Skip to main content

A Computational Model for Reference Object Selection in Spatial Relations

  • Conference paper
Spatial Information Theory (COSIT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8116))

Included in the following conference series:

Abstract

Automatic generation of adequate spatial relations with regard to reference object selection is a nontrivial problem. In the present paper, we develop, implement and evaluate a computational model for reference object selection using empirically derived conceptual spatial strategies. The attribution of roles (reference object and located object) in object configurations was investigated to derive conceptual spatial strategies with regard to size and position of the objects. These strategies were implemented in a computational model to generate spatial descriptions of furniture configurations. To evaluate the automatically generated descriptions, we contrasted them with analog sentences with inverted roles of reference and located object and asked participants to choose the more adequate description out of the two. The spatial descriptions automatically generated were chosen significantly more often. This indicates that taking spatial conceptual strategies into account improves the adequacy of automatically generated spatial descriptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Talmy, L.: Figure and ground in complex sentences. In: Greenberg, J.H. (ed.) Universals of Human Language, pp. 625–649. Stanford University Press, Stanford (1975)

    Google Scholar 

  2. Clark, H.H., Chase, W.G.: Perceptual coding strategies in the formation and verification of descriptions. Memory and Cognition 1A, (101–111) (1974)

    Google Scholar 

  3. Miller, J.E., Carlson, L.A., Hill, P.L.: Selecting a Reference Object. Journal of Experimental Psychology: Learning, Memory, and Cognition 37(4), 840–850 (2011)

    Article  Google Scholar 

  4. Logan, G.D., Sadler, D.D.: A Computational Analysis of the Apprehension of Spatial Relations. In: Bloom, P., Peterson, M., Nadel, L., Garrett, M. (eds.) Language and Space, pp. 493–529. MIT Press, Cambridge (1996)

    Google Scholar 

  5. Carlson, L.A.: Selecting a reference frame. Spatial Cognition and Computation 1(4), 365–379 (1999)

    Article  Google Scholar 

  6. Tenbrink, T., Coventry, K., Andonova, E.: Spatial Strategies in the Description of Complex Configurations. Discourse Processes 48(4), 237–266 (2011)

    Article  Google Scholar 

  7. Carlson-Radvansky, L.A., Radvansky, G.A.: The Influence of Functional Relations on Spatial Term Selection. Psychological Science 7(1), 56–60 (1996)

    Article  Google Scholar 

  8. Liu, C., Walker, J., Chai, J.: Ambiguities in spatial language understanding in situated human robot dialogue. In: Dialogue with Robots: AAAI Fall Symposium, pp. 50–55 (2010)

    Google Scholar 

  9. Ziegler, L., Johannsen, K., Swadzba, A., de Ruiter, J., Wachsmuth, S.: Exploiting Spatial Descriptions in Visual Scene Analysis. Cognitive Processing 13, 369–374 (2012)

    Article  Google Scholar 

  10. Tversky, B., Lee, P., Mainwaring, S.: Why do Speakers Mix Perspectives? Spatial Cognition and Computation 19(4), 399–412 (1999)

    Google Scholar 

  11. Ehrich, V.: Zur Linguistik und Psycholinguistik der sekundären Raumdeixis. In: Schweizer, H. (ed.) Sprache und Raum. Psychologische und linguistische Aspekte der Aneignung und Verarbeitung von Räumlichkeit, pp. 130–161. Stuttgart, Metzler (1985)

    Google Scholar 

  12. de Vega, M., Rodrigo, M.J., Ato, M., Dehn, D.M., Barquero, B.: How nouns and prepositions fit together. Discourse Processes 34, 117–143 (2002)

    Article  Google Scholar 

  13. Barclay, M., Galton, A.: An Influence Model for Reference Object Selection in Spatially Locative Phrases. In: Freksa, C., Newcombe, N.S., Gärdenfors, P., Wölfl, S. (eds.) Spatial Cognition VI. LNCS (LNAI), vol. 5248, pp. 216–232. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Barclay, M.: Reference Object Choice in Spatial Language: Machine and Human Models. PhD thesis, University of Exeter (2010)

    Google Scholar 

  15. Shanon, B.: Room descriptions. Discourse Processes 7(3), 225–255 (1984)

    Article  Google Scholar 

  16. Chatterjee, A., Maher, L.M., Heilman, K.M.: Spatial Characteristics of Thematic Role Representation. Neuropsychologia 33(5), 643–648 (1995)

    Article  Google Scholar 

  17. Hartsuiker, R., Kolk, H.H.: Syntactic Facilitation in Agrammatic Sentence Production. Brain and Language 62, 221–254 (1998)

    Article  Google Scholar 

  18. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Miyajima, K., Ralescu, A.: Spatial Organization in 2D Segmented Images: Representation and Recognition of Primitive Spatial Relations. Fuzzy Sets and Systems 65, 225–236 (1994)

    Article  Google Scholar 

  20. Matsakis, P., Wendling, L.: A New Way to Represent the Relative Position between Areal Objects. Transactions on Pattern Analysis and Machine Intelligence 21(7), 634–643 (1999)

    Article  Google Scholar 

  21. Socher, G., Sagerer, G., Perona, P.: Bayesian Reasoning on Qualitative Descriptions from Images and Speech. Image and Vision Computing 18(2), 155–172 (2000)

    Article  Google Scholar 

  22. Vorwerg, C., Socher, G., Fuhr, T., Sagerer, G., Rickheit, G.: Projective Relations for 3D Space: Computational Model, Application, and Psychological Evaluation. In: Proceedings of the National Conference on Artificial Intelligence, Providence, Rhode Island, pp. 159–164. AAAI Press / The MIT Press (1997)

    Google Scholar 

  23. Moratz, R.: Intuitive linguistic joint object reference in human-robot interaction. In: Proceedings of the Twenty-first National Conference on Artificial Intelligence, Boston (2006)

    Google Scholar 

  24. Moratz, R., Tenbrink, T.: Spatial reference in linguistic human-robot interaction: Iterative, empirically supported development of a model of projective relations. Spatial Cognition and Computation 6(1), 63–107 (2006)

    Article  Google Scholar 

  25. Regier, T., Carlson, L.A.: Grounding Spatial Language in Perception: An Empirical and Computational Investigation. Journal of Experimental Psychology: General 130(2), 273–298 (2001)

    Article  Google Scholar 

  26. Skubic, M., Perzanowski, D., Blisard, S., Schultz, A., Adams, W., Bugajska, M., Brock, D.: Spatial Language for Human-Robot Dialogs. Transactions on Systems, Man, and Cybernetics 34(2), 154–167 (2004)

    Article  Google Scholar 

  27. Moratz, R., Fischer, K., Tenbrink, T.: Cognitive Modeling of Spatial Reference for Human-Robot Interaction. Intl. Journal of Artificial Intelligence Tools 10(4), 589–611 (2001)

    Article  Google Scholar 

  28. Schwering, A.: Evaluation of a semantic similarity measure for natural language spatial relations. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 116–132. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  29. Tenbrink, T., Ragni, M.: Linguistic principles for spatial relational reasoning. In: Stachniss, C., Schill, K., Uttal, D. (eds.) Spatial Cognition 2012. LNCS, vol. 7463, pp. 279–298. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Johannsen, K., Swadzba, A., Ziegler, L., Wachsmuth, S., De Ruiter, J.P. (2013). A Computational Model for Reference Object Selection in Spatial Relations. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds) Spatial Information Theory. COSIT 2013. Lecture Notes in Computer Science, vol 8116. Springer, Cham. https://doi.org/10.1007/978-3-319-01790-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01790-7_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01789-1

  • Online ISBN: 978-3-319-01790-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics