Skip to main content

Heat Transfer Modeling in Ceramic Materials Using Fractional Order Equations

  • Chapter
Advances in the Theory and Applications of Non-integer Order Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 257))

Abstract

Using classic numerical methods in modeling of heat transfer in ceramic materials causes imprecision results. This paper presents the new way of modeling using fractional order equations. Obtained numerical results were compared with registered heat transfer distribution using infrared camera. Comparison shows that presented method may have much more accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mainardi, F., Mura, A., Pagnini, G., Gorenflo, R.: Sub-diffusion equations of fractional order and their fundamental solutions. Mathematical Methods in Engineering 1, 23–55 (2007)

    Article  Google Scholar 

  2. Murillo, J.Q., Yuste, S.B.: On three explicit difference schemes for fractional diffusion and diffusion-wave equations. Phisica Scripta 136, 1–6 (2009)

    Google Scholar 

  3. Marquardt, D.W.: An algorithm for Least-Squares estimation of Non-Linear Parameters. J. Soc. Industr. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  4. Poinot, T., Trigeassou, J.C., Lin, J.: Parameters estimation of fractional models: Application to the modeling of diffusive systems. In: 15 Triennial World Congress, Barcelona, Spain, vol. 15(1) (2002)

    Google Scholar 

  5. Mitkowski, W., Obrączka, A.: Simple identification of fractional differential equation. Solid State Phenomena 180, 331–338 (2012)

    Article  Google Scholar 

  6. Obrączka, A., Kowlaski, J.: Modelowanie rozklładu ciepła w materiałach ceramicznych przy uźyciu równań róźniczkowych niecałkowitego rzędu. In: PPEEm 2012: Podstawowe Problemy Energoelektroniki, Elektromechaniki i Mechatroniki, Gliwice 11-13, pp. 133–135 (2012)

    Google Scholar 

  7. Kostowski, E.: Przepływ ciepła. Politechnika Šląska Skrypty Uczeklniane, Gliwice, vol. 1925 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Obrączka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Obrączka, A., Kowalski, J. (2013). Heat Transfer Modeling in Ceramic Materials Using Fractional Order Equations. In: Mitkowski, W., Kacprzyk, J., Baranowski, J. (eds) Advances in the Theory and Applications of Non-integer Order Systems. Lecture Notes in Electrical Engineering, vol 257. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-00933-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00933-9_20

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-00932-2

  • Online ISBN: 978-3-319-00933-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics