Skip to main content

Non-intrusive Uncertainty Propagation with Error Bounds for Conservation Laws Containing Discontinuities

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 92))

Abstract

The propagation of statistical model parameter uncertainty in the numerical approximation of nonlinear conservation laws is considered. Of particular interest are nonlinear conservation laws containing uncertain parameters resulting in stochastic solutions with discontinuities in both physical and random variable dimensions. Using a finite number of deterministic numerical realizations, our objective is the accurate estimation of output uncertainty statistics (e.g. expectation and variance) for quantities of interest such as functionals, graphs, and fields. Given the error in numerical realizations, error bounds for output statistics are derived that may be numerically estimated and included in the calculation of output statistics. Unfortunately, the calculation of output statistics using classical techniques such as polynomial chaos, stochastic collocation, and sparse grid quadrature can be severely compromised by the presence of discontinuities in random variable dimensions. An alternative technique utilizing localized piecewise approximation combined with localized subscale recovery is shown to significantly improve the quality of calculated statistics when discontinuities are present. The success of this localized technique motivates the development of the HYbrid Global and Adaptive Polynomial (HYGAP) method described in Sect. 4.4. HYGAP employs a high accuracy global approximation when the solution data varies smoothly in a random variable dimension and local adaptive polynomial approximation with local postprocessing when the solution is non-smooth. To illustrate strengths and weaknesses of classical and newly proposed uncertainty propagation methods, a number of computational fluid dynamics (CFD) model problems containing various sources of parameter uncertainty are calculated including 1-D Burgers’ equation, subsonic and transonic flow over 2-D single-element and multi-element airfoils, transonic Navier-Stokes flow over a 3-D ONERA M6 wing, and supersonic Navier-Stokes flow over a greatly simplified Saturn-V rocket.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This does require the numerical solution of a scalar implicit function relation for each characteristic that is easily solved to any desired accuracy.

References

  1. Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. pp. 1005–1034 (2007)

    Google Scholar 

  2. Baldwin, B.S., Barth, T.J.: A one-equation turbulence transport model for high Reynolds number wall-bounded flows. Tech. Rep. TM-102847, NASA Ames Research Center, Moffett Field, CA (1990)

    Google Scholar 

  3. Barth, T.J.: Numerical methods for gasdynamic systems on unstructured meshes. In: Kröner, Ohlberger, Rohde (eds.) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, Lecture Notes in Computational Science and Engineering, vol. 5, pp. 195–285. Springer-Verlag, Heidelberg (1998)

    Google Scholar 

  4. Becker, R., Rannacher, R.: Weighted a posteriori error control in FE methods. In: Proc. ENUMATH-97, Heidelberg. World Scientific Pub., Singapore (1998)

    Google Scholar 

  5. Brass, H., Föster, K.J.: On the estimation of linear functionals. Analysis 7, 237–258 (1987)

    MathSciNet  MATH  Google Scholar 

  6. Brezinski, C., Zaglia, M.R.: Extrapolation Methods. North Holland (1991)

    Google Scholar 

  7. Chan, T., Shen, J.: Image Processing and Analysis. SIAM (2005)

    Google Scholar 

  8. Clenshaw, C.W., Curtis, A.R.: A method for numerical integration on an automatic computer. Numer. Math. 2, 197–205 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Hou, S., Shu, C.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comp. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Luskin, M., Shu, C.W., Süli, E.: Enhanced accuracy by postprocessing for finite element methods for hyperbolic equations. Math. Comp. 72, 577–606 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to numerical methods for differential equations. Acta Numerica pp. 105–158 (1995)

    Google Scholar 

  12. Ghamen, R., Spanos, P.: Stochastic Finite Elements. Dover Pub. Inc., Mineola, New York (1991)

    Google Scholar 

  13. Harris, C.: Two-dimensional aerodynamic characteristics of the NACA 0012 airfoil in the Langley 8-foot transonic pressure tunnel. Tech. Rep. TM-81927, NASA Langley Research Center, Hampton, VA (1981)

    Google Scholar 

  14. Hildebrand, F.: Introduction to Numerical Analysis. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  15. Holtz, M.: Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance, Lecture Notes in Computational Science and Engineering, vol. 77. Springer-Verlag, Heidelberg (2011)

    Book  Google Scholar 

  16. Jespersen, D., Pulliam, T., Buning, P.: Recent enhancements to OVERFLOW. Tech. Rep. 97-0644, AIAA, Reno, NV (1997)

    Google Scholar 

  17. Jiang, G., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comp. Phys. pp. 202–228 (1996)

    Google Scholar 

  18. Larson, M., Barth, T.: A posteriori error estimation for adaptive discontinuous Galerkin approximations of hyperbolic systems. In: B. Cockburn, C.W. Shu, G. Karniadakis (eds.) Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, vol. 11. Springer-Verlag, Heidelberg (2000)

    Google Scholar 

  19. van Leer, B.: Towards the ultimate conservative difference schemes V. A second order sequel to Godunov’s method. J. Comp. Phys. 32, 101–136 (1979)

    Google Scholar 

  20. van Leer, B.: Upwind-difference schemes for aerodynamics problems governed by the Euler equations. AMS Pub., Providence, Rhode Island (1985)

    Google Scholar 

  21. LeSaint, P., Raviart, P.: On a finite element method for solving the neutron transport equation. In: C. de Boor (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89–145. Academic Press (1974)

    Google Scholar 

  22. Loeven, G., Bijl, H.: Probabilistic collocation used in a two-step approach for efficient uncertainty quantification in computational fluid dynamics. Comp. Modeling in Engrg. Sci. 36(3), 193–212 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Mathelin, L., Hussaini, M.Y., Zang, T.: Stochastic approaches to uncertainty quantification in CFD simulations. Num. Alg. pp. 209–236 (2005)

    Google Scholar 

  24. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Amer. Stat. Assoc. 44(247), 335–341 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nobile, F., Tempone, R., Webster, C.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2309–2345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Novak, E., Ritter, K.: High dimensional integration of smooth functions over cubes. Numer. Math. 75(1), 79–97 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Parzen, E.: On estimation of a probability density function and mode. Annals of Mathematical Statistics 33, 1065–1076 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  28. Piessens, R., de Doncker-Kapenga, E., Überhuber, C., Kahaner, D.: QUADPACK: A Subroutine Package for Automatic Integration. Springer Series in Computational Mathematics. Springer-Verlag (1983)

    Book  MATH  Google Scholar 

  29. Prudhomme, S., Oden, J.: On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comp. Meth. Appl. Mech. and Eng. pp. 313–331 (1999)

    Google Scholar 

  30. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Tech. Rep. LA-UR-73-479, Los Alamos National Laboratory, Los Alamos, New Mexico (1973)

    Google Scholar 

  31. Richardson, L., Gaunt, J.: The deferred approach to the limit. Trans. Royal Soc. London, Series A 226, 299–361 (1927)

    MATH  Google Scholar 

  32. Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Annals of Mathematical Statistics 27, 832–837 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sack, R., Donovan, A.: An algorithm for gaussian quadrature given modified moments. Num. Math. pp. 465–478 (1971)

    Google Scholar 

  34. Schmidtt, V., Charpin, F.: Pressure distributions on the ONERA M6 wing at transonic mach numbers. Tech. Rep. AGARD AR-138, Advisory Group for Aerospace Research and Development (1979)

    Google Scholar 

  35. Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  36. Sethian, J.A.: Image processing via level set curvature flow. Proc. Natl. Acad. Sci. USA 92, 7045–7050 (1995)

    MathSciNet  Google Scholar 

  37. Shu, C.W.: High order ENO and WENO schemes for computational fluid dynamics. In: Barth, Deconinck (eds.) High-Order Discretization Methods in Computational Physics, Lecture Notes in Computational Science and Engineering, vol. 9, pp. 439–582. Springer-Verlag, Heidelberg (1999)

    Chapter  Google Scholar 

  38. Smolyak, S.: Quadrature and interpolation formulas for tensor products of centain classes of functions. Dok. Akad. Nauk SSSR 4, 240–243 (1993)

    Google Scholar 

  39. Tatang, M.A.: Direct incorporation of uncertainty in chemical and environmental engineering systems. Ph.D. thesis, MIT (1994)

    Google Scholar 

  40. Wan, X., Karniadakis, G.: An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J. Comput. Phys. pp. 617–642 (2005)

    Google Scholar 

  41. Wheeler, J.: Modified moments and gaussian quadratures. Rocky Mtn. J. Math. pp. 287–296 (1974)

    Google Scholar 

  42. Wiener, N.: The homogeneous chaos. Am. J. Math. pp. 897–936 (1938)

    Google Scholar 

  43. Xiu, D., Karniadakis, G.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. pp. 619–644 (2002)

    Google Scholar 

  44. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Part I: the recovery technique. Int. J. Numer. Meth. Engrg. 33, 1331–1364 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support of the NASA Fundamental Aeronautics Program for supporting this work. Computing resources have been provided by the NASA Ames Advanced Supercomputing Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Barth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barth, T. (2013). Non-intrusive Uncertainty Propagation with Error Bounds for Conservation Laws Containing Discontinuities. In: Bijl, H., Lucor, D., Mishra, S., Schwab, C. (eds) Uncertainty Quantification in Computational Fluid Dynamics. Lecture Notes in Computational Science and Engineering, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-319-00885-1_1

Download citation

Publish with us

Policies and ethics