Skip to main content

Optimal Behaviour of Smart Wireless Users

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 264))

Abstract

We consider a smart or cognitive user (CU) that operates as a secondary user of a cognitive channel. Before transmission, the CU samples the channel until it estimates that it can be accessed successfully. When the CU transmits a packet, it may nevertheless be unsuccessful because its estimate was wrong. The CU then knows about its failure and stops the ongoing transmission sometime before the transmission ends. Then the CU restarts sensing the channel. In this paper we analyse the total delay experienced by a CU. We derive the first and second moments of the effective transmission time of a packet sent by such a smart user, in view of the fact that the sensing and errors made in transmitting a packet when the channel is actually unavailable, will introduce additional delay. This is similar to a “vacation time” in queues, though it differs from conventional vacation time models because such “sampling vacations” can be beneficial to the future transmission.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gelenbe E, Mang X, Onvural R (1997) Bandwidth allocation and call admission control in high-speed networks. IEEE Commun Mag 35(5):122–129

    Article  Google Scholar 

  2. Gelenbe E (2009) Steps towards self-aware networks. Commun ACM 52(7):66–75

    Article  Google Scholar 

  3. Gelenbe E, Loukas G (2007) A self-aware approach to denial of service defense. Comput J 51(5):1299–1314

    MATH  Google Scholar 

  4. Oklander B, Gelenbe E (2013) Cognitive users: a ccomprehensive analysis, Submitted for publication

    Google Scholar 

  5. Li H (2011) Socially optimal queuing control in cognitive radio networks subject to service interruptions: To queue or not to queue? IEEE Trans Wirel Commun 10(5):1656–1666. doi:10.1109/TWC.2011.030411.101220

    Article  Google Scholar 

  6. Wang S, Zhang J, Tong L (2012) A characterization of delay performance of cognitive medium access. IEEE Trans Wirel Commun 11(2):800–809. doi:10.1109/TWC.2012.010312.110765

    Article  Google Scholar 

  7. Hwang GU, Roy S (2012) Design and analysis of optimal random access policies in cognitive radio networks. IEEE Trans Commun 60(1):121–131. doi:10.1109/TCOMM.2011.112311.100702

    Article  Google Scholar 

  8. El-Sherif A, Liu K (2011) Joint design of spectrum sensing and channel access in cognitive radio networks. IEEE Trans Wirel Commun 10(6):1743–1753. doi:10.1109/TWC.2011.032411.100131

    Article  Google Scholar 

  9. Hoang A, Liang YC, Zeng Y (2010) Adaptive joint scheduling of spectrum sensing and data transmission in cognitive radio networks. IEEE Trans Commun 58(1):235–246. doi:10.1109/TCOMM.2010.01.070270

    Article  Google Scholar 

  10. Hamza D, Aissa S (2011) Impact of sensing errors on the queueing delay and transmit power in cognitive radio access. In: Communications and Information Technology (ICCIT), International conference on 2011, pp 53–58, Doi: 10.1109/ICCITECHNOL.2011.5762693

    Google Scholar 

  11. Wang J, Huang A, Wang W, Yin R (2012) Queueing analysis for cognitive radio networks with lower-layer considerations. In: Wireless communications and networking conference (WCNC), 2012 IEEE, pp 1269–1274, Doi: 10.1109/WCNC.2012.6213973

    Google Scholar 

  12. Choi JK, Kwon KH, Yoo SJ (2009) Qos-aware channel sensing scheduling in cognitive radio networks. In: Ninth IEEE international conference on computer and information technology, 2009. CIT ’09, vol 2, (2009), pp 63–68. Doi: 10.1109/CIT.2009.115

    Google Scholar 

  13. Piazza D, Cosman P, Milstein L, Tartara G (2010) Throughput and delay analysis for real-time applications in ad-hoc cognitive networks. In: Wireless communications and networking conference (WCNC), 2010 IEEE, pp 1–6 (2010). Doi: 10.1109/WCNC.2010.5506370

    Google Scholar 

  14. Wang LC, Wang CW, Adachi F (2011) Load-balancing spectrum decision for cognitive radio networks. IEEE J Sel Areas Commun 29(4):757–769. doi:10.1109/JSAC.2011.110408

    Article  Google Scholar 

  15. Wang LC, Wang CW, Feng KT (2011) A queueing-theoretical framework for qos-enhanced spectrum management in cognitive radio networks. IEEE Wirel Commun 18(6):18–26. doi:10.1109/MWC.2011.6108330

    Article  Google Scholar 

  16. Gelenbe E, Iasnogorodski R (1980) A queue with server of walking type (autonomous service). Ann Inst Henri Poincare 16:63–73

    MATH  MathSciNet  Google Scholar 

  17. Takagi H (1991) Queueing analysis: a foundation of performance evaluation, vol 1 : vacation and priority systems. QUEUEING ANALYSIS, North-Holland

    Google Scholar 

  18. Gelenbe E (2003) Sensible decisions based on qos. CMS 1(1):1–14

    Article  MathSciNet  Google Scholar 

  19. Gelenbe E, Sevcik KC (1979) Analysis of update synchronisation algorithms for multiple copy data bases. IEEE Trans Comput C-28(10):737–747

    Google Scholar 

  20. Aguilar J, Gelenbe E (1997) Task assignment and transaction clustering heuristics for distributed systems. Inf Sci 97(1):199–219

    Article  Google Scholar 

  21. Fourneau JM, Gelenbe E (1999) Random neural networks with multiple classes of signals. Neural Comput 11(4):953–963

    Article  Google Scholar 

  22. Gelenbe E (2000) The first decade of g-networks. Eur J Oper Res 126(2):231–232

    Google Scholar 

  23. Gelenbe E, Hébrail G (1986) A probability model of uncertainty in data bases. In: ICDE. IEEE Computer Society, pp. 328–333, 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Oklander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Oklander, B., Gelenbe, E. (2013). Optimal Behaviour of Smart Wireless Users. In: Gelenbe, E., Lent, R. (eds) Information Sciences and Systems 2013. Lecture Notes in Electrical Engineering, vol 264. Springer, Cham. https://doi.org/10.1007/978-3-319-01604-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01604-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01603-0

  • Online ISBN: 978-3-319-01604-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics