Skip to main content

Stochastic Decentralized Routing of Unsplittable Vehicle Flows Using Constraint Optimization

  • Conference paper
  • 1913 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 217))

Abstract

A decentralized solution to the unsplittable flow problem (UFP) in a transport network is considered, where each flow uses only one route from source to sink and the flows cannot be separated into parts in intermediate nodes. The flow costs in each edge depend on the combination of the assigned flows as well as on external random variables. The distributions of the random variables are unknown, only samples are available. In order to use the information available in the samples more effectively, several resamples are constructed from the original samples. The nodes agree on the resamples in a decentralized way using a cooperative resampling scheme. A decentralized asynchronous solution algorithm for the flow routing problem in these conditions is proposed, which is based on the ADOPT algorithm for asynchronous distributed constraint optimization (DCOP). An example illustrating the proposed approach is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  2. Andronov, A., Fiosina, J., Fiosins, M.: Statistical estimation for a failure model with damage accumulation in a case of small samples. J. of Stat. Planning and Inf. 139, 1685–1692 (2009)

    Article  MATH  Google Scholar 

  3. Andronov, A., Fiosins, M.: Applications of resampling approach to statistical problems of logical systems. Acta et Comm. Univ. Tartuensis de Mathematica 8, 63–72 (2004)

    Google Scholar 

  4. Atlas, J., Decker, K.: Task scheduling using constraint optimization with uncertainty. In: Proc. of CAPS 2007, pp. 25–27 (2007)

    Google Scholar 

  5. Azar, Y., Regev, O.: Strongly polynomial algorithms for the unsplittable flow problem. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 15–29. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Fiosins, M., Fiosina, J., Müller, J.P.: Change point analysis for intelligent agents in city traffic. In: Cao, L., Bazzan, A.L.C., Symeonidis, A.L., Gorodetsky, V.I., Weiss, G., Yu, P.S. (eds.) ADMI 2011. LNCS (LNAI), vol. 7103, pp. 195–210. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Fiosins, M., Fiosina, J., Müller, J.P., Görmer, J.: Reconciling strategic and tactical decision making in agent-oriented simulation of vehicles in urban traffic. In: Proc. of the 4th Int. ICST Conf. Simulation Tools and Techniques, pp. 144–151. ACM Digital Library (2011)

    Google Scholar 

  8. Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press (1962)

    Google Scholar 

  9. Glockner, G., Nemhauser, G.: A dynamic network flow problem with uncertain arc capacities: Formulation and problem structure. Operations Research 48(2), 233–242 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Goldberg, A.V., Grigoriadis, M.D., Tarjan, R.E.: Use of dynamic trees in a network simplex algorithm for the maximum flow problem. Mathematical Programming 50, 277–290 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Karakostas, G.: Faster approximation schemes for fractional multicommodity flow problems. ACM Trans. Algorithms 4(1), 13:1–13:17 (2008)

    Google Scholar 

  12. Léauté, T., Faltings, B.: E[DPOP]: Distributed Constraint Optimization under Stochastic Uncertainty using Collaborative Sampling. In: Proc. of the IJCAI 2009, pp. 87–101 (2009)

    Google Scholar 

  13. Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: Adopt: Asynchronous distributed constraint optimization with quality guarantees. Artificial Intelligence Journal 161, 149–180 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ottens, B., Faltings, B.: Coordinating agent plans through distributed constraint optimization. In: Proc. of MASPLAN 2008 (2008)

    Google Scholar 

  15. Petcu, A., Faltings, B.: Dpop: A scalable method for multiagent constraint optimization. In: Proc. of the 19th Int. Joint Conf. on Artificial Intelligence, pp. 266–271 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksims Fiosins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Fiosins, M. (2013). Stochastic Decentralized Routing of Unsplittable Vehicle Flows Using Constraint Optimization. In: Omatu, S., Neves, J., Rodriguez, J., Paz Santana, J., Gonzalez, S. (eds) Distributed Computing and Artificial Intelligence. Advances in Intelligent Systems and Computing, vol 217. Springer, Cham. https://doi.org/10.1007/978-3-319-00551-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00551-5_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00550-8

  • Online ISBN: 978-3-319-00551-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics