colony optimization algorithm for the 2D and 3D hydrophobic polar protein folding problem. BMC Bioinformatics 6(30) (2005), doi:10.1186/1471-2105-6-30

    Google Scholar 

  42. Skandamis, P.N., Nychas, G.E.: Development and Evaluation of a Model Predicting the Survival of Escherichia coli O157:H7 NCTC 12900 in Homemade Eggplant Salad at Various Temperatures, pHs, and Oregano Essential Oil Concentrations. Applied and Environmental Microbiology 66(4), 1646–1653 (2000)

    Article  Google Scholar 

  43. Sugiyama, M., Hirowatari, E., Tsuiki, H., Yamamoto, A.: Learning figures with the hausdorff metric by fractals. In: Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds.) ALT 2010. LNCS, vol. 6331, pp. 315–329. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  44. Syam, W.P., Al-Harkan, I.M.: Comparison of Three Meta Heuristics to Optimize Hybrid Flow Shop Scheduling Problem with Parallel Machines. World Academy of Science, Engineering and Technology 62, 271–278 (2010)

    Google Scholar 

  45. Tahouni, N., Smith, R., Panjeshahi, M.H.: Comparison of Stochastic Methods with Respect to Performance and Reliability of Low-temperature Gas Separation Processes. The Canadian Journal of Chemical Engineering 88(2), 256–267 (2010)

    Google Scholar 

  46. Umarani, R., Selvi, V.: Particle Swarm Optimization: Evolution, Overview and Applications. Int J of Engineering Science and Technology 2(7), 2802–2806 (2010)

    Google Scholar 

  47. Viesturs, U., Karklina, D., Ciprovica, I.: Bioprocess and Bioengineering, Jeglava (2004)

    Google Scholar 

  48. Yedjour, H., Meftah, B., Yedjour, D., Benyettou, A.: Combining Spiking Neural Network with Hausdorff Distance Matching for Object Tracking. Asian Journal of Applied Sciences 4, 63–71 (2011)

    Article  Google Scholar 

  49. Yusof, M.K., Stapa, M.A.: Achieving of Tabu Search Algorithm for Scheduling Technique in Grid Computing using GridSim Simulation Tool: Multiple Jobs on Limited Resource. Int J of Grid and Distributed Computing 3(4), 19–31 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefka Fidanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fidanova, S., Roeva, O., Ganzha, M. (2013). ACO and GA for Parameter Settings of E. coli Fed-Batch Cultivation Model. In: Fidanova, S. (eds) Recent Advances in Computational Optimization. Studies in Computational Intelligence, vol 470. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00410-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00410-5_4

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00409-9

  • Online ISBN: 978-3-319-00410-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics