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Abstract—Systems and networks access control configuration
are usually analyzed independently although they are logically
combined to define the end-to-end security property. While
systems and applications security policies define access control
based on user identity or group, request type and the requested
resource, network security policies uses flow information such
as host and service addresses for source and destination to
define access control. Therefore, both network and systems access
control have to be configured consistently in order to enforce end-
to-end security policies. Many previous research attempt to verify
either side separately, but it does not provide a unified approach
to automatically validate the logical consistency between both
of them. Thus, using existing techniques requires error-prone
manual and ad-hoc analysis to validate this link.

In this paper, we introduce a cross-layer modeling and verifi-
cation system that can analyze the configurations and policies
across both application and network components as a single
unit. It combines policies from different devices as firewalls,
NAT, routers and IPSec gateways as well as basic RBAC-
based policies of higher service layers. This allows analyzing,
for example, firewall polices in the context of application access
control and vice versa. Thus, by incorporating policies across
the network and over multiple layers, we provide a true end-
to-end configuration verification tool. Our model represents the
system as a state machine where packet header, service request
and location determine the state and transitions that conform
with the configuration, device operations, and packet values are
established. We encode the model as Boolean functions using
binary decision diagrams (BDDs). We used an extended version of
computational tree logic (CTL) to provide more useful operators
and then use it with symbolic model checking to prove or find
counter examples to needed properties. The tool is implemented
and we gave special consideration to efficiency and scalability.

I. INTRODUCTION

Users inadvertently trigger a long sequence of operations in
many locations and devices by just a simple request. The appli-
cation requests are encapsulated inside network packets which
in turn are routed through the network devices and subjected
to different types of routing, access control and transformation
policies. Misconfigurations at the different layers in any of
the network devices can affect the end to end connection
between the hosts them selves and the communicating services
running on top of them. Moreover, applications may require
to transform requests to another one or more requests with
different characteristics. This means that the network layer
should guarantee more than one packet flow at the same time
in order for the application request to be successful. Although

it is already very hard to verify that only the legitimate packets
can pass through the network successfully, the consistency
between network and application layer access configuration
adds another challenge. The different natures of policies from
network layer devices to the logic of application access control
makes it more complex.

In this paper we have extended ConfigChecker [3] to
include application layer access control. The ConfigChecker
is a model checker for network configuration. It implemented
many network devices including: routers, firewalls, IPSec
gateways, hosts, and NAT/PAT nodes. ConfigChecker models
the transitions based on the packet forwarding at the network
layer where the packet header fields along with the location
represent the variables for the model checker. We define
application layer requests following a loose RBAC model:
a 4-tuple of <user, role, object, action>. The request can
be created by users or services running on top of hosts in
the network. The services in our model can also transform a
request into another one or more requests and forward them to
a different destination. We have implemented a parallel model
checker for application layer configuration. The transitions in
the application layer model is determined by the movement of
the requests between different services. However, the network
and application layer model checkers are not operating sep-
arately. Requirements regarding both models can be verified
in a single query using our unified query interface. Moreover,
inconsistency between network configuration and application
layer configuration can be detected.

The nature of the problem of verifying network-wide config-
urations necessitate having a very scalable system in terms of
time and space requirements. Larger networks, more complex
configurations, and richer variety of devices are all dimen-
sions over which the system should handle gracefully. The
application-layer access control depends on different variables
than most of network layer policies. We chose to implement
a parallel model checker for application access control rather
than adding the application layer variables (which correspond
to request fields) to the network model checker itself. This
can decrease the number of system states and improve the
performance. As the case in ConfigChecker, both model
checkers are represented as state machines and encoded as
boolean function using Binary Decision Diagrams (BDDs). We
use an extended version of computational tree logic (CTL) to



Fig. 1. A simple overview of the framework design and flow

provide more useful operators and then use it with symbolic
model checking to prove or find counter examples for needed
properties regarding both models.

The rest of this paper is organized as follows. We first
briefly describe our framework components in Section II. We
then present the model used for capturing the network and
application layer configuration in Section III and Section IV
respectively. Section V shows how to query the model for
properties, and lists some sample queries. The related work
is presented in Section VI. We finally present our conclusion
and future remarks in Section VII.

II. FRAMEWORK OVERVIEW

The framework consists of a few key components: configu-
ration loader, model compiler, and query engine. The duty of
each component is described briefly below:
• The Configuration Loader parses the main configuration

file that points out to the configuration files of network
devices. Each file represents a device or entity (e.g.,
firewall, router, application-layer service, etc). Each con-
figuration file consists mainly of two sections: meta-data
directives, and policy. The initial directives act as an
initialization step to configure the device properties like
default gateway, service port, host address, etc. The policy
is listed afterwards as a simple list of rules.

• The Model Compiler translates the configuration into a
Boolean expressions for each policy rule and builds a
single expression for each device. These expressions are
then combined into a single expression representing the
whole network.

• The Query Engine is responsible for verifying properties
of the system by executing simple scripts based on CTL
expressions. Scripts is written using a very limited set of
primitives for refining the user output, and for defining
the property itself.

The model compiler component builds two separate expres-
sions. The first represents the network layer configuration that
reflects the packets forwarding and transformation through the
network core and end points as described in Section III. The
other expression represents the application layer configuration
including services and users. This reflects how requests are

forwarded and transformed in the service level. Section IV
describes this process in more details. Although we can
integrate the two expressions and build only one expression
that accommodates for both the network and application layer
configuration, we chose to split them into two expression.
The variables used on each of them are generally independent
except for the location variable. Building one expression
takes more space because the network configuration will be
duplicated for each different combination of application layer
variables generating more and more states. This helps our
model to scale and avoid state explosion.

III. NETWORK MODEL

We model the network as a single monolithic finite state
machine. The state space is the cross-product of the packet
properties by its possible locations in the network. The packet
properties include the header information that determines the
network response to a specific packet.

A. State representation

Initially, the only information we need about the packet
is the source and destination information contained in the IP
header and the current location of the packet in the network.
Therefore, we can encode the state of the network with the
following characteristic function:

σn : IPs × ports × IPd × portd × loc → {true, false}

IPs the 32-bit source IP address
ports the 16-bit source port number
IPd the 32-bit destination IP address
portd the 16-bit destination port number
loc the 32-bit IP address of the device currently process-

ing the packet
The function σn encodes the state of the network by

evaluating to true whenever the parameters used as input to
the function correspond to a packet that is in the network and
false otherwise. If the network contains 5 different packets,
then exactly five assignments to the parameters of the function
σn will result in true. Note that because we abstract payload
information, we cannot distinguish between 2 packets that
are at the same device if they also have the same IP header
information.

Each device in the network can then be modeled by de-
scribing how it changes a packet that is currently located at
the device. For example, a firewall might remove the packet
from the network or it might allow it to move on to the device
on the other side of the firewall. A router might change the
location of the packet but leave all the header information
unchanged. A device performing network address translation
might change the location of the packet as well as some of the
IP header information. A hub might copy the same packet to
multiple new locations. The behavior of each of these devices
can be described by a list of rules. Each rule has a condition
and an action. The rule condition can be described using a
Boolean formula over the bits of the state (the parameters
of the characteristic function σn). If the packet at the device



matches (satisfies) a rule condition, then the appropriate action
is taken. As described above, the action could involve changing
the packet location as well as changing IP header information.
In all cases, however, the change can be described by a
Boolean formula over the bits of the state. Sometimes the new
values are constant (completely determined by the rule itself),
and sometimes they may depend on the values of some of the
bits in the current state. In either case, a transition relation can
be constructed as a relation or characteristic function over two
copies of the state bits. An assignment to the bits/variables in
the transition relation yields true if the packet described by
the first copy of the bits will be transformed into a packet
described by the second copy of the bits when it is at the
device in question.

B. Network devices

We integrate the policies of different network devices
including firewalls, routers, NAT and IPSec gateways. The
details of their policies and how they are encoded into BDDs
are discussed thoroughly in [3]. However, we have modified
the encoding of hosts to reflect the request transformation
performed by the services running on top of each host.

The host may be configured to run one or multiple services.
Each of which has its own access-control list as will be
discussed in Section IV. The service configuration may also
specify a set of possible request transformations where the
incoming request is transformed into another (sometimes com-
pletely new) request. For example, a request to a web server
can be translated into an NFS request to load a users home
page. The new request will be carried through the network over
packets. In our initial model the host receives packet and then
forward them into the application layer within the host itself
and it cannot forward it to another host. We need to modify
this model so that the host will be able to forward packets to
the other hosts in order to support the requests transformation
performed by the services running on top of it.

IV. APPLICATION LAYER MODEL

We also model the application layer as a finite state machine.
The state space is the cross-product of the application layer
request properties by its possible locations in the network.
The request properties include the its fields that determine the
service response to a specific request.

σp : usr× role× obj× act× loc× srv → {true, false}

usr the 32-bit user ID
role the 32-bit role ID which the user belongs to
obj the 32-bit object ID
act the 16-bit action ID
loc the 32-bit IP address of the device currently process-

ing the request
srv the 16-bit service ID
In the application layer model the devices in the network are

modeled by describing how they change the requests. Only the
devices that operates on the application level are considered
(i.e., the devices who has a defined users list or services

running on top of them). Here, we describe how we define
access-control rights for service requests, and how we model
these services and integrate them into the application layer
state transition diagram.

A. Application layer access-control

In order to have a homogeneous policy definition across
applications, we revert to a simplified RBAC model as a
way to specify all application requests and consequently the
access-control policy. As in firewall policy, the access-control
list of application layer services is defined by specifying
an action like (permit or deny) to the requests satisfying
certain criteria. This criteria is defined using the request fields
< user, role, object, action > or < u, r, o, a > for short. We
assume that each host has a list of potential users who can
use it to send requests. This list can simply be set to ”any”,
to indicate that all defined users can access the host which
enables a more powerful model for an adversary against which
we want to verify the robustness of the policy. Also, another
assumption is that any user can assume any role. This enables
a more flexible usage of the model to incorporate more types
of services. It is even possible to use one of the request fields
in a slightly different meaning. For example, in a web server
model; an action can be a POST or GET, the role can be a
logged in versus guest visitor and the object and user will
have their obvious meanings. On the other hand, for database
servers, we might have users, roles, actions, and resources used
in their original meaning.

When a service receives the a request from other device it
first verifies it against its access-control policy. If it satisfies
the access-control policy it will be forwarded to the service to
be executed or transformed as shown in Fig. 2. If the request
does not satisfy the access policy it will be dropped (i.e., there
is no valid transition in the finite state machine that goes to
the required service). A policy typically is defined as a list of
tuples with an assigned action:
user role resource action decision
;user black listing
1 * * * deny
2 * * * deny
;admin account
100 1 * * permit
;guests can only read
* guest 1-50 3 permit
;a read only resource
* * 60 4 permit
* * 60 * deny

As in firewall policies, we use a first-match methodology.
For example, the last two rules allow read access, and then
deny every other action. Also, the first few black-listing rules
do not conflict with the guest account rule that appears later
in the policy. From the common practices in the area of
application level and RBAC policies, we believe that it should
never be the case that a user or role be specified as a range.
The value of user and role IDs are irrelevant, therefore having
a range in the specification is hard to have a practical value.
Although, this fact does not affect our implementation (i.e.,
we support single values, ranges, or “any” values in all four
fields of the access-control rules).



Fig. 2. Service Model. S1, S2, S3, and S4 represent services running on
different hosts. The dashed lines represent application requests. Requests are
subjected to the access control list of the target service.

B. State representation

Requests that pass the access-control phase are forwarded
to the execution phase of the service. We have simplified the
execution phase to one of two options as suggested in Fig. 2.
A request can be executed on the service itself, which means
that the request life-time ends at this phase, and no further
events are triggered. The other possibility is that the service
transforms the request into another form by modifying one
or more fields (i.e., user, role, object or action) and sends it
to another service running on the same or a different host.
For example, a request to a web server can be translated into
an NFS request to load a user’s home page. Each request
transformation is associated with a packet flow in the network
level, the host should be able to send the appropriate packet
to its gateway based on the service transformation.

Only the network devices that support application layer
services represented by hosts in our model are included in
the application layer model. The requests that leave a host
may come from two sources: either a user operating directly
on the host or through a service, or a request is transformed
from another one. We do not require the destination of each
request to be defined in the configuration. We assume that any
request instantiated in any host can be directed to any service
in the network whose access control list allows the request
to pass. To build the transition relation for each host in the
network we need the following inputs.
• The set U of users who can access the host. Each user

is represented by its unique ID in the system. It can also
be expressed as a <user, role> pair.

• The set T of possible request transformations that can be
performed in the host. The configuration may specify the
exact ID and location of the target service, or it can be
anonymous.

• The set P of access control policies for each service
running in the network. These policies are encoded as
BDD expressions before building the transition relation
of the application layer. Each policy in the set corresponds
to a particular service ID (The port number of the service
can be used as its ID) running on a particular host.

Lets assume that the list UH of <user, role> pairs represents
the users who can access the host H . We need first to encode
the possible states that result from having these users on the
host H (recall that the state is the product of the request
properties <user, role> in this case by the location in which
the request exists).

UBDD =
∨

i∈UH

(usr = ui ∧ role = ri ∧ loc = H) (1)

where ui and ri are the user and role IDs of the item i in
the users list UH . To find the transitions we need to find out
which services can be reached starting from the states defined
in the expression UBDD (i.e., any service whose access-control
policy allows defined requests to pass).

Tu =
∨

i∈indices(P )

(UBDD ∧ P (i) ∧ loc′ = li ∧ srv′ = si)

(2)
where P (i), li, and si are the policy, location, and the service
ID of the target service i respectively. The variables loc′ and
srv′ represents the location and service ID variables in the
next state of the transition.

The expression Tu does not include the transitions that
results from request transformation by the service running on
the host. The following represents the transition that result
from one transformation performed by the service i.

usr = ui ∧ role = ri ∧ obj = oi ∧ act = ai
loc = H ∧ srv = si

usr′ = u′i ∧ role′ = r′i ∧ obj′ = o′i ∧ act′ = a′i ∧ P ′(s′i)
loc′ = l′i ∧ srv = s′i

(3)
The values < ui, ri, oi, ai > are the properties of the initial
request and the values < u′i, r

′
i, o
′
i, a
′
i > represent the proper-

ties of the transformed packet. The values P ′(s′i), l
′
i and s′i

are the policy, location and the service ID of the target service
to which the request should be transformed. Note that we use
P ′(s′i) instead of P (s′i) to indicate that the transformed request
(and not the initial request) should pass the target service
access-control policy in order to complete the transition. The
disjunction of all the transitions caused by all the possible
transformations along with the expression Tu calculated earlier
formulate the total transition relation of the host H .

V. QUERYING THE MODEL

A query in our system takes the form of a Boolean expres-
sion that specifies some properties over packet flows, requests
and locations, with temporal logic criteria specified using CTL
operators. By evaluating the given expression in the context of
the built state machine (i.e., states and transitions), we obtain
the satisfying assignments to that expression represented in
the same symbolic representation as the model itself. The
simplest form for the result can be the constant expression
“true” (e.g., the property is always satisfied), or “false” (e.g.,
no one violates the required property), or can be any subset
of the space that satisfies the property (e.g., only flows with
port 80, or traffic that starts from this location, etc).



In the following subsections, we will go over a few ex-
amples for reachability and security properties. For each, we
show how to construct the query (i.e., the Boolean expression),
and what the results look like. Moreover, we discuss how to
write the script that extracts the results and data fields in the
intended format that makes sense to every specific query. The
aim of this presentation is to show the applicability of the
system to many types of properties, as well as showing the
expressive power of the model.

A. Model Checking

We have described how to construct a transition relation
for each device in the network. Each such transition relation
describes a list of outgoing transitions for the device it models.
The formulas are constructed with the requirement that the
current location be equal to the device being modeled, so
these transitions can only be taken when a packet or a request
is at the device. To get the transition relation for the entire
network, we simply take the disjunction of the formulas
for the individual devices. This is applied on both models
(The network and the application layer models). The current
location of a packet or a request will match the location of
one device in the network at most, and so only its transitions
will apply.

Recall that this global transition relation is a characteristic
function for transitions in the model. If we substitute the
values for a packet that is in the system into the current state
variables of the transition relation, what we are left with is a
formula describing what the possible next states of that packet
look like. We have all the machinery to perform symbolic
model checking. We use BDDs for all the formulas described
above and we use standard model checking algorithms to
explore the state space and compute states that satisfy various
CTL properties. The BuDDy BDD package provides all the
required operations (including quantification). For a much
more complete description of symbolic model checking, the
reader is encouraged to see [7].

The network layer model checker and the application layer
model checker are encoded separately. Each of them is work-
ing on different variables. However, we may need to verify
some requirements using both of them together. Although the
application layer requests are transmitted from an application
to another, the requests are encapsulated inside network pack-
ets. We do not require to have static one-one mapping between
each request and the packet flow that should be used to transfer
the request. The mapping can be expressed in the query
itself by specifying precise network packet characteristics
<protocol, source ip, destination ip, source port, destination
port>. For this purpose we use the variable loc which is
common between the two models and has the same meaning.
Fig. 3 shows how the two models are used together to verify
the requirements.

B. Query structure and features

The query in our model checkers retrieves the states that
satisfy a given condition. The condition is expressed by

Fig. 3. Using two models to run a query.

restricting some variables in the model checker to a given
value or using CTL operators to express a temporal condition.
We also need to specify what information to be retrieved about
the states which satisfy the query (i.e., a list of variables to be
retrieved). An example query can look like this:

Q3 = [loc(10.12.13.14) ∧ EF ((¬loc(10.0.0.0/8)) ∧ (¬Q2))]

Q3 : extractF ield loc dport

Q3 : listBounded 20 loc dport

The query Q3 is defined by the given expression (i.e., what
flows are in a given location (10.12.13.14) and in the future
will be outside of the domain (10.0.0.0/8) and do not satisfy
a previously defined query (Q2). The second and third lines
are used to format the result of the query. The second line tells
the query engine that we are only interested in the variables
loc and dport. The third line specifies that we need to display
only the first 20 satisfying assignments. If there is no satisfying
assignment for the given query nothing will be returned.

To handle the queries on both the network layer and appli-
cation layer models, we introduced the concept of sub-query.
Each sub-query is applied on one model. The application-
layer sub-query should not include variables related to network
layer model such as source or destination addresses and port
numbers and vice versa. A query can include one or more
sub-queries based on the following cases.

• It can include only one sub-query. In this case the query is
applied only on the appropriate model. The query engine
detects the appropriate model based on the variables used.

• It can include more than one sub-query of the same
type linked by the logical operators such as AND, OR,
IMPLIES, etc. In this case all the sub-queries are
executed on the appropriate model and the final result is
calculated by applying the specified operation. The results
of the different sub-queries in this case are identical in
terms of the number and type of the variables returned.
The linking operation can be directly applied.

• It can include multiple sub-queries of different types
linked by logical operators. In this case, the results of
the different types of sub-queries have different variables
and we cannot apply the linking operation directly. The



location variable (loc) is common between the two mod-
els and it has the same meaning and value for the same
device. For different types of sub-queries we apply the
logical operations based on the location variable only. For
example, if an application-layer sub-query is combined
with a network-layer sub-query by the AND operation,
we calculate the result of both sub-queries and then
calculate the intersection between the location values
in both results. Only requests and packet flows whose
location falls within the intersection are returned.

The result of a query is a list of states that satisfy the query
expression. In our model we may have two types of results.
The first is a set of network-layer states each represented as
a packet flow characteristics and location. The second is a
set of application-layer states each represented as a request
characteristics and location. The existence of these two types
depends on the types of sub-queries included within the query
script.

C. Example properties

Property 1: Conflicting network and application access-
control
(a): Given a user location and userID, does the current
configuration allows the user to access the server machine,
while the application layer access-control blocks the
connection?
The query shown in the Table I specifies the initial properties
of flows with certain user information (e.g., a specific source
IP ”user addr”, and user identifier in the application layer
request) and targeted towards a service residing elsewhere
(i.e., server, port′). If there is an inconsistency in the
configuration the query returns a list of requests that cannot
access the specified service and another list of packet flows
that can eventually reach the host network layer. We can see
that the query combines two different types of sub-queries
and restricts the location to a particular source machine. Each
sub-query is surrounded by angle brackets ”[ ]”.
(b): Does the current configuration blocks the user’s access to
the server machine through network layer filtering, while the
application’s access-control layer permits such connection?
As in the pervious property (a), we try to see if a request
that is permitted by the application layer access control
will never reach the service. This means that somewhere
before reaching the server hosting the service there is a
network layer device blocks the traffic, or fails to route
it correctly. We use the application layer model to find
those requests that can pass from the source to a particular
service, and we use the network model to find if the
underlaying packet flows who should carry the requests are
allowed to flow from the source to the appropriate destination.

Property 2: Can a user access a resource under different
credentials, if he is prohibited from accessing it under his
original identity?
In this property, we check if a certain user can masquerade
under another identity to access a resource. This forms

a back-door to this specific object-action pair. A straight
forward example can be a user accessing an NFS server for
which he does not have access via a web-server who can
retrieve the content in the form of web pages. This can be
achieved by an improper request transformation in a service
which should not be reachable by the specified user. This
is defined formally by evaluating the expression specifying
which users cannot access an object, while it can be accessed
eventually if the constraint on the user identity is removed.

Property 3: What access rights does an object require?
(a): What roles can user u use to access object o?
It is sometimes essential to know what roles can a user
manifest when accessing a specific object, or a group of
objects. The query consists of checking the space of requests
that can pass through the network and RBAC filtering to
reach our object of interest. By restricting the user part of
the space, we get the possible roles that can be used. We
can also, restrict the action if needed. An addition that can
prove practically useful is to add another restriction of origin
of request: by filtering the location and source address from
which the request originated from other than that of the
server. In Table I we show only the condition part of the
query neglecting the result format part, we can specify to
return only the roles and/or any other fields in the results.
(b): Which users can access object o via a role r?
This is a similar query to the previous one. This query
concerns the different users who can access a given object in
a certain capacity. For example, we might want to know who
can access a critical file as an administrator. Also, we can
add extra restrictions to see who can access this object for
writing rather than just reading.

Property 4: Is there any conflicts within the application
layer access-control?
(a): Is there any inconsistencies in allowed actions for a
specific object?
Such conflicts can arise within the same policy or cross
policies. For example, if a user is granted the write ac-
cess to an object then, most probably, read access should
be allowed as well. This query is application dependent,
and priority between actions has to be specified explicitly
(e.g., ‘delete’ > ‘write’ > ‘read’). We write the query
for a service to check if it is possible for some user/role
to reach the service via a higher action, but not with a
lower one. We represent the general form for such query
in Table I, the profiles [high security requirements] and
[low security requirements] can be replaced with any
combination of constraints on the request fields. For example,
to compare rights for reading and writing, the high security
profile may be [obj(o)∧act(wr)] and the low security profile
may be represented as [obj(o) ∧ act(rd)] for the particular
object (o).
(b): Are role-role relations consistent?
As in the pervious property (a), we might need to verify that
the order of role privileges is maintained. In other words, a



Property Query expression form
P1 (a): Requests reaching the host but not the service it is running.

loc(user addr)∧ [src(user addr)∧dest(server)∧dport(port′)∧EF (loc(server))]∧ [usr(userID)∧
¬EF (loc(server) ∧ srv(port′))]

P1 (b): Requests reaching the service but can’t reach the host itself.
loc(user addr) ∧ [usr(userID) ∧ EF (loc(server) ∧ srv(port′))]∧
[src(user addr) ∧ dest(server) ∧ dport(port′) ∧ ¬EF (loc(server))]

P2: Backdoor: A user is denied direct access to a service, but can use another service to indirectly access it.
loc(user addr) ∧ [usr(userID) ∧ ¬EF (usr(userID) ∧ obj(o) ∧ loc(server) ∧ srv(port′)) ∧
EF (usr(¬userID) ∧ obj(o) ∧ loc(server) ∧ srv(port′)] ∧ [EF (loc(server) ∧ dport(port′))]

P3 (a): What roles and actions can a user use to access a specific object from outside the server domain?
¬loc(server) ∧ [EF (loc(server) ∧ srv(port′) ∧ usr(u) ∧ obj(o))]∧
[¬src(server) ∧ EF (loc(server) ∧ dport(port′))]

P3 (b): What users can access a given object?
¬loc(server) ∧ [¬src(server) ∧ EF (loc(server) ∧ dport(port′))]∧
[EF (loc(server) ∧ srv(port′) ∧ role(r) ∧ obj(o) ∧ act(a))]

P4: Is there any inconsistency between rights of low and high privilege requests?
EF (loc(server) ∧ srv(port′) ∧ [high security requirements])
∧¬EF (loc(server) ∧ srv(port′) ∧ [low security requirements])

TABLE I
EXAMPLES FOR REACHABILITY AND SECURITY PROPERTIES

more powerful role should be always capable of performing
all actions possible for a weaker role. For example, an admin-
istrator should perform at least everything doable by a staff
member, and guests should never have more access to other
roles. It is defined by checking if the space of possible actions-
over-objects that can be performed by role1 but not role2 is
empty (given that role1 < role2). In this case the high and low
security profiles can be represented as [role(role1)∧obj(o)∧
act(a)] and [role(role2) ∧ obj(o) ∧ act(a)] respectively.

VI. RELATED WORK

There have been significant research effort in the area
of configuration verification and management in the past
few years. We can classify the work in this area into
two main approaches: top-down and bottom-up. The top-
down approaches [20], [5] create clean-slate configurations
based on high-level requirements. However, the bottom-up
approaches [13], [1], [24] analyze the existing configuration to
verify desired properties. We focus our discussion on bottom-
up approach as it is closer to our work in this paper.

There has been considerable work recently in detecting
misconfiguration in routing and firewall. Many of these ap-
proaches are specific for BGP misconfiguration [9], [17], [11],
[4]. [23], [13], [1], [24] focused on conflict analysis of fire-
walls configuration. A BDD-based modeling and taxonomy of
IPSec configuration conflicts was presented in [2], [13]. FIRE-
MAN [24] uses BDD to show conflicts on Linux iptables
configurations. In [19] and [21], the authors developed a
firewall analysis tool to perform customized queries on a set of
filtering rules of a firewall. But no general model of network
connections is used in this work.

In the field of distributed firewalls, current research mainly
focuses on the management of distributed firewall policies.
The first generation of global policy management technology
is presented in [12], which proposes a global policy definition
language along with algorithms for verifying the policy and
generating filtering rules. In [6], the authors adopted a better
approach by using a modular architecture that separates the
security policy and the underlying network topology to allow
for flexible modification of the network topology without the
need to update the security policy. Similar work has been
done in [14] with a procedural policy definition language,
and in [16] with an object-oriented policy definition language.
In terms of distributed firewall policy enforcement, a novel
architecture is proposed in [15] where the authors suggest
using a trust management system to enforce a centralized
security policy at individual network endpoints based on
access rights granted to users or hosts. We found that none
of the published work in this area addressed the problem of
discovering conflicts in distributed firewall environments.

A variety of approaches have been proposed in the area of
policy conflict analysis. The most significant attempt for IPSec
policy analysis is proposed in [10]. The technique simulates
IPSec processing by tracking the protection applied on the
traffic in every IPSec device. At any point in the simulation,
if packet protection violates the security policy requirements,
a policy conflict is reported. Although this approach can
discover IPSec policy violations in a certain simulation sce-
nario, there is no guarantee that it discovers every possible
violation that may exist. In addition, the proposed technique
only discovers IPSec conflicts resulting from incorrect tunnel
overlapping, but do not address the other types of conflicts



that we study in this research.
Other works attempt to create general models for analyzing

network configuration [8], [22]. An approach for formulating
and deriving of sufficient conditions of connectivity constraints
is presented in [8]. The static analysis approach [22]is one
of the most interesting work that is close to ConfigChecker.
This work uses graph-based approach to model connectivity
of network configuration and use set operations to perform
static analysis. The transitive closure, as apposed to a fixed
point in our approach, is computed. Thus, it seems that all
possible paths are computed explicitly. In addition, consid-
ering security devices and properties, providing a rich query
interface based on our CTL extension, and utilizing BDDs
optimization are major advantages of our work. Anteater [18]
is another interesting tool for checking invariants in the data
plane. It checks the high-level network invariants represented
as instances of boolean satisfiability problems (SAT) against
network state using a SAT solver, and reports counterexamples
for violations, if exist.

Thus, in conclusion, although this body of work has a
significant impact on the filed, it is either provide limited
analysis due to restriction on specific network or application.
Unlike the previous work, our work offers a global configu-
ration verification that is comprehensive, scalable and highly
expressive.

VII. CONCLUSION

We presented an extension to the ConfigChecker tool to
incorporate both network and application configurations in a
unified system across the entire network. Our extended system
models the configuration of various devices in the network
layer (hubs, switches, routers, firewalls, IPsec gateways) and
access control of application layer services including multiple-
level of request translation. Network and system configuration
can be modeled together and used to verify properties using
CTL-embedded functions translated into Boolean operations.
We show that we can separate variables in two model checkers
to reduce the state space and required resources. Yet, both
models can be used to run combine queries.

Our future work includes enhancements in the model’s per-
formance for even faster execution and lower the construction
time. Also, we plan to extending the supported devices, and
node types to add more virtual devices and compound de-
vices that can incorporate multi-node functionality as in some
modern network-based devices. Moreover, a user interface
for facilitating interactive execution of queries as well as
updating and editing the configurations for a more practical
deployment patterns for the tool. We will also try to find a
practical mapping scheme between application requests and
corresponding packet flows to automatically detect the flows
required to communicate a request between different services.
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