Skip to main content

Abstract

The constraint satisfaction problem (CSP) is a generic problem with many applications in different areas of artificial intelligence and operational research. When solving a CSP, the order in which the variables are selected to be instantiated has a tremendous impact in the cost of finding a solution. In this paper we explore a novel type of heuristic that combines different features that describe the current state of the instance to decide which variable to instantiate next. A generational genetic algorithm is used to automatically tune the parameters used by these new heuristics. This paper contributes to the development of new heuristics that can be either very specialized to one class of instances, or general enough to deal with different classes of instances with an acceptable performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achlioptas, D., Molloy, M.S.O., Kirousis, L.M., Stamatiou, Y.C., Kranakis, E., Krizanc, D.: Random constraint satisfaction: A more accurate picture. Constraints 6(4), 329–344 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bain, S., Thornton, J., Sattar, A.: Evolving algorithms for constraint satisfaction. In: Congress on Evolutionary Computation 2004 (CEC 2004), vol. 1, pp. 265–272 (2004a)

    Google Scholar 

  3. Bain, S., Thornton, J., Sattar, A.: Methods of automatic algorithm generation. In: Zhang, C., Guesgen, H.W., Yeap, W.K. (eds.) PRICAI 2004. LNCS (LNAI), vol. 3157, pp. 144–153. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Berlier, J., McCollum, J.: A constraint satisfaction algorithm for microcontroller selection and pin assignment. In: Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon), pp. 348–351 (2010)

    Google Scholar 

  5. Bessière, C., Régin, J.C.: Mac and combined heuristics: Two reasons to forsake FC (and CBJ) on hard problems. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, Springer, Heidelberg (1996)

    Google Scholar 

  6. Burke, E.K., Hyde, M.R., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.: Exploring hyper-heuristic methodologies with genetic programming. In: Mumford, C.L., Jain, L.C. (eds.) Computational Intelligence. ISRL, vol. 1, pp. 177–201. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.: Automatic heuristic generation with genetic programming: evolving a jack-of-all-trades or a master of one. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp. 1559–1565. ACM, New York (2007)

    Chapter  Google Scholar 

  8. Crawford, B., Soto, R., Castro, C., Monfroy, E.: A hyperheuristic approach for dynamic enumeration strategy selection in constraint satisfaction. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2011, Part II. LNCS, vol. 6687, pp. 295–304. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Dunkin, N., Allen, S.: Frequency assignment problems: Representations and solutions. Tech. Rep. CSD-TR-97-14, University of London (1997)

    Google Scholar 

  10. Epstein, S.L., Freuder, E.C., Wallace, R.J., Morozov, A., Samuels, B.: The adaptive constraint engine. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 525–542. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Gaschnig, J.: Experimental case studies of backtrack vs. waltz-type vs. new algorithms for satisficing assignment problems. In: Proceedings of the Canadian Artificial Intelligence Conference, pp. 268–277 (1978)

    Google Scholar 

  12. Gent, I., MacIntyre, E., Prosser, P., Smith, B., Walsh, T.: An empirical study of dynamic variable ordering heuristics for the constraint satisfaction problem. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 179–193. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  13. Holland, J.: Adaptation in Natural and Artificial Systems. The University of Michigan Press (1975)

    Google Scholar 

  14. MacIntyre, E., Prosser, P., Smith, B.M., Walsh, T.: Random constraint satisfaction: Theory meets practice. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 325–339. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  15. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8(1), 99–118 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Minton, S.: An analytic learning system for specializing heuristics. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI 1993), pp. 922–929. Morgan Kaufmann (1993)

    Google Scholar 

  17. Minton, S., Johnston, M.D., Phillips, A., Laird, P.: Minimizing conflicts: A heuristic repair method for CSP and scheduling problems. Artificial Intelligence 58, 161–205 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based reasoning in an algorithm portfolio for constraint solving. In: Proceedings of the 19th Irish Conference on Artificial Intelligence and Cognitive Science (2008)

    Google Scholar 

  19. Ortiz-Bayliss, J.C., Terashima-Marín, H., Conant-Pablos, S.E.: Learning vector quantization for variable ordering in constraint satisfaction problems. Pattern Recognition Letters 34(4), 423–432 (2013)

    Article  Google Scholar 

  20. Petrovic, S., Qu, R.: Case-based reasoning as a heuristic selector in a hyper-heuristic for course timetabling problems. In: Proceedings of the 6th International Conference on Knowledge-Based Intelligent Information Engineering Systems and Applied Technologies (KES 2002), vol. 82, pp. 336–340 (2002)

    Google Scholar 

  21. Rossi, F., Petrie, C., Dhar, V.: On the equivalence of constraint satisfaction problems. In: Proceedings of the 9th European Conference on Artificial Intelligence, pp. 550–556 (1990)

    Google Scholar 

  22. Schwartz, S., Wah, B.: Automated parameter tuning in stereo vision under time constraints. In: Proceedings., Fourth International Conference on Tools with Artificial Intelligence, TAI 1992, pp. 162–169 (1992)

    Google Scholar 

  23. Soto, R., Crawford, B., Monfroy, E., Bustos, V.: Using autonomous search for generating good enumeration strategy blends in constraint programming. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part III. LNCS, vol. 7335, pp. 607–617. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Wallace, R.J.: Analysis of heuristic synergies. In: Hnich, B., Carlsson, M., Fages, F., Rossi, F. (eds.) CSCLP 2005. LNCS (LNAI), vol. 3978, pp. 73–87. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Williams, C.P., Hogg, T.: Using deep structure to locate hard problems. In: Proceedings of AAAI 1992, pp. 472–477 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Carlos Ortiz-Bayliss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ortiz-Bayliss, J.C., Moreno-Scott, J.H., Terashima-Marín, H. (2014). Automatic Generation of Heuristics for Constraint Satisfaction Problems. In: Terrazas, G., Otero, F., Masegosa, A. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2013). Studies in Computational Intelligence, vol 512. Springer, Cham. https://doi.org/10.1007/978-3-319-01692-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01692-4_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01691-7

  • Online ISBN: 978-3-319-01692-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics