N

N

Somewhere2 — A Robust Package for Collaborative
Decentralized Consequence-Finding
Philippe Chatalic, André de Amorim Fonseca

» To cite this version:

Philippe Chatalic, André de Amorim Fonseca. Somewhere2 — A Robust Package for Collaborative De-
centralized Consequence-Finding. 7th International Symposium on Intelligent Distributed Computing,
Sep 2013, Prague, Czech Republic. pp.103-108, 10.1007/978-3-319-01571-2_13 . hal-01139231

HAL Id: hal-01139231
https://hal.science/hal-01139231
Submitted on 3 Apr 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Copyright

https://hal.science/hal-01139231
https://hal.archives-ouvertes.fr

SOMEWHERE?2 - A robust package for
collaborative decentralized consequence-finding

Philippe Chatalic and Andre de Amorim Fonseca

Abstract This paper presents SOMEWHERE?2, a new framework that may be used
for setting up peer-to-peer inference systems and for solving consequence finding
problems in a completely decentralized way. It is a complete redesign and reengi-
neering of an earlier platform. The new architecture has gained in genericity, modu-
larity and robustness. It is much easier to extend and/or to reuse as a building block
for advanced distributed applications, such as Peer Data Management Systems.

1 Introduction

The consequence finding problem [9, 10] amounts to finding formulas that are con-
sequences of a logical theory. Many applications involve reasoning tasks that aim
at discovering such consequences, not explicit in the original theory. Often, not all
consequences are sought, but only a subset of those, satisfying some syntactical
property, called a production field [12]. Consequence finding is more complex than
the proof finding problem, for which a user simply wants to verify whether a formula
is entailed or not by a theory. It has proved to be useful for wide range of problems
involving diagnosis, abductive reasoning, hypothetical and non-monotonic reason-
ing, query rewriting as well as knowledge compilation (see [10] for a survey).
There are several reasons to consider this problem in a distributed setting. For
large theories, the problem may rapidly become out of scope for a single computing
unit. Exploiting structural properties of the original theory in order to decompose it
into subparts is one possible approach. It has been explored in the context of theo-
rem proving by [2] and recently extended to the case of consequence finding in [3].
But the need for a distributed approach becomes essential when the knowledge is

Philippe Chatalic
L.R.I. - Bat 650, Université Paris-Sud, Orsay, France. e-mail: chatalic @lri.fr

Andre de Amorim Fonseca
L.R.I., Inria Saclay Ile-de-France, Orsay, France. e-mail: andre.amorimfonseca @ gmail.fr

2 Philippe Chatalic and Andre de Amorim Fonseca

intrinsically scattered at different places. This is the case in some multi agent archi-
tectures, where each agent is not necessarily willing (e.g. for some privacy reasons)
to share all of its knowledge, but has to collaborate with others in order to achieve
its goals. Similarly, semantic data management systems exploit the content of mul-
tiple sources of information, each of them beeing described using its own ontology.
Query answering over such networked data sources requires reasoning over dis-
tributed ontologies. It generally proceeds in two steps, the first of which is a query
rewriting step (that can be reformulated as a consequence finding problem), where
the original query is rewritten in terms of the languages of the different relevant
ontologies. Obtained rewritings are then evaluated on the appropriate sources.
Given the ever growing number of information sources available over the web,
peer-to-peer (P2P) architectures look particularly promising for that purpose. The
absence of any centralized control or hierarchical organization and the fact that each
peer plays the same role gives much flexibility to accommodate to the dynamic
nature of such networks. This also contributes to the scalability and the robustness of
such approaches. Such principles are at the core of Peer Data Management Systems
(PDMS) such as as EDUTELLA [11], PTAZZA [5] or SOMEWHERE [1].
SOMEWHERE is a framework based on a decentralized propositional P2P infer-
ence system (P2PIS) that can be used as a corner stone for designing elaborated
PDMS. Its scalability on fairly large networks of peers has been very encouraging.
It is however rather a proof of concept than a rock solid piece of code. Unstable, it
missed essential features, e.g. the ability to cope with the dynamicity of the network.
Moreover, costs for its maintenance and attempts to add new features turned out to
be extremely high. At some time, the best solution has appeared to start a complete
reengineering, in order to improve both its design, robustness and extensibility. The
main contribution of this paper is to present the core architecture of this new system.

2 Consequence Finding in P2P Inference Systems

SOMEWHERE is based on a decentralized consequence finder that consider P2PIS
P = {P;}i—1.n such as the one of Fig. 1, where each peer has its own vocabulary V;
(a set of propositional variables) and a local clausal theory P; = O; UM;. O; denotes
the set of local clauses, that are made exclusively of literals over V; (here symbols
indiced by i), while M; denotes mapping clauses, involving the vocabulary of at
least two different peers. Intuitively, local clauses describe the very own knowledge
of the peer P; while mappings state logical constraints between different peer the-
ories. Variables appearing in several peers are said to be shared (edges labels on
fig. 1). They characterize possible interactions between peers and implicitly define
an acquaintance graph. We assume each peer to be aware of its acquaintances and
denote by ACQ(/, P;) the set of peers with which P, shares the variable of a literal /.
The global theory P=J,_, ,, P; is a set of clauses over the vocabulary V = U;—;_,V;.

For such networks, we consider the classical semantics of propositional logic.
We use |= to denote the classical consequence relation. A clause ¢ is an implicate of

SOMEWHERE? - A robust package for collaborative decentralized consequence-finding 3

a theory X iff X = c¢. An implicate c is
prime iff for any other implicate ¢” of

Peer Ps
Os: —as \V —bs

Ms: asV —b, (ml)

X, ¢” £ ¢ implies ¢” = ¢’. By extention
a clause ¢’ is said to be a (prime) impli-

Peer P,

cate of aclause c wrt X iff it is a (prime) 0;: a
. . /. —co V by —e3 V ey
implicate of X U {c}. Furthermore, ¢’ is SN baVesV-as

1 —b3 Ve (le)

said to be a proper (prime) implicate of
—icq V ds (M5)

cwrt Zif XU{c} =, but P}~ ¢

M;: —ay Vbs (m4)

Peer Py

Oy: aVd,
—fiVe
by Ve Vd,

Decentralized consequence finding
Given a P2PIS 7, the problem we ad-
dress is to compute all the proper prime
implicates of a clause ¢ with respect the
global theory P. The point is that while ¢
is stated using the language %y, (clauses
over V;) of the queried peer, the proper
prime implicates of ¢ can be clauses of
.Zvl. Moreover, none of the peer in the P2PIS has a global view of the network. A
peer only knows is its own theory P; and the variables shared with its neighbours.

DECA [1] is the first sound and complete decentralized algorithm that has been
proposed to solve this problem. It proceeds using a split/recombination strategy.
When a peer P, is asked to compute the proper prime implicates of a literal g, it first
computes the proper prime implicates of g w.r.t. the local theory P;. Each implicate
¢ is then split in two subclauses L(c) and S(c), corresponding to the non-shared and
shared literals of c. If non empty, S(c) is then split in turn and for each shared literal
1 of S(c) DECA asks its relevant neighbours ACQ(/, P;) (which are running the very
same algorithm) to compute similarly the proper consequences of [wrt P. Answers
of respective calls on neighbours are then recombined incrementally with L(c).

Peer Py
Oy4: —dyV —ay

ag NV —byVey
My: by V —d; (Wl3)

M]Z

Fig.1 A P2PIS network

Ilustrative example The reader is referred to [1] for the full details on the algo-
rithm. But to get an intuition of the work performed by DECA, let us illustrate the
reasoning triggered by the query go = ds@P; that asks P4 to compute the proper
prime implicates of d4 wrt P, on the P2PIS of Fig. 1. First, local consequents of dy4
on P4 are computed, which gives : {d4, —as, —bs V c4,—d; V c4 }. But ¢4 and d; being
shared variables, this triggers two recursive queries, g1 = c4@P3 and gy = ~d| @P.
q1: local consequents of ¢4 on P; are {c4,—d3}. Since d3 is not shared, the reasoning
halts. Both clauses are returned to Py, as answers for the query ¢;.

qz: local consequents of —d; on P are {—d},a;,b; Ve;}. But e; being shared with
Ps, this triggers a new query g3 = e; @Ps.

q3: local consequents of e; on P; are {e1,—b3}. But b3 being shared with P, this
triggers a new query g4 = b, @P;.

q4: local consequents of —b3 on P, are {0} (i.e. the empty clause, which subsumes
all other consequents). O is then returned to P3 as an answer for g4, where it sub-
sumes e and —b3. O is then returned to Py, as the only answer for the query g3.

1A variant problem is to focus on the proper prime implicates that belong to some production field
PF C %y, supposed to characterize interesting clauses for the application domain.

4 Philippe Chatalic and Andre de Amorim Fonseca

On P;: O (which subsumes e;) is recombined with b and the set of consequents of
—d) is now {—d,ay,b; }. This set is returned to P4 as the answer for the query ¢;.
On Py4: these clauses are recombined in place of d; with the answers obtained for c4,
producing : {—d; Vca,a;Vca,b1 Vs, —d1V —ds, a1V —ds, by V —ds }. These answers
are added to those previously obtained, namely {d4, —as,—ba V ca,—bsV —d3}.

While [1] assume the global theory to be consistent, [4] has adapted this ap-
proach to the case where the local theories P; are consistent, but not necessarily the
whole theory P. Two algorithms are described : P2P-NG and WF-DECA, that can
respectively detect all causes of inconsistencies and ensure that only so-called well
founded consequents are produced. Algorithms DECA, P2P-NGand WF-DECA
have many similarities but also differences. Their respective codes have been devel-
oped by different persons, at different periods of time, with different coding prac-
tices and style. Moreover, the original code from which they evolved suffered from
many flaws, with lots of duplicated code and serious cross cutting concerns that
strongly affected its modularity. Prohibitive maintenance costs and difficulties to
add new functionalities have motivated a complete reengineering of the whole.

3 Architecture of SOMEWHERE2

SOMEWHERE2’s design has been driven by several goals, among which the ob-
tention of more robust an flexible code, developed according better software engi-
neering practices. Robustness has been improved through a careful analysis of the
different parts of the code in order to reduce dependencies as much as possible. This
has lead to the design of several components corresponding to central concepts.

Flexibility has been improved by structuring the code in terms of an abstract no-
tion of module. Each module addresses a specific concern. Some required modules
are always loaded by the application. Others may be included (or not) at build time,
according to the user’s needs. A module manager is responsible for loading the ap-
propriate modules. Essential functionalities of the various components are modeled
in abstract modules and implemented in concrete modules. This module based ap-
proach greatly facilitates alternative concrete implementations of functionalities, the
selection different sets of features and/or the creation of new extensions.

As seen in the illustrative example, DECA requires a local consequence finder,
some way to interact with other peers, to recombine the results obtained from dis-
tant peers, to interact with the user (for asking queries, updating/adding/removing
peers,..). P2P-NG and WF-DECA have similar needs, although declined in dif-
ferent ways. The current architecture of SOMEWHERE?2 (Fig. 2) has 4 components
(Module Manager, User interface, Transport and Distributed Reasoning), each of
which with several modules. SOMEWHERE?2’s default configuration also rely on the
component (IASI Libs), that offers reasoning services, but in centralized setting. As
it can be used independently of Somewhere2 it is seen as an external dependency.

Components have very few dependencies, represented by top-bottom adjacen-
cies, e.g. Distributed Reasoning only depends on Transport and IASI Libs. Each

SOMEWHERE? - A robust package for collaborative decentralized consequence-finding 5

| Distributed Reasoning
I
SOMEWHERE2 :(swr.pLogic.distributed.inconsistency)

I
I
E [swr.pLogic.distributed]
I

Transport

! i !

1 1

! " T [1

i swr.cli.| [swr.cli. L sSWr.) [swr. SWI.),

. : : 1

! | swing | | console) ! i |jxta] | shoalf |jeroups)

1 1 : !
1 oy
1 LY

. . I
(swr.communication)1
!

I External libraries

Concrete Modules

I
I
I
:
I
[——
I
1

Required Modules

____________________________________ B Module Loader

Fig. 2 SOMEWHERE2 Architectural Schema.

component can contain required, abstract, concrete and/or external modules. Mod-
ule dependencies inside a component are reflected in the same way. The baseApp
module plays a central role and is responsible for the instantiation and configuration
of the other modules. Each module can have specific libraries and its own configura-
tion scheme. We briefly describes noticeable features of some of these components.

Transport In [1], all communications were handled in an ad’hoc way, at socket
level. In contrast, the new architecture is designed to reuse an existing P2P frame-
work. The abstract module communication describes the concurrency model (based
on http-like sessions) and core concepts required by the application for exchanges
between peers (messages types, processors, ...) and the dynamicity of the network
(joining/leaving peers, lost connections,...). The clean separation of abstract and
concrete layers has greatly facilitated the comparison of alternative P2P frameworks
(jxta[l13], shoal[6] and jgroups[7]), without affecting other parts of the code.

Distributed Reasoning This component is responsible for all knowledge level con-
cepts relevant to the distributed aspects of consequent finding algorithms [1, 4] (e.g.
messages, handlers, network/peers modifications, anytime recombination,...). One
module handle all aspects related to inconsistency tolerance and the implemen-
tations of P2P-NG and WF-DECA. Both share as much code as possible with
DECA, which is implemented in the pLogic.distributed module.

IASI Libs Although packaged as a independent project, this component has been
developed simultaneously to the other modules. It is the core library for local CF
algorihms. In contrast, with the [1], that used a simple split/backward chaining strat-
egy, SOMEWHERE? uses a corrected and optimized version of IPIA [8].

6 Philippe Chatalic and Andre de Amorim Fonseca

The increased robustness of this new framework also results from a permanent
effort to follow good software engineering practices, such as the systematic use of
unit tests, the intensive use of design patterns and of static code analyzers (Sonar).
A Jenkins server as also been configured to set up integration tests. In its current
state, the project represent around 13000 lines of Java code, with less than 5% code
redundancy, structured as a set of Maven projects, to ease the build process.

4 Conclusion

We have presented the architecture of SOMEWHERE?2. It reunifies in a single and
coherent framework two variants, tolerant or not to inconsistent theories of decen-
tralized consequence finding algorithms. This new framework, the code of which
has been has been completely rewritten and reorganized, has gained in modularity,
flexibility and robustness. One noticeable improvement is the ability to deal safely
with dynamic networks, with peers joining and leaving the network anytime. We
expect SOMEWHERE?2 to be much easier to use, to maintain and to extend. An ex-
tensive experimental study is underway and we plan to release its code under an
open source licence.

References

1. P. Adjiman, P. Chatalic, F. Goasdoué, M.-C. Rousset, and L. Simon. Distributed reasoning in
a peer-to-peer setting: Application to the semantic web. JAIR, 25, January 2006.
2. E. Amir and S. Mcllraith. Partition-based logical reasoning. In KR, pages 389-400, 2000.
3. G. Bourgne and K. Inoue. Partition-based consequence finding. In ICTAI, pages 641-648,
2011.
4. P.Chatalic, G.H. Nguyen, and M.C. Rousset. Reasoning with Inconsistencies in Propositional
Peer-to-Peer Inference Systems. . In ECAI, pages 352-357, August 2006.
5. Alon Y. Halevy, Zachary Ives, Igor Tatarinov, and Peter Mork. Piazza: data management
infrastructure for semantic web applications. pages 556-567. ACM Press, 2003.
6. http://shoal.java.net. Shoal — a dynamic clustering framework.
7. http://www.jgroups.org. Jgroups - a toolkit for reliable multicast communication.
8. Alex Kean and George K. Tsiknis. An incremental method for generating prime impli-
cants/impicates. J. Symb. Comput., 9(2):185-206, 1990.
9. C.T. Lee. A completeness theorem and a computer program for finding theorems derivable
from given axioms. PhD thesis, Univ. of California, Berkeley, CA, 1967.
10. P. Marquis. Handbook on Defeasible Reasoning and Uncertainty Management Systems, vol-
ume 5, chapter Consequence Finding Algorithms, pages 41-145. Kluwer Academic, 2000.
11. W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, and al. Edutella: a p2p networking infrastruc-
ture based on rdf. pages 604—-615. ACM, May 2002.
12. P. Siegel. Représentation et utilisation de la connaissance en calcul propositionnel. PhD
thesis, Université d’ Aix-Marseille II, 1987.
13. http://jxta.kenai.com. Jxta: A language and platform independent protocol for p2p networking.

