Skip to main content

Pipeline Design of Bit-Parallel Gaussian Normal Basis Multiplier over GF(2m)

  • Conference paper
  • 1764 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 238))

Abstract

The finite field multiplication over GF(2m) is the most important arithmetic operation for performing the elliptic curve cryptosystem which is very attractive in portable devices due to small key size. Design of finite field multiplier with low space complexity for elliptic curve cryptosystem is needed. The proposed bit-parallel GNB multiplier using pipeline XOR tree rather than XOR tree in traditional bit-parallel GNB multipliers. The proposed one can save about 99% number of both AND and XOR gates while comparing with existing bit-parallel GNB multipliers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

    Google Scholar 

  2. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–209 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Savaş, E., Koç, Ç.K.: Finite field arithmetic for cryptography. IEEE Circuits and Systems Magazine 10(2), 40–56 (2010)

    Article  Google Scholar 

  4. Bartee, T.C., Schneider, D.J.: Computation with finite fields. Information and Computing 6, 79–98 (1963)

    MathSciNet  MATH  Google Scholar 

  5. Mastrovito, E.D.: VLSI architectures for multiplication over finite field GF(2m), Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes. In: Mora, T. (ed.) Proc. Sixth Int’l Conf., AAECC-6, Rome, pp. 297–309 (1988)

    Google Scholar 

  6. Koç, Ç.K., Sunar, B.: Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields. IEEE Trans. Computers 47(3), 353–356 (1998)

    Article  MATH  Google Scholar 

  7. Itoh, T., Tsujii, S.: Structure of parallel multipliers for a class of fields GF(2m). Information and Computation 83, 21–40 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lee, C.Y., Lu, E.H., Lee, J.Y.: Bit-parallel systolic multipliers for GF(2m) fields defined by all-one and equally-spaced polynomials. IEEE Trans. Computers 50(5), 385–393 (2001)

    Article  MathSciNet  Google Scholar 

  9. Paar, C., Fleischmann, P., Roelse, P.: Efficient multiplier architectures for Galois Fields GF(24n). IEEE Trans. Computers 47(2), 162–170 (1998)

    Article  MathSciNet  Google Scholar 

  10. Wu, H.: Bit-parallel finite field multiplier and squarer using polynomial basis. IEEE Trans. Computers 51(7), 750–758 (2002)

    Article  Google Scholar 

  11. Fan, H., Hasan, M.A.: A new approach to subquadratic space complexity parallel multipliers for extended binary fields. IEEE Trans. Computers 56(2), 224–233 (2007)

    Article  MathSciNet  Google Scholar 

  12. Huang, W.-T., Chang, C.H., Chiou, C.W., Tan, S.-Y.: Non-XOR Approach for Low-Cost Bit-Parallel Polynomial Basis Multiplier over GF(2m). IET Information Security 5(3), 152–162 (2011)

    Article  Google Scholar 

  13. Chiou, C.W., Lin, J.M., Lee, C.-Y., Ma, C.-T.: Low complexity systolic Mastrovito multiplier over GF(2m). European Journal of Scientific Research 65(4), 534–545 (2011)

    Google Scholar 

  14. Chiou, C.W., Lee, C.-Y., Yeh, Y.-C.: Multiplexer implementation of low-complexity polynomial basis multiplier in GF(2m) using all one polynomial. Information Processing Letters 111(3.1), 1044–1047 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu, H., Hasan, M., Blake, A., New, I.F.: low-complexity bit-parallel finite field multipliers using weakly dual bases. IEEE Trans. Computers 47(11), 1223–1234 (1998)

    Article  Google Scholar 

  16. Fenn, S.T.J., Benaissa, M., Taylor, D.: GF(2m) multiplication and division over the dual basis. IEEE Trans. Computers 45(3), 319–327 (1996)

    Article  MATH  Google Scholar 

  17. Wang, M., Blake, I.F.: Bit serial multiplication in finite fields. SIAM J. Disc. Math. 3(1), 140–148 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Berlekamp, E.R.: Bit-serial Reed-Solomon encoder. IEEE Trans. Inform. Theory IT-28, 869–874 (1982)

    Article  MATH  Google Scholar 

  19. Wang, J.-H., Chang, H.W., Chiou, C.W., Liang, W.-Y.: Low-complexity design of bit-parallel dual basis multiplier over GF(2m). IET Information Security 6(4), 324–328 (2012)

    Article  Google Scholar 

  20. Hua, Y.Y., Lin, J.-M., Chiou, C.W., Lee, C.-Y., Liu, Y.H.: A novel digit-serial dual basis systolic Karatsuba Multiplier over GF(2m). Journal of Computers 23(2), 80–94 (2012)

    Google Scholar 

  21. Lee, C.Y., Chiou, C.W.: Efficient design of low-complexity bit-parallel systolic Hankel multipliers to implement multiplication in normal and dual bases of GF(2m). IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science E88-A(11), 3169–3179 (2005)

    Article  Google Scholar 

  22. Massey, J.L., Omura, J.K.: Computational method and apparatus for finite field arithmetic, U.S. Patent Number 4587627 (1986)

    Google Scholar 

  23. Wang, C.C., Truong, T.K., Shao, H.M., Deutsch, L.J., Omura, J.K., Reed, I.S.: VLSI architectures for computing multiplications and inverses in GF(2m). IEEE Trans. Computers C-34(8), 709–717 (1985)

    Article  Google Scholar 

  24. Reyhani-Masoleh, A.: Efficient algorithms and architectures for field multiplication using Gaussian normal bases. IEEE Trans. Computers 55(1), 34–47 (2006)

    Article  Google Scholar 

  25. Chiou, C.W., Lee, C.Y.: Multiplexer-based double-exponentiation for normal basis of GF (2m). Computers & Security 24(1), 83–86 (2005)

    Article  Google Scholar 

  26. Agnew, G.B., Mullin, R.C., Onyszchuk, I.M., Vanstone, S.A.: An implementation for a fast public-key cryptosystem. Journal of Cryptology 3, 63–79 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hasan, M.A., Wang, M.Z., Bhargava, V.K.: A modified Massey-Omura parallel multiplier for a class of finite fields. IEEE Trans. Computers 42(10), 1278–1280 (1993)

    Article  MATH  Google Scholar 

  28. Kwon, S.: A low complexity and a low latency bit parallel systolic multiplier over GF(2m) using an optimal normal basis of type II. In: Proc. of the 16th IEEE Symposium on Computer Arithmetic, Santiago de Compostela, Spain, pp. 196–202 (2003)

    Google Scholar 

  29. Fan, H., Hasan, M.A.: Subquadratic computational complexity schemes for extended binary field multiplication using optimal normal bases. IEEE Trans. Computers 56(10), 1435–1437 (2007)

    Article  MathSciNet  Google Scholar 

  30. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge Univ. Press, New York (1994)

    Book  MATH  Google Scholar 

  31. Ash, D.W., Blake, I.F., Vanstone, S.A.: Low complexity normal bases. Discrete Applied Math. 25, 191–210 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chiou, C.W., Chuang, T.-P., Lin, S.-S., Lee, C.-Y., Lin, J.-M., Yeh, Y.-C.: Palindromic-like representation for Gaussian normal basis multiplier over GF(2m) with odd type-t. IET Information Security 6(4), 318–323 (2012)

    Article  Google Scholar 

  33. Chiou, C.W., Chang, H.W., Liang, W.-Y., Lee, C.-Y., Lin, J.-M., Yeh, Y.-C.: Low-complexity Gaussian normal basis multiplier over GF(2 m ). IET Information Security 6(4), 310–317 (2012)

    Article  Google Scholar 

  34. Lee, C.-Y., Chiou, C.W.: Scalable Gaussian normal basis multipliers over GF(2m) using Hankel matrix-vector representation. Journal of Signal Processing Systems for Signal Image and Video Technology 69(2), 197–211 (2012)

    Article  Google Scholar 

  35. Chuang, T.-P., Chiou, C.W., Lin, S.-S., Lee, C.-Y.: Fault-tolerant Gaussian normal basis multiplier over GF(2m). IET Information Security 6(3), 157–170 (2012)

    Article  Google Scholar 

  36. Azarderakhsh, R., Reyhani-Masoleh, A.: Low-complexity multiplier architectures for single and hybrid-double multiplications in Gaussian normal bases. IEEE Trans. Computers 62(4), 744–757 (2013)

    Article  MathSciNet  Google Scholar 

  37. ANSI X.962: Public key cryptography for the financial services industry: The Elliptic Curve Digital Signature Algorithm (ECDSA), Am. Nat’l Standards Inst. (1999)

    Google Scholar 

  38. FIPS 186-2: Digital Signature Standard (DSS), Federal Information Processing Standards Publication 186-2, Nat’l Inst. Of Standards and Technology (2000)

    Google Scholar 

  39. IEEE Standard 1363-2000: IEEE standard specifications for public-key cryptography (2000)

    Google Scholar 

  40. Vanstone, S.A.: Next generation security for wireless: Elliptic curve cryptography. Computers and Security 22(5), 412–415 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Che Wun Chiou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chiou, C.W., Lin, JM., Li, YK., Lee, CY., Chuang, TP., Yeh, YC. (2014). Pipeline Design of Bit-Parallel Gaussian Normal Basis Multiplier over GF(2m). In: Pan, JS., Krömer, P., Snášel, V. (eds) Genetic and Evolutionary Computing. Advances in Intelligent Systems and Computing, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-319-01796-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01796-9_40

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01795-2

  • Online ISBN: 978-3-319-01796-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics