Representation of Clinical Practice Guideline
Components in OWL

Tiago Oliveira', Paulo Novais' and José Neves'
'CCTC/DI, University of Minho, Braga, Portugal

Ytoliveira, pjon, jneves}@di.uminho.pt

Abstract. The main purpose to attain with the advent of clinical decision sup-
port systems is either to improve the quality of patient care or to reduce the oc-
currence of clinical malpractice, such as medical errors and defensive medicine.
It is therefore necessary a machine-readable support to integrate the recommen-
dations of Clinical Practice Guidelines in such systems. CompGuide is a Com-
puter-Interpretable Guideline model developed under Ontology Web Language
that offers support for administrative information concerning a guideline, work-
flow procedures, and the definition of clinical and temporal constraints. When
compared to other models of the same type, besides having a comprehensive
task network model, it introduces new temporal representations and the possi-
bility of reusing pre-existing knowledge and integrating it in a guideline.

Keywords: Clinical Practice Guidelines, Ontology, OWL, Decision Support
Systems

1 Introduction

Among the healthcare community the occurrence of medical errors and defensive
medicine are of uppermost concern [1][2]. Medical errors refer to mistakes during the
clinical process that may lead to adverse events, i.e., adjustments in a patient’s health
condition for the worst [1]. It includes errors of execution, treatment and planning,
and their incidence rates, although not very high, are associated with increased spend-
ing and loss of life quality for both physicians and patients [2]. To avoid these situa-
tions, healthcare professionals often adopt another type of harmful behavior, namely
defensive medicine. Indeed, defensive medicine consists in avoiding the treatment of
difficult clinical cases to prevent possible lawsuits or ordering additional complemen-
tary means of diagnostic, motivated by the sense of self-preservation. This behavior is
also motivated by the overreliance on technological means for diagnostic purposes,
which in turn are responsible for rising healthcare costs [3]. If one wants to reduce the
impact of medical malpractice, it is necessary to standardize healthcare delivery and
provide adequate evidence-based recommendations for clinical encounters [4]. Clini-
cal Practice Guidelines (CPGs) are the current medium of choice to disseminate evi-
dence-based medicine.

mailto:jneves%7d@di.uminho.pt

According to the definition of the Institute of Medicine (IOM) of the United States
(US), CPGs are methodically advanced statements that contain recommendations for
healthcare professionals and patients about appropriate medical procedures in specific
clinical circumstances [5], being regarded by healthcare professionals as vehicles that
may integrate the most current indications into patient management [6]. However, the
current format of CPGs presents some weaknesses. They are available as very long
documents that are difficult to consult, since only a small part of them refer truly to
clinical recommendations. Moreover, there are some issues concerning their ambi-
guity [7], namely the misunderstanding of medical terms (semantic ambiguity); con-
flicting instructions (pragmatic ambiguity); and the incorrect structure of statements
(syntactic ambiguity). Additionally, some forms of vagueness may occur in the text,
mainly due to the use of temporal terms (e.g. always, sometimes), probabilistic terms
(e.g. probable, unlikely) and quantitative terms (e.g., many, few). A structured format
for CPGs that is, at the same time, machine-readable, would help to solve these issues
by providing an adequate support for guideline dissemination and deployment, at the
moment of healthcare delivery [8].

This work presents a representation model for CPGs developed in Ontology Web
Language (OWL) capable of accommodating guidelines from any category (e.g.,
diagnosis, evaluation, management and treatment) and medical sphere (e.g., family
practice, pediatrics, and cardiology). As for the organization of this article, it is pre-
sented in section two the fundamentals about OWL along with some observations
concerning the advantages of choosing this knowledge representation formalism over
a traditional one, like relational databases. The model, which was named CompGuide,
is presented in section three with the different requirements that were taken into con-
sideration during the development phase. Section four presents a discussion about the
advantages of the model in comparison with the existing ones, and provides some
clarifications as well as future directions for this research.

2 Advantages of Ontology Web Language

The OWL Web Ontology Language is a standard developed by the World Wide Web
Consortium (W3C), being its current version OWL 2 [9]. OWL is designed to be used
by applications that need to process the content of information rather than just pre-
senting information to humans. This formalism facilitates machine interpretability and
is built upon other technologies such as XML, RDF and RDF-schema. OWL is com-
posed of three sublanguages: OWL Lite, OWL DL and OWL Full. The sublanguage
used for this work was OWL DL and it is named in this way due to its correspondence
with description logics. An ontology is used to describe the concepts in a domain as
well as the relationships that hold among them. To accomplish this task, OWL ontol-
ogies use three basic components:

o C(Classes, i.e., sets that contain individuals described using formal (mathematical)
descriptions that state precisely the requirements for class membership;
o Individuals, i.e., objects of the domain and instances of classes; and

4

Tk S isa

I3 /

"Chnica\Task\'-- -“ScopeEIementI"

Pre e
Y ‘H.‘
/ |

-

-:‘Tempnra\ﬁestlictinn.:- {Duraﬁun) ".Perindicily) TemporalUn

L‘Queslinn) '\Actinn) (End | | Plan | { Decision | | Loop |
Fig. 1. Diagram of the main primitive classes in the Computer-Interpretable
Guideline model.

e Properties, i.e., binary relations on individuals that may be used to link two indi-
viduals (object properties) or an individual to a data element (data properties).

The advantages of OWL reside in the manner a system uses the information. Ma-
chines do not grasp yet human language and, occasionally, there is content that es-
capes their understanding. For instance, a human being may comprehend that in some
situations there are words that are unquestionably related, although not being their
replacements. A machine does not recognize these relationships, but semantics are
essential. Indeed, the idea behind OWL is to provide a machine with a semantic con-
text; the advantage relies on the creation of a better management of the information
and its descriptions. If the system is internal to an organization, there is no need to use
OWL. However, if it is something that must be released into the world, OWL will
probably be a better choice in the long term.

In OWL, semantic data is assembled into a graph database, that is, unlike the more
common relational and hierarchical databases, built around nodes and tables. The
relationships in OWL assume a greater importance and are the carriers of the semantic
content of individuals. Moreover, it is possible to describe or restrain class member-
ship using these relations, and thus delimit their scope in an accurate way. In relation-
al databases this would be a hard task to perform. In fact, there is several software
engines developed to reason about the semantic content of ontologies, which check
the integrity of the constraints posed on individuals in order to assert if they belong or
not to a certain class. Examples of such engines are Pellet, FaCT++ and HermiT,
which are available as plugins for Protégé, the ontology editor and knowledge acqui-
sition system used in this work. The reasoned used in this work was FaCT++. As the
objective is the development of a standard machine-readable representation of CPGs,
OWL appears to be the best formalism to use.

3 CompGuide Ontology

There are essentially two ways of developing Computer-Interpretable Guidelines
(CIGs), namely by consulting domain experts in order to get the representation primi-
tives, or by researching different CPGs and determine the information needed for
clinical recommendations. The method followed in this work was a hybrid one, in the

sense that it includes opinions from healthcare professionals and the observation of
guidelines collected from the National Guideline Clearinghouse (NGC)'. The guide-
line model was developed with the objective of fulfilling the requirements, i.e., repre-
sentation of administrative information, construction of workflow procedures, and the
definition of temporal and clinical constraints.

The key primitive classes of the model are depicted in Fig. 1, and will be described
in detail in the following subsections.

3.1 Representation of Administrative Information

As it may be seen in Fig. 1, a CPG is represented as an instance of the ClinicalPrac-
ticeGuideline class. To keep track of different guideline versions and to provide rig-
orous descriptions of guideline content and objectives, the individuals of this class
have a set of data properties that denote administrative information.

OWL has built-in data types that allow the expression of simple text, numeric val-
ues and dates. As such the string and date-time properties defined for administrative
purposes were Authorship, guidelineName, guidelineDescription, DateOfCreation,
DateOfLastUpdate, and VersionNumber. There are also additional properties that
specify in which conditions and to whom the CPG should be applied, such as Clini-
calSpecialty, GuidelineCategory, intendedUsers, and targetPopulation.

3.2 Construction of Workflow Procedures

CPGs are, essentially, clinical recommendations that are usually presented as series of
tasks that must be performed during clinical encounters, and/or disease management
processes. To represent these tasks, CompGuide proposes three main primitive clas-
ses, defined under ClinicalTask, in terms of Plan, Action, Decision and Question. The
tasks of an individual from ClinicalPracticeGuideline are all contained in an individ-
ual Plan, to which it is linked through the hasPlan object property, as it may be seen
in Fig. 2. This is an extract of the Standards of Medical Care in Diabetes guideline
from the American Diabetes Association, obtained from the NGC. A Plan contains
any number of instances belonging to other tasks, including other Plans, and it is
connected to its first task through the hasFirstTask property. In turn, this task is
linked to the next task in the workflow by the nextTask property, and so on. This as-
sures the definition of a sequence of tasks in a manner similar to a linked list, as it is
shown in Fig. 2.

The remaining task classes represent different types of activities. Starting with the
Action class, it stands for a step performed by a healthcare agent that includes clinical
procedures, clinical exams, and medication or non-medication recommendations. The
hasClinicalActionType object property connects an Action to different action types
defined in ClinicalActionType, which describe each one with appropriate data proper-
ties.

' http://guideline.gov/browse/by-topic.aspx

To express decision moments in the workflow, there is a Decision class. The use of
this class entails a bifurcation in the clinical workflow and a choice between two or
more options. The association of a Decision with options and rules is done through
object properties that connect them to instances from the ClinicalConstraintElement
subclasses. The next task in the clinical workflow is selected according to the out-
come of the Decision. As so, the connection between these tasks is done using the
alternativeTasks property. This assures that a task is executed instead of another as
the result of an inference process guided by trigger conditions.

On the other hand, there may be cases when some tasks must be executed simultane-
ously, like the procedures of a treatment plan that act synergistically to produce a
certain result. For these cases, CompGuide provides the parallelTasks property.

The Question class is used to obtain information about a patient’s health condition,
more specifically about the clinical parameters necessary to follow the guideline. In
order to fulfill this requirement, there are data properties created to specify the name
of the parameter to be obtained and the units in which it should be expressed. Such
properties are string data types named Parameter and Unit, respectively.

The End class is used to signal the termination of the execution thread that is being
followed and to indicate that the guideline reached its ultimate point.

ClinicalPractice Guideline Plan Question Decision
_ Selection of blood
(Standards of medl%\—hasl’—'lan-b Blood pressure hasFirsiTask SBP=? exiTosk AR A
\ care in diabetes /‘ control DBP=? th
erapy

Plan Action Actions
Therapy for lowering
SBP below 130 mmHg or -hasFirstTask arallel Tasks. exiTask
DBP below 80 mmHg
< < P<;
130 < SBP < 139 mmHg or 80< DBP<83 mmHg arallelTasks nexiTask
Plan
herapy for lowering
asFirsiTasky m = = parallelTasks | nextTask

DBP below 90 mmHg

SBP = 140 mmHg or DBP 290 mmHg

| SBP: systolic blood pressure DBP: diastolic blood pressure

Fig. 2. Excerpt of the Standards of Medical Care in Diabetes clinical guideline from the Ameri-
can Diabetes Association, and represented according to the CompGuide model.

3.3 Definition of Temporal Constraints

The weight of time in clinical observations is paramount [10]. When assessing a pa-
tient state, a healthcare professional must take into consideration for how long the
patient is manifesting his/her symptoms and try to fit this awareness in the one he/she
already has about possible causes and solutions. The recommendations of CPGs con-
tain specifications about their temporal execution, namely intended duration, number
of repetitions and cycles.

To represent all the temporal constraints, CompGuide provides the TemporalEle-
ment class. This class includes two main temporal constructs, Duration and Loop. The

Duration class specifies how long a task should last, and is defined exclusively for
Plans and Actions. It has a double data type property called DurationValue, where a
value for the intended duration of either Actions or Plans is provided. The Tempo-
ralUnit class, also defined under TemporalElement, covers individuals that represent
the different time units in which the Duration may be expressed, namely second, mi-
nute, hour, day, week, month and year. In the Loop class it is possible to define cycles
for the executions of certain tasks (Plans and Actions). Each instance of Loop has a
data property called RepetitionValue, which is an integer that expresses the number of
repetitions a group of tasks is exposed to. Moreover, each instance also has a has-
Periodicity object property that connects it to individuals from the Periodicity class
(another subclass of TemporalElement), which devises some constructs, namely the
hasTemporalUnit object property and the PeriodicityValue data property, to define
the regular intervals at which the task is repeated.

Another feature of the temporal properties is the possibility to define temporal re-
strictions in clinical constraints. For this purpose one associates a TemporalRe-
striction and a TemporalOperator to clinical conditions that must be met for a task to
be executed. The temporal operators are based on the theory for quality checking of
clinical guidelines by Peter Lucas [11], and include the following individuals:

o Somewhere in the past, i.e., the condition manifested at some point in the
past;

o Always in the past, i.e., the condition was expressed during a time interval in
the past; and

e Currently, i.c., the condition manifested during the medical observations.

The TemporalRestriction bounds the TemporalOperator to a defined period of
time. It possesses a double data property labeled as temporalRestrictionValue and
hasTemporalUnit object property. For instance, if an Action requires the verification
if a patient has been doing is medication for the last 3 months, then TemporalOpera-
tor is set to always in the past, temporalRestrictionValue is set to 3 and finally Tem-
poralUnit is set to month.

3.4 Definition of Clinical Constraints

As it was mentioned previously, a Decision implies a choice between two or more
options. The association of individuals from Option (Fig. 3) to Decision is done by
the hasOption property. The number of times this property is used in a Decision is
equal to the number of options the task denotes. Each Option has a Parameter and a
NumericalValue or QualitativeValue data property. The rules that dictate the option
selection are provided by hasConditionSet property, linking the individuals from this
task to ConditionSet. The last one gathers all the necessary conditions through
hasCondition. In Condition, it is possible to define the clinical parameter whose value
will be compared, the unit it should be in and the operator that should be used. The
hasComparisonOperator property connects individuals from Condition to Compari-
sonOperator. Therefore, the following individuals were created: equal to, greater
than, greater or equal than, less than, less or equal than and different from.

Following a medical pronouncement, it is necessary to select the next task in the
clinical workflow. Therefore there must be some kind of reference in the tasks that are
up for selection (connected by the alternativeTasks property) to the possible results of
the Decision. This is done through the TriggerCondition class that also uses the Con-
ditionSet. The execution of an activity is triggered when the conditions match the
decision output, the selected option. There are other classes in ClinicalConstraintEl-
ement that also use ConditionSet in a similar way, namely PreCondition and Out-
come. PreCondition is used for all types of tasks to express the requirements of the
patient state that must be met before the execution of a task. For instance, when ad-
ministering some pharmacological agent it should be known that the patient is not
allergic to it. The Outcome class puts a restriction to Plans and Actions that are ori-
ented by therapy goals, like the case of Fig. 2 in which the Plans will only be consid-
ered completed when the desired levels of SBP and DBP are achieved.

b h?n g"

e

- AT - —
Ten T /{/ is-a = L
\
— - N

" condition) (PreCondition) (ConditionSet

e

(_ Optien |

-:T.TriggerCondition._-: -:_.ComparisonOperato

Fig. 3. Detailed view of the class ClinicalConstraintElement and its subclasses.

4 Discussion and Conclusions

The work presented in this paper about the CompGuide ontology reflects a different
take on the representation of CPGs in machine-readable support. Although it draws
some inspiration from pre-existing models [8], such as Arden Syntax, PROforma,
GLIF3, Asbru or SAGE, it also introduces different views about the definition of
clinical constraints, temporal properties, clinical task scheduling and how all these
aspects connect with each other. Taking as a reference the oldest, and probably, the
most widely (academically) used model, Arden Syntax (now a standard of Health
Level 7), which represents knowledge for only one clinical decision, CompGuide
provides more expressive power by allowing the definition of a clinical workflow,
similarly to GLIF3 and PROforma. However, these models do not have native meth-
ods for expressing temporal constraints, using a subset of Asbru temporal language to
deal with this issue. Asbru, is, by far, the model that has more temporal constructors
and the most complete in this regard, but, at same time, is considered very complex
and, in some cases, impractical. The temporal constructs presented in this work are
intended to be a compromise between expressivity and complexity that better suits the
necessities of clinical decision support systems and thus of healthcare professionals.
Another important aspect is the possibility of reusing knowledge from other ontolo-
gies in CompGuide by merging the two. This way, the scalability of knowledge is

assured and the addition of supplementary information, needed for the correct appli-
cation of a CPG, is enabled. None of the current formalisms for CPGs is used in a
large scale for real context clinical decision support systems. Yet, there is evidence
that CIG based decision support could, in fact, improve the quality of care and ad-
dress the previously mentioned problems [12]. By using OWL to represent CPGs, one
intends to benefit from the advantages of this knowledge representation formalism
and if possible, increase the penetration of CIGs into routine medical care.

Acknowledgements

This work is funded by national funds through the FCT — Fundagdo para a Cién-
cia e a Tecnologia (Portuguese Foundation for Science and Technology) within pro-
ject PEst-OE/EEI/UI0752/2011".

References

1. Kalra, J.: Medical errors: an introduction to concepts. Clinical biochemistry.
37, 1043-51 (2004).

2. Chawla, A., Gunderman, R.B.: Defensive medicine: prevalence, implications,
and recommendations. Academic radiology. 15, 948-9 (2008).

3. Hermer, L.D., Brody, H.: Defensive medicine, cost containment, and reform.
Journal of general internal medicine. 25, 470-3 (2010).

4, Landrigan, C.P., Parry, G.J., Bones, C.B., Hackbarth, A.D., Goldmann, D. a,

Sharek, P.J.: Temporal trends in rates of patient harm resulting from medical
care. The New England journal of medicine. 363, 2124-34 (2010).

5. Field, M.J., Kathleen N. Lohr Editors; Committee on Clinical Practice
Guidelines, I. of M.: Guidelines for Clinical Practice:From Development to
Use. The National Academies Press (1992).

6. Vachhrajani, S., Kulkarni, A. V, Kestle, J.R.-W.: Clinical practice guidelines.
Journal of neurosurgery. Pediatrics. 3, 249-56 (2009).
7. Codish, S., Shiffman, R.N.: A Model of Ambiguity and Vagueness in Clinical

Practice Guideline Recommendations. AMIA Annual Symposium
proceedings. 146—150 (2005).

8. Isern, D., Moreno, A.: Computer-based execution of clinical guidelines: a
review. International journal of medical informatics. 77, 787—-808 (2008).

. W3C: OWL 2 Web Ontology Language Document Overview. W3C (2009).

10. Neves, J.: A logic interpreter to handle time and negation in logic data bases.
Proceedings of the 1984 annual conference of the ACM on The fifth
generation challenge. pp. 50-54 (1984).

11. Lucas, P.: Quality checking of medical guidelines through logical abduction.
Proc. of AI-2003. pp. 309-321. Springer (2003).

12. Novais, P., Salazar, M., Ribeiro, J., Analide, C., Neves, J.: Decision Making
and Quality-of-Information. Soft Computing Models in Industrial and
Environmental Applications, 5th International Workshop (SOCO 2010). pp.
187-195 (2010).

