Skip to main content

Building a Schistosomiasis Process Ontology for an Epidemiological Monitoring System

  • Chapter
  • First Online:
Innovations in Intelligent Machines-4

Part of the book series: Studies in Computational Intelligence ((SCI,volume 514))

Abstract

This chapter describes the design of an ontology that aims to support a monitoring system for schistosomiasis. On one hand, a domain ontology for the schistosomiasis is built to support communication and collaborative work between domain experts along the monitoring steps. The domain ontology also supports data and application integration and allows some reasoning capabilities. On the other hand, a process ontology of the schistosomiasis spreading is built for explanations and decision-making. Furthermore, the possibilities of using this process ontology for prediction are also worth considering. Here, we have focused on the design of the process ontology of infectious disease spreading and its extension to schistosomiasis. We aim to provide a formal theory in the health domain to conceptualize the processes of the infectious disease spreading and to present reasoning capabilities on the disease occurrences within a population. We emphasize on the basic entities and their relations within the complex process of infectious disease spreading. A multi-level analysis of the global dynamics is provided, taking into account biomedical, clinical and epidemiological dependences. We then propose a formalization of the infectious disease spreading process. Finally, we extend the process ontology for schistosomiasis spreading in Senegal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cyc, DDPO, oXPDL, m3po et m3pl, PSL, etc.

  2. 2.

    The PSL was developed at the National Institute of Standards and Technology (NIST), and is approved as an international standard in the document ISO 18629.

  3. 3.

    http://philebus.tamu.edu/cl/

  4. 4.

    Recommendations "ethics and best practices in epidemiology", 1998, France.

  5. 5.

    In epidemiology, the prevalence or prevalence proportion is the proportion of a population found to have a disease. It is arrived at by comparing the number of people found to have the disease with the total number of people studied, and is usually expressed as a fraction, as a percentage or as the number of cases per 10,000 or 100,000 people.

  6. 6.

    http://www.mel.nist.gov/psl/

References

  1. Buton, F.: De l’expertise scientifique à l’intelligence épidémiologique : l’activité de veille sanitaire. Genèses 4(65), 71–91 (2006)

    Google Scholar 

  2. Le Moigne, J.-L.: La modélisation des systèmes complexes. Dunod, Paris (1990)

    Google Scholar 

  3. Camara, G., Despres, S., Djedidi, R., Lo, M.: Modélisation ontologique de processus dans le domaine de la veille épidémiologique. In: Conférence Reconnaissance des Formes et Intelligence Artificielle, Lyon, 24–27 Jan 2012

    Google Scholar 

  4. Camara, G., Despres, S., Djedidi, R., Lo, M.: Towards an ontology for an Epidemiological monitoring system. In: Rothkrantz, L., Ristvej, J., Franco, Z. (eds.) Proceedings of the 9th International Conference ISCRAM, Vancouver, Canada, (2012)

    Google Scholar 

  5. Forbus, K.D.: Qualitative Reasoning. The Computer Science and Engineering Handbook, pp. 715–733 (1997)

    Google Scholar 

  6. Galton, A.: Experience and history: processes and their relation to events. J. Logic Comput. 18(3), 323–340 (2008)

    Article  MathSciNet  Google Scholar 

  7. Studer, R., Richard Benjamins, V., Fensel, D.: Knowledge engineering: principles and methods. Data Knowl. Eng. 25(1–2), 161–197 (1998)

    Article  MATH  Google Scholar 

  8. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A. Contain. Pap. Math. Phys. Character (1905–1934) 115(772), 700–721 (1927)

    Google Scholar 

  9. Santana, F., Schober, D., Medeiros, Z., Freitas, F., Schulz, S.: Ontology patterns for tabular representations of biomedical knowledge on neglected tropical diseases 27(13), i349–i356 (2011)

    Google Scholar 

  10. Fagot-Largeault, A.: Épidémiologie et causalité. In: Valleron, A.-J. (ed.) L’épidémiologie humaine. Conditions de son développement en France et rôle des mathématiques, pp. 237–245. EDP sciences, Paris (2006)

    Google Scholar 

  11. Simons, P., Melia, J.: Continuants and occurrents. Proceedings of the Aristotelian Society, Supplementary Volumes, 74, 59–75, 77–92 (2000)

    Google Scholar 

  12. Despres, S., Szulman, S.: Merging of legal micro-ontologies from European directives. Artif. Intell. Law 15(2), 187–200 (2007). doi:10.1007/s10506-007-9028-2

    Article  Google Scholar 

  13. Scherp, A., Saathoff, C., Franz, T., and Staab, S.: Designing core ontologies. Applied Ontology 6(3), 177–221 (2011). doi:10.3233/AO-2011–0096

    Google Scholar 

  14. Grenon, P., Smith, B., Goldberg, L.: Biodynamic ontology: applying BFO in the biomedical domain. In: Studies in Health Technology and Informatics. Ontologies in Medicine, vol. 102, pp. 20–38. IOS Press (2004)

    Google Scholar 

  15. Khan, Z., Keet, C.M.: ONSET: Automated foundational ontology selection and explanation. In: Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) Proceedings of the 18th International Conference on Knowledge Engineering and Knowledge Management (EKAW’12), Galway City, October 2012. Lecture Notes in Computer Science, vol. 7603, pp. 237–251. Springer, Berlin (2012)

    Google Scholar 

  16. Grenon, P., Smith, B.: SNAP and SPAN: towards dynamic spatial ontology. Spat. Cogn. Comput. 4(1), 69–103 (2004)

    Article  Google Scholar 

  17. Gruninger, M.: Using the PSL ontology. In: Staab, S., Studer, R. (eds.) International Handbooks on Information Systems. Handbook of Ontologies, pp. 419–431. Springer, Berlin (2009)

    Google Scholar 

  18. Galton, A., Mizoguchi, R.: The water falls but the waterfall does not fall: new perspectives on objects, processes and events. Appl. Ontology 4(2), 71–107 (2009)

    Google Scholar 

  19. Mourelatos, A.P.D.: Events, processes and events. Linguist. Philos. 2(3), 415–434 (1978)

    Article  Google Scholar 

  20. Schlenoff, C., Gruninger, M., Tissot, F., Valois, J., Lubell, J., Lee, J.: The process specification language (PSL): overview and version 1.0 specification. NISTIR 6459, National Institute of Standards and Technology, Gaithersburg, MD (2000)

    Google Scholar 

  21. Lewis, D.: On the Plurality of Worlds. Blackwell Publishers, Oxford (1986)

    Google Scholar 

  22. Sider, T.: Four-dimensionalism: an ontology of persistence and time. Oxford University Press, Oxford (2001)

    Book  Google Scholar 

  23. Smith B, Ceusters W, Klagges B, KöhlerJ, Kumar A, Lomax J, Mungall C, Neuhaus F, Rector AL, Rosse C (2005) Relations in biomedical ontologies. Genome Biol. 6, R46

    Google Scholar 

  24. Galton, A., Worboys, M.F.: Processes and events in dynamic geospatial networks. In: Rodrıguez, M.A., Cruz, I.F., Egenhofer, M.J., Levashkin, S. (eds.) GeoS’05 Proceedings of the First international conference on GeoSpatial Semantics, Mexico City, Nov 2005. Lecture Notes in Computer Science, vol. 3799, p. 45. Springer, Berlin (2005)

    Google Scholar 

  25. Wood, Z., Galton, A.: A taxonomy of collective phenomena. Appl. Ontology 4(3–4), 267–292 (2009)

    Google Scholar 

  26. Galton, A.: States, processes and events, and the ontology of causal relations. In: Formal Ontology in Information Systems. Frontiers in Artificial Intelligence and Applications, vol. 239, pp. 279–292. IOS Press (2012)

    Google Scholar 

  27. Talla, I., Kongs, A., Verlé, P.: Preliminary study of the prevalence of human schistosomiasis in Richard-Toll (the Senegal river basin). Trans. R. Soc. Trop. Med. Hyg. 86(2), 182–191 (1992)

    Article  Google Scholar 

  28. Stout, R.: The life of a process. In: Debrock, G. (ed.) Process Pragmatism: Essays on a Quiet Philosophical Revolution, pp. 145–158. Rodopi, Amsterdam (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaoussou Camara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Camara, G., Despres, S., Djedidi, R., Lo, M. (2014). Building a Schistosomiasis Process Ontology for an Epidemiological Monitoring System. In: Faucher, C., Jain, L. (eds) Innovations in Intelligent Machines-4. Studies in Computational Intelligence, vol 514. Springer, Cham. https://doi.org/10.1007/978-3-319-01866-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01866-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01865-2

  • Online ISBN: 978-3-319-01866-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics