Skip to main content

Essentially Non-oscillatory Stencil Selection and Subcell Resolution in Uncertainty Quantification

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 92))

Abstract

The essentially non-oscillatory stencil selection and subcell resolution robustness concepts from finite volume methods for computational fluid dynamics are extended to uncertainty quantification for the reliable approximation of discontinuities in stochastic computational problems. These two robustness principles are introduced into the simplex stochastic collocation uncertainty quantification method, which discretizes the probability space using a simplex tessellation of sampling points and piecewise higher-degree polynomial interpolation. The essentially non-oscillatory stencil selection obtains a sharper refinement of discontinuities by choosing the interpolation stencil with the highest polynomial degree from a set of candidate stencils for constructing the local response surface approximation. The subcell resolution approach achieves a genuinely discontinuous representation of random spatial discontinuities in the interior of the simplexes by resolving the discontinuity location in the probability space explicitly and by extending the stochastic response surface approximations up to the predicted discontinuity location. The advantages of the presented approaches are illustrated by the results for a step function, the linear advection equation, a shock tube Riemann problem, and the transonic flow over the RAE 2822 airfoil.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abgrall R (2010) A simple, Flexible and generic deterministic approach to uncertainty quantifications in nonlinear problems: application to fluid flow problems. In: Proceedings of the 5th European conference on computational fluid dynamics, ECCOMAS CFD, Lisbon, Portugal

    Google Scholar 

  2. Agarwal N, Aluru NR (2009) A domain adaptive stochastic collocation approach for analysis of MEMS under uncertainty. Journal of Computational Physics 228: 7662–7688

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška I, Tempone R, Zouraris GE (2004) Galerkin finite elements approximation of stochastic finite elements. SIAM Journal on Numerical Analysis 42: 800–825

    Article  MathSciNet  MATH  Google Scholar 

  4. Babuška I, Nobile F, Tempone R (2007) A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Journal on Numerical Analysis 45: 1005–1034

    Article  MathSciNet  MATH  Google Scholar 

  5. Barth T (2012) On the propagation of statistical model parameter uncertainty in CFD calculations. Theoretical and Computational Fluid Dynamics 26: 435–457

    Article  Google Scholar 

  6. Barth T (2011) UQ methods for nonlinear conservation laws containing discontinuities. In: AVT-193 Lecture Series on Uncertainty Quantification, RTO-AVT-VKI Short Course on Uncertainty Quantification, Stanford, California

    Google Scholar 

  7. Chassaing J-C, Lucor D (2010) Stochastic investigation of flows about airfoils at transonic speeds. AIAA Journal 48: 938–950

    Article  Google Scholar 

  8. Chorin AJ, Marsden JE (1979) A mathematical introduction to fluid mechanics. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  9. Cook PH, McDonald MA (1979) Firmin MCP, Aerofoil RAE 2822 – pressure distributions, and boundary layer and wake measurements. Experimental data base for computer program assessment, AGARD report AR 138

    Google Scholar 

  10. Dwight RP, Witteveen JAS, Bijl H (this issue) Adaptive uncertainty quantification for computational fluid dynamics. In: Uncertainty quantification, Lecture notes in computational science and engineering, Springer

    Google Scholar 

  11. Harten A, Osher S (1987) Uniformly high-order accurate nonoscillatory schemes I. SIAM Journal on Numerical Analysis 24: 279–309

    Article  MathSciNet  MATH  Google Scholar 

  12. Harten A (1989) ENO schemes with subcell resolution. Journal of Computational Physics 83: 148–184

    Article  MathSciNet  MATH  Google Scholar 

  13. Foo J, Wan X, Karniadakis GE (2008) The multi-element probabilistic collocation method (ME-PCM): error analysis and applications. Journal of Computational Physics 227: 9572–9595

    Article  MathSciNet  MATH  Google Scholar 

  14. Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  15. Ghosh D, Ghanem R (2008) Stochastic convergence acceleration through basis enrichment of polynomial chaos expansions. International Journal on Numerical Methods in Engineering. 73: 162–184

    Article  MathSciNet  MATH  Google Scholar 

  16. Gottlieb D, Xiu D (2008) Galerkin method for wave equations with uncertain coefficients. Communications in Computational Physics 3: 505–518

    MathSciNet  MATH  Google Scholar 

  17. Ma X, Zabaras N (2009) An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. Journal of Computational Physics 228: 3084–3113

    Article  MathSciNet  MATH  Google Scholar 

  18. Le Maître OP, Najm HN, Ghanem RG, Knio OM (2004) Multi–resolution analysis of Wiener–type uncertainty propagation schemes. Journal of Computational Physics 197: 502–531

    Article  MathSciNet  MATH  Google Scholar 

  19. Mathelin L, Le Maître OP (2007) Dual-based a posteriori error estimate for stochastic finite element methods. Communications in Applied Mathematics and Computational Science 2: 83–115

    Article  MathSciNet  MATH  Google Scholar 

  20. Onorato G, Loeven GJA, Ghorbaniasl G, Bijl H, Lacor C (2010) Comparison of intrusive and non-intrusive polynomial chaos methods for CFD applications in aeronautics. In: Proceedings of the 5th European conference on computational fluid dynamics, ECCOMAS CFD, Lisbon, Portugal

    Google Scholar 

  21. Pettit CL, Beran PS (2006) Convergence studies of Wiener expansions for computational nonlinear mechanics. In: Proceedings of the 8th AIAA non-deterministic approaches conference, Newport, Rhode Island, AIAA-2006-1993

    Google Scholar 

  22. Poëtte G, Després B, Lucor D (2009) Uncertainty quantification for systems of conservation laws, Journal of Computational Physics 228: 2443–2467

    Article  MathSciNet  MATH  Google Scholar 

  23. Simon F, Guillen P, Sagaut P, Lucor D (2010) A gPC-based approach to uncertain transonic aerodynamics. Computer Methods in Applied Mechanics and Engineering 199: 1091–1099

    Article  MathSciNet  MATH  Google Scholar 

  24. Shu C-W, Osher S (1988) Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics 77: 439–471

    Article  MathSciNet  MATH  Google Scholar 

  25. Shu C-W, Osher S (1989) Efficient implementation of essentially non-oscillatory shock-capturing schemes II, Journal of Computational Physics 83: 32–78

    Article  MathSciNet  MATH  Google Scholar 

  26. Sod GA (1978) A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics 27: 1–31

    Article  MathSciNet  MATH  Google Scholar 

  27. Tryoen J, Le Maître O, Ndjinga M, Ern A (2010) Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems. Journal of Computational Physics 229: 6485–6511

    Article  MathSciNet  MATH  Google Scholar 

  28. Wan X, Karniadakis GE (2005) An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. Journal of Computational Physics 209: 617–642

    Article  MathSciNet  MATH  Google Scholar 

  29. Witteveen JAS, Bijl H (2009) A TVD uncertainty quantification method with bounded error applied to transonic airfoil flutter. Communications in Computational Physics 6: 406–432

    Article  MathSciNet  Google Scholar 

  30. Witteveen JAS, Loeven GJA, Bijl H (2009) An adaptive stochastic finite elements approach based on Newton-Cotes quadrature in simplex elements. Computers and Fluids 38: 1270–1288

    Article  MathSciNet  MATH  Google Scholar 

  31. Witteveen JAS (2010) Second order front tracking for the Euler equations. Journal of Computational Physics 229: 2719–2739

    Article  MathSciNet  MATH  Google Scholar 

  32. Witteveen JAS, Iaccarino G (2012) Simplex stochastic collocation with random sampling and extrapolation for nonhypercube probability spaces. SIAM Journal on Scientific Computing 34: A814–A838

    Article  MathSciNet  MATH  Google Scholar 

  33. Witteveen JAS, Iaccarino G (2012) Refinement criteria for simplex stochastic collocation with local extremum diminishing robustness. SIAM Journal on Scientific Computing 34: A1522–A1543

    Article  MathSciNet  MATH  Google Scholar 

  34. Witteveen JAS, Iaccarino G (2013) Simplex stochastic collocation with ENO-type stencil selection for robust uncertainty quantification. Journal of Computational Physics 239: 1–21

    Article  MathSciNet  Google Scholar 

  35. Witteveen JAS, Iaccarino G (submitted) Subcell resolution in simplex stochastic collocation for spatial discontinuities

    Google Scholar 

  36. Xiu D, Karniadakis GE (2002) The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM Journal on Scientific Computing 24: 619–644

    Article  MathSciNet  MATH  Google Scholar 

  37. Xiu D, Hesthaven JS (2005) High-order collocation methods for differential equations with random inputs. SIAM Journal on Scientific Computing 27: 1118–1139

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Netherlands Organization for Scientific Research (NWO) and the European Union Marie Curie Cofund Action under Rubicon grant 680-50-1002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen A. S. Witteveen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Witteveen, J.A.S., Iaccarino, G. (2013). Essentially Non-oscillatory Stencil Selection and Subcell Resolution in Uncertainty Quantification. In: Bijl, H., Lucor, D., Mishra, S., Schwab, C. (eds) Uncertainty Quantification in Computational Fluid Dynamics. Lecture Notes in Computational Science and Engineering, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-319-00885-1_7

Download citation

Publish with us

Policies and ethics