A MAS for Teaching Computational Logic

Jose Alberto Maestro-Prieto!, M® Aranzazu Simén-Hurtado!,
Juan F. de-Paz-Santana?, and Gabriel Villarrubia-Gonzélez?

Dept. de Informatica, Universidad de Valladolid, Spain
{jose,arancha}@infor.uva.es

Dept. de Informética y Automadtica, Universidad de Salamanca, Spain
{fcofds,gvg}Cusal.es

Abstract. In this paper, an Intelligent Tutoring System (ITS) for teaching
computational logic called STAL is described. Several basic topics in com-
putational logic are covered. The more complex part in STAL is the module
in charge of the diagnosis, which performs model-based diagnosis although
sometimes, a knowledge-based (expertise) model is necessary in order to yield
a more accurate diagnosis. The inherent complexity of the ITS is approached
using a Multi-Agent System (MAS). The classical approach in ITS, which
divides them into four independent modules, is adapted to a MAS creating
an agent for each module and other agent for any other subsystem needed.
The results obtained from an experiment of usage of STAL are presented.

Keywords: Multi-Agent Systems, Intelligent Tutoring Systems, Computa-
tional Logic, Model Based Diagnosis, Knowledge Based Diagnosis.

1 Introduction

As software and hardware systems increase its complexity, processes that are
more complex are involved in the specification and design of this kind of
systems. Using logic-based descriptions is a suitable solution in this case [IJ.
Some kinds of logic are powerful enough to make complete descriptions and
other complex tasks such as model checking, theorem proving and feature
verification. Moreover, some of them can be automated, such as First Order
Logic (FOL). However, dealing with practical problems of Automated The-
orem Proving (ATP) such as memory limits, speeds or other performance
constraints is not easy, as it can be seen in the CADH] ATP System Com-
petition (CASC) reports [2].

The more complex theorem provers, such as General Proof [3] or Open-
Proof [4], provides a serious environment to use formal specifications. How-
ever, as it was stated by [5l [I], such kind of complex theorem provers will
usually need to be guided, as they could not always be able to reach the

! CADE: International Conference on Automated Deduction.

S. Omatu et al. (Eds.): Distrib. Computing & Artificial Intelligence, AISC 217, pp. 209-217)
DOI: 10.1007/978-3-319-00551-5 26 © Springer International Publishing Switzerland 2013

210 J.A. Maestro-Prieto et al.

solution without external (expert) assistance. Thus, using logic makes raise
other problems: firstly, it cannot be automated completely, and hence, it is
necessary people with a background good enough to be able to use it in order
to get the correct results and interpret the correct conclusions.

The Intelligent Tutoring Systems (ITS) approach to self-paced learning can
be valid to enhance the knowledge acquisition about Computational Logic
and ATP. An ITS is a computer program based on cognitivist theories [6]
that usually behaves proposing exercises to the student, and adapting its
behavior (the exercises proposed, tips provided, changing the objectives if a
lack of knowledge is detected, etc.) as the student acquire more knowledge
and skills. An ITS usually exhibits an intelligent behavior and it is able of
detecting of the student mistakes, diagnosing the detected errors, assessing
the student knowledge, planning the set of exercises having into account the
actual knowledge of the student, and maybe others.

An ITS fulfils most of the requirements to become a Multi-Agent System
(MAS). The typical design of an ITS splits the functionality in separated,
independent modules working with each other for achieving the ITS goals.
In [7] agents are described as flexible problem solvers, operating in an en-
vironment over which they have only partial control and observability. One
of the goals of a MAS is to construct systems capable of autonomous and
flexible decision-making, and of cooperating with other systems [8]. Using
the MAS approach can help to organize the complex behavior of the ITS.
In [9], 10, M1, 2] 03] different proposals for implementing an ITS as a MAS
can be found.

The next sections are organized as follows: computational logic is intro-
duced, then STAL is presented and the MAS architecture is sketched, a simple
example is included and finally, the conclusions.

2 Teaching Computational Logic

FOL allows representing knowledge in a domain by stating the general rela-
tionships in that domain (called axioms) and some concrete facts for repre-
senting the specific problem. Thus, a problem can be declaratively described
just stating facts and relationships, a process called formalization. It is also
possible to obtain new knowledge using logic rules. Logic rules are trans-
formation operations that get logic expressions (such as axioms and maybe
facts), and yield new expressions, which it is said to be inferred by the rule.
Sound, valid rules yield sound, valid new knowledge from the existing one.
Sound logic rules, axioms and facts together with a proper strategy (or an
algorithm) can let you prove a theorem. Automated theorem proving was a
landmark in the development of the Artificial Intelligence (AI) which still ap-
pears in the standard curricula for an introductory course to Al -for example,
the proposed in [I4]-, as an example of an automated reasoning procedure.
Classical theorem proving is based on the use of the Resolution Rule, and
may be others. In order to use the Resolution rule, logical expressions should

A MAS for Teaching Computational Logic 211

have a specific format, termed clause form, which can be achieved by applying
a well-known sequence of logical transformations to a Well-Formed Formula
(WFF). At the final of the nine steps, a set of clauses are obtained. A clause
is just a disjunctive set of literals. A literal is a predicate, maybe negated.

The general idea of adding a graphical representation to text descriptions
is still valid [I5]. Graphics can help to ease the learning of concepts and
procedures and to improve the knowledge transfer, and it can be more helpful
for novices [16].

This is probably the first time the students come face to face with a declar-
ative programming language [17]. There exist several tools which goal is to
ease the learning of logic and to get practice solving logical problems, such
as HyperProof [I8], Deep Thought [19] or WinKE [20]. More recently, a new
graphical representation based on puzzle pieces for the SWI-Prolog inter-
preter output has been proposed in [17]. All these tools share a feature: it
is available some kind of graphical output for representing the developed
internal process.

Formalization has also been approached using ITSs, for example in [21].
However, to the best of our knowledge, transforming a WFF into the clause
form has only been approached twice. In [21] it is described a computer
program able to process a WEFF up to one specific step (of the nine steps
process for obtaining the clause form from a WFF), on demand of the student.
Then, the student can check its own, hand written, response and visually
comparing it against the result yielded by the program. The other alternative
is our own solution, called SLI, which is also able to expose the individual
steps of the process for transforming a set of WFF into a set of clauses.

3 SIAL: An ITS for Computational Logic

SIAL is an ITS designed to perform as a practical tool, that automatically
can check the student’s solution to a proposed exercise. STAL provides com-
putational support in order to help the student to fix some concepts and
procedures in a practical way; the student is proposed exercises that should
be solved using usual techniques and methods of computational logic.

SIAL is designed to be able to propose exercises ranging from obtaining
the clause form from FOL expressions up to being able to use the hyperres-
olution rule. SIAL is organized in 15 thematic levels (Table [). The levels
are arranged from the simplest skills to the most complex ones. Levels 1
to 6 include converting a set of WFF to clause form, predicate unification,
binary resolution, resolution refutation and the factoring rule. These levels
constitute the basic skills to be acquired, thus forming the main basis for the
following levels.

Levels 7 to 12 deal with methods for selecting clauses to yield a new resol-
vent and reducing the number of generated clauses. Pure literals, tautologies
and subsumed clauses should be detected and removed. In addition, the set

212 J.A. Maestro-Prieto et al.

of support strategy is included as a way to control the progressive increase
for the generated clauses. Level 12 is devoted to the hyperresolution rule.

SIAL levels can be grouped depending on the interaction the student is
allowed to do. Levels 1 to 6 are designed for novice students. These levels
are more guided and the student is encouraged towards a stepwise interac-
tion. Despite this, student interaction is still wide enough, and this makes it
impossible obtaining an accurate diagnosis in every case. Levels 7 to 12 are
designated for middle-level students and tje guidance is weakened. In these
levels, some restrictions are removed and students can provide a solution
without some intermediate steps. There exists also an automatic mode in
which STAL solves a problem proposed by the student. SIAL behaves as a
usual ATP program.

SIAL is designed to increase the complexity of the developed process in
two ways: firstly, exercises should be arranged into each level from the easier
to the most difficult. Second, the first three levels only deal with one process
(although a complex process), whereas levels from 4 to 12 are defined to com-
bine several processes. This approach makes the learning process progressive
as upper levels lie on previous ones. Each level above the level 4 can assume
the functionality of each level below it. In this way, the user must integrate
the knowledge already practiced jointly with a new technique, in the current
problem solving process.

4 The ITS as a Multi-agents System

SIAL is composed of several agents which are capable of interact with the
student while collect, process and evaluate new data together with histori-
cal data. The agents of STAL know the student history and they use these
data to adapt the training plan. STAL architecture is based on the classical
four modules ITS architecture [22]. The same as in [13], classical modules

Table 1 Description of each level defined in STAL, guiding and topic classification

Level Guiding Topic Description

Weak Compound Support set strategy.
Weak Compound Subsumption.
Weak Compound Hyperresolution (positive/negative hyperresolution).

1 Strong Single Getting the clause form (without Skolemization process).
2 Strong Single Getting the clause form (with Skolemization process).
3 Strong Single Unification procedure.

4 Strong Compound Resolution rule.

5 Strong Compound Strongly guided refutation resolution.

6 Strong Compound Factoring rule.

7 Weak Compound Weakly guided refutation resolution.

8 Weak Compound Pure literal removing.

9 Weak Compound Tautology removing.

10

11

12

A MAS for Teaching Computational Logic 213

have become in agents. Together with these main agents, any other support
subsystem used in SIAL has also been wrapped as an agent of the system.

4.1 The Main Agents

The interface agent is responsible for showing the environment for problem
solving and controlling the user interaction. Besides the program interface,
the interface agent also contains the Help manager. In order to develop its
functionality, the interface agent must communicate with the others main
agents, those acting as the expertise module, the student model and the
pedagogical module.

The agent performing the expertise model is responsible for interpreting
the actions the student takes. It is composed of two automated theorem
provers that represent the domain model which detect mistakes and identify
errors. It also includes an expert system engine (CLIPS) for helping in error
identification. This agent is in charge of inferring the student’s knowledge by
analyzing the student’s actions. STAL applies up to two different processes in
order to obtain an accurate diagnosis [23]: a model-based diagnosis, based on
ATP, to ensure the student’s answer validity and maybe obtain a diagnosis
and, whenever it is not possible to get an accurate diagnosis, an expertise-
based diagnosis (using expert systems) is tried.

The agent in charge of the student model is responsible for maintaining
a representation of the student’s knowledge. It stores the actions taken by
the student, the mistakes and errors identified, the exercises solved and so
on, in a database.

The agent acting as the pedagogical module is responsible for the in-
structional support. The pedagogical module agent uses the information con-
tained in the student model in order to plan a sequence of exercises, to decide
if a reinforcement exercise is necessary or whether any advice message should
be sent to the student. It also decides when a student is promoted to the next
level.

A knowledge-based implementation has been chosen for the pedagogical
behavior. The knowledge for selecting the next exercise to be shown is rep-
resented as an expert system.

4.2 The Support Agents

Together with the main agents, STAL also has some other agents in order
to wrap other software programs and obtain some typical features in MAS
architecture such as, an autonomous behavior, high modularity and interop-
erability. Wrapping the external programs as agents can also help to replace
some of these programs, by newer versions or by other programs without
changing the whole application.

The expertise model agent rely on three other agents, both of them are
automated theorem provers (SLI and OTTER) and the other is the expert

214 J.A. Maestro-Prieto et al.

Table 2 Number of errors identified by STAL, grouped by exercise level and diag-
nosis method

SIAL Level N. errors % Diagnosed by Formal Model % Diagnosed by E. S.

1 1626 84’38 1562
2 1957 8779 12’21
3 976 10000
4 261 10000
5 402 100'00
7 482 10000
Total 5702 91’35 865

system engine CLIPS. The wrapping agents for SLI and OTTER make the
communication uniform between them and the other agents despite the fact
that both provers do not share a common interface. In addition, some of
these agents communicate with several agents, for instance, the CLIPS agent
should communicate with the expertise model agent and with pedagogical
module agent. Providing them with a high-level communication protocol (a
subset of the KQML standard language [24]) eases the communication among
them.

The student model agent also interacts with a database. The database
has also been wrapped by its own agent. In one hand, this allows to change
the physical database reducing the changes in the whole program. STAL has
been used with several Databases: MySQL, MS SQLServer and PostgreSQL
whereas MS Access is used when developing. This also allows running STAL
maintaining a central database. STAL agents can communicate via standard
HTTP requests and hence, the agent database can be placed in the computer
containing the physical database whereas the others agents and specially, the
program interface, can be placed in other computer.

5 A Practical Experiment

SIAL has been used in the practical sessions of an introductory course of
Artificial Intelligence. 33 students regularly assisted to practical sessions and
use SIAL together with SWI-Prolog to solve exercises. The experiment con-
sisted of 120 practical exercises classified in levels (from 1 to 6) some of them
mandatory (61) and others (59) for reinforcement. Each student made an av-
erage of 70.16 exercises (o = 18.56). Data collected about the errors identified
during the experiment is shown in Table

Only 270 (4,74%) out of the 5702 detected errors were syntactic errors.
All the other errors were errors due to a wrong proposed solution: wrong
expressions, wrong use of operators, lack of literals, wrong use of rules, and
so on. Hence, the implemented interface in STAL seem to be able to minimize
the number of errors due to expression manipulation. The huge difference in
the number of errors detected between the first two levels and the others can

A MAS for Teaching Computational Logic 215

be explained because of the complexity of transforming WFF into the clause
form with respect to the unification and resolution processes. The expert
systems are designed to deal with errors at levels 1 and 2 (clause form),
and they are invoked only after the model based diagnosis. The model based
diagnosis diagnoses the 91,35% of the errors and provides STAL with a great
detection power and accuracy.

The students received a survey once they have solved some exercises us-
ing SIAL and SWI-Prolog. The survey inquired students about their opinion
about usefulness, usability and a comparison of STAL and SWI-Prolog. Stu-
dents were also asked to mark STAL. Questions have four possible answers.

Most of the students said that STAL is very useful (31.82%) or useful
(54,54%) for learning computational logic. Only 1 student (4,54%) said that
SIAL is not useful at all.

All the students said that they have solved exercises using both SIAL and
SWI-Prolog. A 31.82% of the students said that STAL cannot be replaced by
SWI-Prolog, and a 50.0% said that STAL only can be replaced very partially
by SWI-Prolog. None said that SIAL and SWI-Prolog were equal.

The 77.27% of the students said that STAL is very easy to use and the
13.64% of the students said that is easy to use. None of the students said
that STAL is difficult to use. STAL was marked as B (Good) by the 90.91%
of the students. The rest of the students (9.09%) mark STAL as C (Pass).

6 Conclusions

SIAL, an ITS for learning computational logic, has been described. SIAL has
been implemented as a MAS. The different modules of the ITS have been
converted in agents together with the auxiliary subsystems. One of the most
important modules in SIAL is the expertise module, which is made up of
two automatic theorem provers and expert systems. The chosen approach
allows us to provide students with an accurate tutor. The chosen model-
based approach lets STAL detect the most of user’s errors accurately, inform
the user about its existence, and provide some hint to localize and fix the
mistake.

The results obtained in the practical experiment are promising. The
student’s answers to the survey show a clear difference between SIAL and
SWI-Prolog. Student’s answers also say that STAL is useful for learning com-
putational logic and it is easy to use.

References

1. Bundy, A., Moore, J.D., Zinn, C.: An Intelligent Tutoring System for Induction
Proofs. In: Melis, E., Scott, D., et al. (eds.) CADE-17 Workshop on Automated
Deduction in Education, pp. 4-13 (2000)

2. Sutcliffe, G.: The CADE-23 Automated Theorem Proving System Competition
- CASC-23. AT Communications 25, 49-63 (2012)

216

10.

11.

12.

13.

14.

15.

16.

17.

J.A. Maestro-Prieto et al.

Aspinall, D., Liith, C., Winterstein, D.: A Framework for Interactive
Proof. In: Kauers, M., Kerber, M., Miner, R., Windsteiger, W. (eds.)
MKM/CALCULEMUS 2007. LNCS (LNAI), vol. 4573, pp. 161-175. Springer,
Heidelberg (2007)

Barker-Plummer, D., Etchemendy, J., Liu, A., Murray, M., Swoboda, N.: Open-
proof - A Flexible Framework for Heterogeneous Reasoning. In: Stapleton, G.,
Howse, J., Lee, J. (eds.) Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 347-349.
Springer, Heidelberg (2008)

Aitken, J.: Problem Solving in Interactive Proof: A Knowledge-Modelling Ap-
proach. In: Wahlster, W. (ed.) Proceedings of the 12th European Conference
on Artificial Intelligence, pp. 335-339. John Wiley & Sons, Budapest (1996)
Driscoll, M.P.: Psychological foundations of instructional design. In: Trends and
Issues in Instructional Design and Technology, 2nd edn., pp. 36-44. Pearson
Education, Inc., Upper Saddle River (2007)

Jennings, N.R., Wooldridge, M.: Agent-Oriented Software Engineering. In:
Bradshaw, J. (ed.). AAAI/MIT Press (2000)

Rodriguez, S., Pérez-Lancho, B., de Paz, J., Bajo, J., Corchado, J.: Ovamah:
Multiagent-based Adaptive Virtual Organizations. In: Proceedings of the 12th
International Conference on Information Fusion, Seattle, USA, pp. 990-997
(2009)

Cheikes, B.: GIA: An agent-based architecture for Intelligent Tutoring Systems.
In: Proceedings of the CIKM 1995 Workshop on Intelligent Information Agents
(1995)

Capuano, N., Marsella, M., Salerno, S.: ABITS: An Agent Based Intelligent
Tutoring System for Distance Learning. In: Proceedings of the International
Workshop in Adaptative and Intelligent Web-based Educational Systems, pp.
17-28 (2000)

Hospers, M., Kroezen, E., Nijholt, A., op den Akker, R.: Developing a generic
agent-based intelligent tutoring system. In: Devedzic, V., Spector, M., Samp-
son, D., Kinshuk, M. (eds.) The 3rd IEEE International Conference on Ad-
vanced Learning Technologies. IEEE Computer Society, Los Alamitos (2003)
Fernédndez-Caballero, A., Gascuena, J., Botella, F., Lazcorreta, E.: Distance
learning by intelligent tutoring system. Part I: Agent-based architecture for
user-centred adaptivity. In: Proceedings of the 7th International Conference on
Enterprise Information Systems, pp. 75-82 (2005)

Gonzélez, C., Burguillo, J., Vidal, J.C., Llamas, M., Rodriguez, D.: ITS-TB:
An Intelligent Tutoring System to provide e-Learning in Public Health. In: Pro-
ceedings of the 16th EAEEIE Annual Conference on Innovation in Education
for Electrical and Information Engineering, EIE (2005)

Association for Computing Machinery (ACM): Computer Science Curriculum
2008: An Interim Revision of the CS 2001 (2008)

Mayer, R.E., Moreno, R.: Nine Ways to Reduce Cognitive Load in Multimedia
Learning. Educational Psychologist 38, 43-52 (2003)

Clark, R., Mayer, R.: e-Learning and the Science of Instruction: Proven Guide-
lines for Consumers and Designers of Multimedia Learning, 3rd edn. Pfeiffer
(2011)

Mondshein, L., Sattar, A., Lorenzen, T.: Visualizing prolog: a “jigsaw puzzle”
approach. ACM Inroads 1, 4348 (2010)

A MAS for Teaching Computational Logic 217

18.

19.

20.

21.

22.

23.

24.

Stenning, K., Cox, R., Oberlander, J.: Contrasting the Cognitive Effects of
Graphical and Sentential Logic Teaching: Reasoning, Representation and Indi-
vidual Differences. Language and Cognitive Processes 3, 333-354 (1995)

Croy, M.J.: Graphic Interface Design and Deductive Proof Construction. Jour-
nal of Computers in Mathematics and Science Teaching 18, 371-385 (1999)
Endriss, U.: The interactive learning environment winke for teaching deductive
reasoning. In: Manzano, M. (ed.) Proceedings of the 1st International Congress
on Tools for Teaching Logic. University of Salamanca (2000) (invited talk ab-
stract)

Hatzilygeroudis, I., Giannoulis, C., Koutsojannis, C.: A Web-Based Education
System for Predicate Logic. In: Proceedings of the IEEE International Confer-
ence on Advanced Learning Technologies, pp. 106—-110. IEEE Computer Society,
Washington, DC (2004)

Mitrovic, A., Martin, B., Suraweera, P.: Intelligent tutors for all: The constraint-
based approach. IEEE Intelligent Systems 22, 38-45 (2007)

Ferrero, B., Fernandez-Castro, 1., Urretavizcaya, M.: Multiple Paradigms for a
Generic Diagnostic Proposal. In: Gauthier, G., VanLehn, K., Frasson, C. (eds.)
ITS 2000. LNCS, vol. 1839, p. 653. Springer, Heidelberg (2000)

Finin, T., Weber, J., Wiederhold, G., Genesereth, M., Fritzson, R., McGuire,
J., Pelavin, R., Shapiro, S., Beck, C.: Specification of the KQML Agent-
Communication Language. Technical Report, DARPA, DRAFT (1993)

	Introduction
	Teaching Computational Logic
	SIAL: An ITS for Computational Logic
	The ITS as a Multi-agents System
	The Main Agents
	The Support Agents

	A Practical Experiment
	Conclusions
	References

