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Abstract

In image-based medical research, atlases are widely used in many tasks, for example, spatial 

normalization and segmentation. If atlases are regarded as representative patterns for a population 

of images, then multiple atlases are required for a heterogeneous population. In conventional atlas 

construction methods, the “unit” of representative patterns is images. Every input image is 

associated with its most similar atlas. As the number of subjects increases, the heterogeneity 

increases accordingly, and a big number of atlases may be needed. In this paper, we explore using 

region-wise, instead of image-wise, patterns to represent a population. Different parts of an input 

image is fuzzily associated with different atlases according to voxel-level association weights. In 

this way, regional structure patterns from different atlases can be combined together. Based on this 

model, we design a variational framework for multi-atlas construction. In the application to two 

T1-weighted MRI data sets, the method shows promising performance, in comparison with a 

conventional unbiased atlas construction method.

1 Introduction

In image-based medical researches, atlases are widely used to represent a population of 

images. They provide common spaces for spatial normalization, references for alignment, 

and propagation sources for segmentation.

One of the most widely used methods is registering input images to a preselected reference 

image, and then taking the average of the warped images as the atlas. Because all the images 

are transformed to be as similar as possible to the reference, the choice of the reference has 

significant impacts on the result. To avoid the bias introduced by arbitrary choice, the 

average image or the geometric mean of the input images can be used as the initial 

reference, as proposed by Joshi et al. (2004) [1] and Park et al. (2005) [2]. Instead of 

transforming input images toward a reference image, Seghers et al. (2004) [3] transformed 

them with the morphological mean of their transformations to all the other images. This 

method requires registration between all input image pairs.

In recent years, manifold-guided group registration methods are developed. Relationship 

between the input images is modeled with a manifold, and the input images are transformed 

© Springer International Publishing Switzerland 2013

junningl@gmail.com, yonggang.shi@gmail.com, dinov@ucla.edu, toga@usc.edu
*This work is supported by grants K01EB013633, R01MH094343, and P41EB015922 from NIH.

NIH Public Access
Author Manuscript
Multimodal Brain Image Anal (2013). Author manuscript; available in PMC 2014 November 10.

Published in final edited form as:
Multimodal Brain Image Anal (2013). 2013 January 1; 8159: 1–8. doi:10.1007/978-3-319-02126-3_1.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



gradually along the manifold to a center, instead of directly “jump” to a reference image. 

This avoids inaccurate direct registration between dissimilar images. The manifold is usually 

represented by a k-nearest-neighbor graph whose vertices represent images and whose edges 

are weighted with the transformational metric between two images. Hamm et al. (2010) [4] 

employed the minimum spanning tree of the graph to guide the registration. Jia et al. (2010) 

[5] and Wang et al. (2010) [6] embedded a clustering procedure to merge images as 

intermediate centers when they become similar enough. Such a method not only reduces 

computation load but also builds a hierarchical structure for the inputs. Wu et al. (2011) [7] 

used directed graphs instead of undirected ones to optimize the registration procedure.

For a heterogeneous population, multiple atlases are required to represent it, as discussed in 

[8] by Blezek and Miller. Multi-atlases are usually constructed by partitioning the input 

images into sub-groups and then constructing an atlas for each of them. Aljabar et al. (2009) 

showed that the way of partitioning considerably impacts the result. Therefore, data-driven 

approaches should be employed. Sabuncu et al. (2009) [9] used Gaussian mixture models to 

cluster input images. Xie et al. (2013) [10] clustered input images according the manifold 

formed by them.

If atlases are regarded as representative patterns for a population of images, the “unit” of 

patterns used in the aforementioned methods is images. Every input image is associated with 

its most similar atlas. As the number of subjects increases, the heterogeneity among subjects 

increases accordingly. To represent a large population, we may need a big number of atlases. 

Let us assume the following not rigorously correct yet illustrating situation. Suppose the 

brain has m anatomic structures, and each structure has n possible patterns among a 

population. To represent all the possible combinations, we may need m × n atlases, if the 

pattern unit is images.

In this paper, we explore using region-wise, instead of image-wise, patterns to represent a 

population of images. We allow different parts of an input image to fuzzily associate with 

different atlases according to voxel-level association weights. In this way, structure patterns 

from different atlases can be combined together. In Section 2, we present a variational 

framework for constructing such a locally weighted multi-atlas. In Section 3, we 

demonstrate its application to two T1-weighted MRI data sets, where the proposed method 

show promising performance, in comparison with the group-mean method [1]. In Section 4, 

we briefly discuss possible future work.

2 Locally Weighted Multi-atlas

2.1 Generative Model

We assume that the input images are generated with voxel-level random sampling from a 

small number of template images and then they are randomly warped. Such a generative 

model is illustrated in Fig. 1 and the notations used in it is listed in Table 1. In the template 

space, the intensity value at point x of a latent image Īs is randomly sampled from template 

images {Tk, k = 1, . . . , K}, at the same point location, where K is the number of atlases. 

After noise εs is added to it, Īs is randomly warped to be an input image Is. The voxel-level 
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probability distribution that intensity values of Īs are sampled from Tks is configured with 

weight images { Wsk, k = 1, . . . , K|s}. Such a generative process can be written as

(1)

(2)

(3)

where Multinomial {Wsk(x), k = 1, . . . , K|s} denotes a multinomial distribution such that P 

(κ = k) = Wsk(x) and {Wsk κ = 1,..., K|s} satisfies Σk Wsk(x) = 1 for any s and x.

The intensity values of Īs at different points can be sampled from different template images. 

In this way, Īs is able to combine different patterns from different templates. To avoid abrupt 

transition between structure patterns, adjacent points should intend to be sampled from the 

same template image, and the weight images Wsk should be spatially smooth.

Fig. 2 shows an example of such a generative process. Each of the images is composed of 

two parts, one from the images of either letter “A” or letter “B”, the other from the images 

of either letter “C” or letter “D”. In total, there are four image-level patterns: “AB”, “AD”, 

“CB” and “CD”, as shown in the middle row of figure. Then the four patterns are randomly 

warped to be input images, as shown in the bottom row of the figure. If we represent the 

images with regional patterns, we just need two atlases: “AB” and “CD” (as shown in the 

top row of the figure), or “AD” and “CB”, instead four atlases.

2.2 Atlas Construction Model

Based on the generative model defined in Eqs. (1), (2) and (3), we design the following 

energy function for locally weighted multi-atlas construction:

(4)

where Jsim counts for image similarity in the template space, Jcls for clustering dispersion, 

Jtrans for transformation smoothness, and Jwt for weight image smoothness.

Jsim is defined as

(5)

where the weight images satisfy Wsk(x) ≥ 0 and Σk Wsk(x) = 1 for any s and x. Jcls is defined 

as

(6)
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where {Qk, k = 1, . . . , K} prior weight images and h(x) is a penalty factor. Being the 

intergration of the Kullback-Leibler divergence between {Wsk} and {Qk}, Jcls imposes 

similarity between {Wsk} and {Qk}. For simplicity, we used Qk (x) = 1/K.

Jwt is defined as

(7)

to model the smoothness of the weight images.

Jtrans is defined as

(8)

where D is a spatial difference operator. For diffusion regularization, D is the gradient 

operator; for curvature regularization, D is the Laplace operator.

2.3 Alternating Optimization

The energy function defined in Section 2.2 involves the following parameters: the 

transformations ϕs, the template images Tk, and the weight images Wsk . For simplicity, we 

do to treat the penalty factor h(x) as a parameter to optimize, but as a given configuration of 

the energy function. Though a large number of parameters are involved in the energy 

function, they can be solved one by one with alternating optimization.

2.3.1 Optimizing Tk Given ϕ s and W sk—Tk is involved only in Jsim, as the center of 

weighted variances, as shown in Eq. (5). Given ϕs and Wsk, the optimal value of Tk is the 

locally weighed average of Is ◦ ϕs, as defined in the following equation:

2.3.2 Optimizing W sk Given Tk and ϕs—Wsk is involved in Jsim, Jcls and Jwt. Because 

Jwt imposes smoothness on Wsk and its Green's function is a Gaussian kernel, for simplicity, 

we first solve Wsk with Jsim and Jcls, and then smooth it with a Gaussian kernel. The method 

of Lagrange multipliers implies that to minimize Jsim and Jcls under the constraint Σk Wsk(x) 

= 1, Wsk must satisfy

Therefore, the solution of Wsk(x) without smoothing is .

2.3.3 Optimizing ϕs Given Tk and Wsk—ϕs is involved in Jsim, and Jtrans. The 

contribution of a particular ϕs to the total energy function J is
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where C is a constant fully determined by Tk and Wsk. As the equation implies, ϕs can be 

optimized by registering Is to Σk WskTk.

3 Experiments

The proposed method is applied to one synthetic data set (100 images) and two real MRI 

data sets (each of 40 images) for atlas construction, and compared with the conventional 

unbiased group-mean method [1]. The group-mean method registers input images to the 

average of their warped images, and iteratively repeats this procedure. Before atlas 

construction, we linearly align all the input images. For multi-atlas construction, we set the 

number of atlases K to two.

The Dice label overlap index is used to measure the performance of the methods. The 

template label images Lks are derived from the warped input label images, with weighted 

majority vote according to weights Wsk, s = 1, . . . , S|k . The predicted label image for a 

warped image Îs in template the space, is derived from the template label images by fusing 

them together with weighted majority vote according to weights {Wsk(x), k = 1, . . . , K|s}.

3.1 Synthetic Data

We generate 100 images according the model illustrated in Figs. 1 and 2. For the description 

of the generative procedure, please refer to Section 2.1. We expect the proposed method to 

recover the underlying region-level patterns “A”, “B”, “C”, “D” as two atlas images, for 

example “AB” and “CD”, or “AD” and “CB”, instead using four atlases. As shown in Fig. 3, 

the proposed method satisfactorily recovers the underlying regional patterns as two images 

“AB” and “CD”.

3.2 OASIS Data Set

The OASIS data set contains T1-weighted MR brain images of 416 subjects at ages ranging 

from 18 to 96. The images are at the resolution of 1 × 1 × 1 mm3 and of voxel size 

176×208×176. For each subject, a label image indicating the segmentation of white matter 

(WM), gray matter (GM) and cerebrospinal fluid (CSF) is also provided. We randomly 

sampled 40 images from the data set, one half with ages ranging from 20 to 30, and the other 

half ranging from 70 to 80.

As shown in Fig. 4, the proposed method constructs one atlas with a large ventricle and the 

other with a smaller one. The proposed method achieves better tissue overlap than the 

group-mean method (86.9% vs. 81.4%), as shown in the table in Fig. 4.
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3.3 LPBA40 Data Set

The LPBA40 data set [11] has T1 images of 40 subjects and 54 regions are manually 

segmented for each of them. The proposed method is applied to it, with the number of 

atlases K set to two. As shown in Fig. 5, the two atlases produced by the proposed method 

show different patterns in the upper part of the brain, and are visually sharper than that by 

the group-mean method. The overall Dice overlap indices of the proposed method and the 

group-mean method are 80.4% and 78.5% respectively. Overlap indices of the 54 regions 

are shown in Fig. 6.

4 Conclusion and Discussion

In this paper, we exploring using region-wise, instead of image-wise, patterns to represent a 

population of images. Different parts of an input image are fuzzily associated with different 

atlases according to voxel-level association weights. In this way, structure patterns in 

different atlases can be combined together. Such a model can be formulated in a variational 

framework for multi-atlas construction, and solved with alternating optimization. In the 

applications to the OASIS and LPBA40 data sets, the proposed method achieves better label 

overlap than the conventional group-mean method [1].

It worths further investigation to use morphological difference, instead of intensity 

difference, for determining the voxel-level association weights. Choosing an appropriate 

number of atlases is another interesting topic for future study.
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Fig. 1. 
Generative Model
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Fig. 2. 
Example of Image Generation Process
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Fig 3. 
ABCD100
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Fig. 4. 
OASIS40. “LWM” means locally weighted multi-atlas.
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Fig. 5. 
LPBA40: Constructed Atlases. “LWM” means locally weighted multi-atlas.
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Fig. 6. 
LPBA40: Dice Overlap Indices of 54 ROIs
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Table 1

Notations

Is Image of subject s Tk The kth atlas image

φ s Transformation for image Is x Point in space

Îs = Is ○ φs Warped image of subject s Wsk (x) Weight of Īs (x)'s association with Tk

Ī s Latent image of Îs Ω Spatial domain
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