Skip to main content

Using Base Position Errors in an Entropy-Based Evaluation Function for the Study of Genetic Code Adaptability

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 512))

Abstract

The canonical genetic code is almost universal. An intriguing question is why the canonical genetic code is used instead of another genetic code. Some researchers have proposed that the canonical genetic code is a product of natural selection. This hypothesis is supported by its robustness against mutations. In this paper, we propose a new evaluation function based on entropy and robustness against base position errors for the study of genetic code adaptability. In order to find the best hypothetical genetic codes in the search space, we use a genetic algorithm (GA). The experimental results indicate that, when the proposed evaluation function is compared to the standard evaluation function based only on robustness, the difference between the fitness of the best hypothetical codes found by the GA and the fitness of the canonical genetic code is smaller.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Freeland, S.J.: The Darwinian genetic code: an adaptation for adapting? Genetic Programming and Evolvable Machines 2, 113–127 (2002)

    Article  Google Scholar 

  2. Lodish, H., Berk, A., Zipursky, S., Lawrence, S., Kaiser, C.A., Krieger, M., Scott, M.P., Bretscher, A., Ploegh, H., Matsudaira, P.: Molecular Cell Biology. W.H. Freeman (2007)

    Google Scholar 

  3. Lehninger, A.L., Nelson, D.L., Cox, M.M.: Lehninger Principles of Biochemistry. W.H. Freeman (2005)

    Google Scholar 

  4. Schoenauer, S., Clote, P.: How optimal is the genetic code. In: Proceedings of the German Conference on Bioinformatics (GCB 1997), pp. 65–67. IEEE Press, New York (1997)

    Google Scholar 

  5. Woese, C.R.: On the evolution of the genetic code. Proceedings of the National Academy of Sciences of the United States of America 54, 1546–1552 (1965)

    Article  Google Scholar 

  6. Crick, F.H.: The origin of the genetic code. J. Mol. Biol. 38, 367–379 (1968)

    Article  Google Scholar 

  7. Di Giulio, M.: The extension reached by the minimization of the polarity distances during the evolution of the genetic code. Journal of Molecular Evolution 29, 288–293 (1989)

    Article  Google Scholar 

  8. Freeland, S.J., Hurst, L.D.: The genetic code is one in a million. Journal of Molecular Evolution 47, 238–248 (1998)

    Article  Google Scholar 

  9. Di Giulio, M.: The origin of the genetic code: theories and their relationships, a review. Biosystems 2, 175–184 (2005)

    Article  Google Scholar 

  10. Haig, D., Hurst, L.D.: A quantitative measure of error minimization in the genetic code. J. Mol. Biol. 33, 412–417 (1991)

    Google Scholar 

  11. Knight, R.D., Freeland, S.J., Landweber, L.F.: Selection, history and chemistry: the three faces of the genetic code. Trends in Biochemical Sciences 24, 241–247 (1999)

    Article  Google Scholar 

  12. Santos, J., Monteagudo, Á.: Study of the genetic code adaptability by means of a genetic algorithm. Journal of Theoretical Biology 264, 854–865 (2010)

    Article  MathSciNet  Google Scholar 

  13. Santos, J., Monteagudo, Á.: Simulated evolution applied to study the genetic code optimality using a model of codon reassignments. BMC Bioinformatics 12, 56 (2011)

    Article  Google Scholar 

  14. Di Giulio, M., Capobianco, M.R., Medugno, M.: On the optimization of the physicochemical distances between amino acids in the evolution of the genetic code. Journal of Theoretical Biology 168, 43–51 (1994)

    Article  Google Scholar 

  15. Goldman, N.: Further results on error minimization in the genetic code. Journal of Molecular Evolution 37, 662–664 (1993)

    Google Scholar 

  16. Oliveira, L.L., Tinós, R.: Entropy-based evaluation function for the investigation of genetic code adaptability. In: BCB 2012: Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine, Orlando, pp. 558–560 (2012)

    Google Scholar 

  17. Parker, J.: Errors and alternatives in reading the universal genetic code. Microbiology and Molecular Biology Reviews 53, 273 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lariza Laura de Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Oliveira, L.L., Tinós, R. (2014). Using Base Position Errors in an Entropy-Based Evaluation Function for the Study of Genetic Code Adaptability. In: Terrazas, G., Otero, F., Masegosa, A. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2013). Studies in Computational Intelligence, vol 512. Springer, Cham. https://doi.org/10.1007/978-3-319-01692-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01692-4_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01691-7

  • Online ISBN: 978-3-319-01692-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics