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Abstract

Analysis of 4D medical images presenting pathology (i.e., lesions) is significantly challenging due 

to the presence of complex changes over time. Image analysis methods for 4D images with lesions 

need to account for changes in brain structures due to deformation, as well as the formation and 

deletion of new structures (e.g., edema, bleeding) due to the physiological processes associated 

with damage, intervention, and recovery. We propose a novel framework that models 4D changes 

in pathological anatomy across time, and provides explicit mapping from a healthy template to 

subjects with pathology. Moreover, our framework uses transfer learning to leverage rich 

information from a known source domain, where we have a collection of completely segmented 

images, to yield effective appearance models for the input target domain. The automatic 4D 

segmentation method uses a novel domain adaptation technique for generative kernel density 

models to transfer information between different domains, resulting in a fully automatic method 

that requires no user interaction. We demonstrate the effectiveness of our novel approach with the 

analysis of 4D images of traumatic brain injury (TBI), using a synthetic tumor database as the 

source domain.

1 Introduction

Traumatic brain injury (TBI) is a critical problem in healthcare that impacts approximately 

1.7 million people in the United States every year [3]. The varying cause and degree of 

injury (falls, car accidents, etc.) presents significant challenges in the interpretation of image 

data but also in quantitative assessment of brain pathology via image analysis. Determining 

effective therapy and intervention strategies requires the ability to track the image changes 

over time, which motivates the development of segmentation and registration methods for 

longitudinal 4D Magnetic Resonance (MR) images. Such methods need to account for 

changes in brain structures due to deformation, as well as the formation and deletion of new 
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structures (e.g., edema, bleeding) due to physiological processes associated with damage, 

therapeutical intervention, and recovery.

In 4D image analysis, researchers have proposed methods [9, 2, 5, 6] to register images with 

lesions over time accounting for appearance of new structures. However, these methods 

have not been evaluated for mapping healthy subjects to a patient with lesions. Niethammer 

et al. proposed a registration method for TBI images using geometric metamorphosis that 

maps TBI over time using known, pre-segmented lesion boundaries defined manually [5]. 

Wang et al. [14] proposed a registration-segmentation method for 4D TBI images using 

personalized atlas construction that combines information from multiple time points, 

accounting for diffeomorphic changes (smooth deformation) and non-diffeomorphic 

changes (creation/deletion of lesions) over time. However, their method requires manual 

initialization in the form of user-defined spheres covering the lesions and only provides 

modeling of intra-patient changes without providing explicit mapping to normative healthy 

brain anatomy.

We propose a novel framework that models changes in 4D pathological anatomy across time 

and provides explicit mapping from a healthy template to TBI subject images. This aids 

analysis of TBI patients by enabling the mapping of parcellation labels describing 

anatomical regions of interest and quantitative comparison against a common reference 

space defined by the normative template. Moreover, our framework uses transfer learning 

[7] to leverage rich information from a “known source” domain, where we have a large 

collection of fully segmented images, to yield effective models for the “input target” domain 

(TBI images). This is essential as such a database does not exist for TBI imaging, and thus 

we explore and demonstrate the use of an existing database of multi-modal tumor imaging 

that serves as a well-studied source domain. The information in the learned tumor model are 

transferred to the domain of TBI images using importance weighting based domain 

adaptation [12], a well known transfer learning technique, resulting in a fully automatic 

method that does not require user input. In this paper, we propose importance weighting 

based domain adaptation for generative kernel density models, thus extending its 

applications beyond standard discriminative models available in machine learning literature 

[1].

2 Method

We propose a framework that constructs 4D models of pathological anatomy starting from a 

healthy template, to describe changes at different time points accounting for the complete 

4D information. Our framework also leverages known domains, such as brain tumors, where 

we have a rich collection of information in the form of segmented tumor images with 

varying size, shape, deformations, and appearance. The database of tumor images is 

obtained by using the brain tumor simulator1 developed by Prastawa et al.[11]. It is capable 

of generating synthetic images for a large variety of tumor cases with complete 3D 

segmentations. Fig. 1 shows a conceptual overview of our mathematical framework.

1http://www.nitrc.org/projects/tumorsim

Wang et al. Page 2

Multimodal Brain Image Anal (2013). Author manuscript; available in PMC 2014 October 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.nitrc.org/projects/tumorsim


2.1 4D Modeling of Pathological Anatomy

We model the anatomical changes over time as a combination of diffeomorphic image 

deformation and non-diffeomorphic changes of probabilities for lesion categories, 

accounting for temporally smooth deformations and abrupt changes, e.g., due to lesions 

appearing and disappearing over time. Specifically, the spatial prior  for each class c at 

time point t is modeled as

(1)

where A is the tissue class probability that is initially associated with the healthy template, ϕt 

is the diffeomorphic deformation from time t to the atlas, and Qt is the non-diffeomorphic 

probabilistic change for time t. This approach follows the metamorphosis framework of 

Trouvé and Younes [13]. Our method estimates a common subject-specific atlas A for all 

time points.

Given the model and 4D multimodal images It at timepoints t, we estimate model parameters 

that minimize the following functional:

(2)

where  represents the data functional (the negative total log-likelihood)

(3)

and  represents the regularity terms:

(4)

T denotes the number of observed time points, C denotes the number of tissue classes, 

 is the image likelihood function for class c with parameter , A(0) is the initial 

atlas A obtained from the healthy template, and d(id, ) is the distance to the identity 

transform.  enforces the sparsity of Q,  prevents extreme deviations in A from the 

initial model, and  enforces the smoothness of the deformations ϕt. These regularization 

functionals are weighted by user-defined parameters α, β, γ respectively.

2.2 Image Appearance Model using Domain Adaptation

We compute our image appearance model  using the well-known domain 

adaptation technique, where we adapt an appearance model from a known domain (tumor 

images) to the input domain (TBI images). We use a simulator [11] to generate a large 

collection of synthetic tumor images that resemble TBI images, and we use the rich 

information in this database to automatically compute the likelihood density model and then 

transfer this model to the TBI domain. Fig. 2 shows examples of fully segmented synthetic 

tumor images from the known domain and unsegmented TBI images in the input domain.
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We select a tumor image from the database that has the smallest earth mover's distance [8] 

compared to the input TBI images. We then obtain training samples in the known or 

“source” domain as a subset of the completely segmented tumor data , 

with Î representing the tumor intensities,  representing the discrete segmentations, 

representing the probabilistic segmentations, and x̂ representing the coordinates in the tumor 

image domain. The transfer of learned appearance models is accomplished via domain 

adaptation that incorporates importance weighting. We weight intensity observations I using 

the weights  with p̂ being the density in the source domain. In practice, w is 

estimated using KLIEP (Kullback-Leibler Importance Estimation Procedure) [12] which 

minimizes the Kullback-Leibler divergence between the density of the input domain and the 

weighted density of the source domain KL(p(I) ∥ w(I) p̂(I)).

Using the estimated weights w, we compute the density parameter ^ that maximize the data 

likelihood in the tumor domain:

(5)

We use the kernel density model for the image appearance, parametrized by the kernel 

bandwidths for each class . The image likelihood in the TBI domain is 

modeled in the same fashion, where we initialize TBI parameter θ using the “domain 

adapted” tumor parameter  from Eq. (5).

2.3 Model Parameter Estimation

We perform model parameter estimation by minimizing the overall objective function (Eq. 

2) with respect to each parameter. Fig. 3 provides a conceptual view of the parameter 

estimation process, which incorporates gradient descent updates that are effectively image 

registration and segmentation operations. In particular, we use these gradient equations to 

optimize the data functional :

(6)

(7)

(8)

where |Dϕ| denotes the determinant of the Jacobian of ϕ. The updates show that Qt moves to 

the data likelihood specific to time t, A moves to the average data likelihood over time, and 

ϕt deforms A to match the boundaries between data and atlas. Constraints are enforced using 
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projected gradient descent [10]. The image likelihood model  obtained from 

domain adaptation is fitted to the input image data using gradient descent update , 

which finds the set of widths that best matches data to the current estimate ofF the atlas at 

timepoint t, .

3 Results

We evaluate the performance of our new approach on 4D TBI image data containing two 

time points: acute and chronic (≈ 3 days and 6 months post-surgery). The performance of 

our proposed method is show ≈ in Tab. 1, where we compare our method against those that 

do not use 4D modeling, with and without domain adaptation. Dice overlap values 

comparing automatic lesion segmentations against a human expert rater are relatively low, 

which is a well known fact when dealing with small objects with complex and fuzzily 

defined boundaries. However, our method not only provides improved lesion segmentation 

but also better overall segmentation, as shown qualitatively in Fig. 4.

The estimated 4D spatial priors for TBI subject 3 are illustrated in Fig. 5, incorporating 

template deformation to match image boundaries and non-diffeomorphic changes due to 

lesions. Subject 3 provides an interesting and revealing example of longitudinal pathology 

progression. The acute scan reveals gross pathology in the left frontal region, which results 

in considerable atrophy in this region at the chronic stage. However, the subject's chronic 

scan features an additional large lesion in the mid-frontal region due to the occurrence of a 

large abscess between acute and chronic scans. This is an excellent example of the dynamic 

and complex longitudinal changes that can occur in TBI patients.

The proposed method brings the advantage of providing a mapping from a normative 

template to a TBI subject. In Fig. 6, we show a parcellation label image, provided by the 

International Consortium for Brain Mapping (ICBM), that has been mapped to a TBI 

subject. The mapping of a normal anatomy to pathological anatomy will be potentially 

important to compare type, locality and spatial extent of brain damages in the context of 

anatomically relevant regions with associated brain function information.

4 Conclusions

We demonstrate work in progress towards a framework that estimates 4D anatomical 

models from longitudinal TBI images. Our framework is fully automatic and leverages 

information from a different domain (brain tumor) to generate appearance models via 

domain adaptation. In addition to the new 4D anatomical modeling, we also presented a new 

domain adaptation method for generative kernel density models, integrated with our 

anatomical model in a single objective function (Eq. 2). Results on 3 TBI subjects show that 

our automatic method yields segmentations that match ground truth of manual 

segmentations. Furthermore, our method generates diffeomorphic deformation models as 

well as non-diffeomorphic probabilistic changes that have potential for analyzing and 

characterizing changes of normal appearing tissue and lesions. In the future, we will 

quantify temporal brain changes across a large set of TBI patients which were exposed to 

different treatment strategies. Our approach has potential to significantly improve regional 
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and connectivity analysis of individuals relative to a population [4], by making use of the 

mapping of a normative template with associated parcellation labels to TBI subjects, without 

tedious manual input.

Acknowledgments

This work has been supported by National Alliance for Medical Image Computing (NA-MIC) U54 EB005149 
(Guido Gerig) and the Utah Science Technology and Research (USTAR) initiative at the University of Utah.

References

1. Beijbom, O. Domain adaptations for computer vision applications. Tech. rep. University of 
California; San Diego: Apr. 2012 arXiv:1211.4860

2. Chitphakdithai N, Duncan JS. Non-rigid registration with missing correspondences in preoperative 
and postresection brain images. MICCAI. 2010:367–374. [PubMed: 20879252] 

3. Faul, M.; Xu, L.; Wald, M.; Coronado, V. Traumatic brain injury in the United States: Emergency 
department visits, hospitalizations and deaths 2002-2006. CDC, National Center for Injury 
Prevention and Control; Atlanta (GA): 2010. 

4. Irimia A, Wang B, Aylward S, Prastawa M, Pace D, Gerig G, Hovda D, Kikinis R, Vespa P, Van 
Horn J. Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward 
personalized outcome prediction. NeuroImage: Clinical. 2012; 1(1):1–17. [PubMed: 24179732] 

5. Niethammer M, Hart GL, Pace DF, Vespa PM, Irimia A, Horn JDV, Aylward SR. Geometric 
metamorphosis. MICCAI. 2011; (2):639–646. [PubMed: 21995083] 

6. Ou Y, Sotiras A, Paragios N, Davatzikos C. DRAMMS: Deformable registration via attribute 
matching and mutual-saliency weighting. Medical Image Analysis. 2011; 15(4):622–639. [PubMed: 
20688559] 

7. Pan SJ, Yang Q. A survey on transfer learning. Knowledge and Data Engineering, IEEE 
Transactions on. Oct; 2010 22(10):1345–1359.

8. Pele, O.; Werman, M. Computer vision, 2009 IEEE 12th international conference on. IEEE; 2009. 
Fast and robust earth mover's distances.; p. 460-467.

9. Periaswamy S, Farid H. Medical image registration with partial data. Medical Image Analysis. 
2006; 10(3):452–464. [PubMed: 15979375] 

10. Prastawa M, Awate S, Gerig G. Building spatiotemporal anatomical models through joint 
segmentation, registration, and 4D-atlas estimation. MMBIA. 2012:49–56. [PubMed: 23568185] 

11. Prastawa M, Bullitt E, Gerig G. Simulation of brain tumors in MR images for evaluation of 
segmentation efficacy. Medical image analysis. 2009; 13(2):297–311. [PubMed: 19119055] 

12. Sugiyama M, Nakajima S, Kashima H, Von Buenau P, Kawanabe M. Direct importance estimation 
with model selection and its application to covariate shift adaptation. Advances in NIPS. 2008; 
20:1433–1440.

13. Trouvé A, Younes L. Metamorphoses through lie group action. Foundations of Computational 
Mathematics. 2005; 5(2):173–198.

14. Wang B, Prastawa M, Awate S, Irimia A, Chambers M, Vespa P, van Horn J, Gerig G. 
Segmentation of serial MRI of TBI patients using personalized atlas construction and topological 
change estimation. ISBI. 2012:1152–1155.

Wang et al. Page 6

Multimodal Brain Image Anal (2013). Author manuscript; available in PMC 2014 October 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1. 
Conceptual overview of the proposed framework. Our framework maps a healthy template 

to input TBI images at different time points using a 4D anatomical model which provides 

spatial context. The model leverages information from a different known domain, in this 

case tumor images that are fully segmented. Data from the known domain with lesions 

(indicated in red) at different locations with varying size, shape, and deformations are used 

to estimate an appearance model for the input TBI images.
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Fig. 2. 
Example data in different domains, containing the T1, T2, and FLAIR (Fluid Attenuated 

Inversion Recovery) modalities. Appearance information from the known tumor domain, 

which contains 3D anatomical labels, are transferred to the input TBI domain using domain 

adaptation.
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Fig. 3. 
Model parameter estimation process. The healthy template provides the initial personalized 

atlas A in the 4D anatomical model. Input images together with the tumor database are used 

to generate densities represented by importance weights wt and kernel width parameter t. All 

parameters are updated using alternating gradient descent, where initially Qt is zero and ϕt is 

the identity transform.
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Fig. 4. 
Segmentation results for subject 1 at acute (top) and chronic (bottom) stages using different 

methods. Our proposed method (III) has the best segmentation quality overall. Red: white 

matter, green: gray matter, blue: cerebrospinal fluid, and yellow: lesion.

Wang et al. Page 10

Multimodal Brain Image Anal (2013). Author manuscript; available in PMC 2014 October 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 5. 
Estimated 4D anatomical priors for TBI subject 3. First row shows the initial atlas A(0) in the 

template space, with the healthy T1 image as a reference. Second and third row show the 

personalized atlas Pt = A ○ ϕt + Qt for acute and chronic stages, with input T2 images 

shown. Our method is able to account for changes in the left-frontal and mid-frontal regions 

across time.

Wang et al. Page 11

Multimodal Brain Image Anal (2013). Author manuscript; available in PMC 2014 October 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 6. 
Example brain parcellation labels mapped to the acute (left) and chronic (right) time points 

of subject 1 (top) and 3 (bottom). For each time point, we show the input T1 image and the 

overlaid parcellation labels. Our method generates parcellation maps that match tissue 

boundaries and account for lesions.
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Table 1

Dice overlap values for segmentations of acute-stage lesions comparing our proposed method to a direct 

application of tumor appearance model and an application of domain adaption, both without using a 4D 

model. The new integrated method yields improved results by combining 4D anatomical information and 

adapting tumor appearance information.

Method 4D Model Appearance Model Subject 1 Subject 2 Subject 3

I None Not adapted 0.2536 0.1211 0.5238

II None Domain adapted 0.3053 0.1131 0.5238

III Proposed Domain adapted 0.3792 0.1367 0.6035
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