Skip to main content

Iterative Self-assembly with Dynamic Strength Transformation and Temperature Control

  • Conference paper
DNA Computing and Molecular Programming (DNA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8141))

Included in the following conference series:

  • 1465 Accesses

Abstract

We propose an iterative approach to constructing regular shapes by self-assembly. Unlike previous approaches, which construct a shape in one go, our approach constructs a final shape by alternating the steps of assembling and disassembling, increasing the size of the shape iteratively. This approach is embedded into an extended hexagonal tile assembly system, with dynamic strength transformation and temperature control. We present the construction of equilateral triangles as an example and prove the uniqueness of the final shape. The tile complexity of this approach is O(1).

The original version of this chapter was revised: The copyright line was incorrect. This has been corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-319-01928-4_15

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Winfree, E.: Algorithmic Self-Assembly of DNA (1998)

    Google Scholar 

  2. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)

    Article  Google Scholar 

  3. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, STOC 2000, pp. 459–468. ACM, New York (2000)

    Chapter  Google Scholar 

  4. Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Running time and program size for self-assembled squares. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC 2001, pp. 740–748 (2001)

    Google Scholar 

  5. Chelyapov, N., Brun, Y., Gopalkrishnan, M., Reishus, D., Shaw, B., Adleman, L.: DNA Triangles and Self-Assembled Hexagonal Tilings. Journal of the American Chemical Society 126(43), 13924–13925 (2004)

    Article  Google Scholar 

  6. Kari, L., Seki, S., Xu, Z.: Triangular and hexagonal tile self-assembly systems. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds.) WTCS 2012 (Calude Festschrift). LNCS, vol. 7160, pp. 357–375. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Winfree, E., Eng, T., Rozenberg, G.: String tile models for DNA computing by self-assembly. In: Condon, A., Rozenberg, G. (eds.) DNA 2000. LNCS, vol. 2054, pp. 63–88. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Aggarwal, G., Cheng, Q., Goldwasser, M., Kao, M., de Espanes, P., Schweller, R.: Complexities for generalized models of self-assembly. SIAM Journal on Computing 34(6), 1493–1515 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Demaine, E., Demaine, M., Fekete, S., Ishaque, M., Rafalin, E., Schweller, R., Souvaine, D.: Staged self-assembly: nanomanufacture of arbitrary shapes with o(1) glues. Natural Computing 7(3), 347–370 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fu, B., Patitz, M., Schweller, R., Sheline, R.: Self-assembly with geometric tiles. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 714–725. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Kao, M.Y., Schweller, R.: Reducing tile complexity for self-assembly through temperature programming. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA 2006, pp. 571–580 (2006)

    Google Scholar 

  12. Summers, S.: Reducing tile complexity for the self-assembly of scaled shapes through temperature programming. Algorithmica 63(1-2), 117–136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cook, M., Rothemund, P., Winfree, E.: Self-assembled circuit patterns. In: Chen, J., Reif, J.H. (eds.) DNA9. LNCS, vol. 2943, pp. 91–107. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Kari, L., Seki, S., Xu, Z.: Triangular tile self-assembly systems. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16. LNCS, vol. 6518, pp. 89–99. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Woods, D., Chen, H.L., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Proceedings of the 4th conference on Innovations in Theoretical Computer Science, ITCS 2013, pp. 353–354. ACM, New York (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mo, D., Stefanovic, D. (2013). Iterative Self-assembly with Dynamic Strength Transformation and Temperature Control. In: Soloveichik, D., Yurke, B. (eds) DNA Computing and Molecular Programming. DNA 2013. Lecture Notes in Computer Science, vol 8141. Springer, Cham. https://doi.org/10.1007/978-3-319-01928-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01928-4_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01927-7

  • Online ISBN: 978-3-319-01928-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics