Skip to main content

Modeling 4D Changes in Pathological Anatomy Using Domain Adaptation: Analysis of TBI Imaging Using a Tumor Database

  • Conference paper
Multimodal Brain Image Analysis (MBIA 2013)

Abstract

Analysis of 4D medical images presenting pathology (i.e., lesions) is significantly challenging due to the presence of complex changes over time. Image analysis methods for 4D images with lesions need to account for changes in brain structures due to deformation, as well as the formation and deletion of new structures (e.g., edema, bleeding) due to the physiological processes associated with damage, intervention, and recovery. We propose a novel framework that models 4D changes in pathological anatomy across time, and provides explicit mapping from a healthy template to subjects with pathology. Moreover, our framework uses transfer learning to leverage rich information from a known source domain, where we have a collection of completely segmented images, to yield effective appearance models for the input target domain. The automatic 4D segmentation method uses a novel domain adaptation technique for generative kernel density models to transfer information between different domains, resulting in a fully automatic method that requires no user interaction. We demonstrate the effectiveness of our novel approach with the analysis of 4D images of traumatic brain injury (TBI), using a synthetic tumor database as the source domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beijbom, O.: Domain adaptations for computer vision applications. Tech. rep., University of California San Diego, arXiv:1211.4860 (April 2012)

    Google Scholar 

  2. Chitphakdithai, N., Duncan, J.S.: Non-rigid registration with missing correspondences in preoperative and postresection brain images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 367–374. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Faul, M., Xu, L., Wald, M., Coronado, V.: Traumatic brain injury in the United States: Emergency department visits, hospitalizations and deaths, 2002-2006. CDC, National Center for Injury Prevention and Control, Atlanta, GA (2010)

    Google Scholar 

  4. Irimia, A., Wang, B., Aylward, S., Prastawa, M., Pace, D., Gerig, G., Hovda, D., Kikinis, R., Vespa, P., Van Horn, J.: Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction. NeuroImage: Clinical 1(1), 1–17 (2012)

    Article  Google Scholar 

  5. Niethammer, M., Hart, G.L., Pace, D.F., Vespa, P.M., Irimia, A., Van Horn, J.D., Aylward, S.R.: Geometric metamorphosis. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 639–646. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Ou, Y., Sotiras, A., Paragios, N., Davatzikos, C.: DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting. Medical Image Analysis 15(4), 622–639 (2011)

    Article  Google Scholar 

  7. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  8. Pele, O., Werman, M.: Fast and robust earth mover’s distances. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 460–467. IEEE (2009)

    Google Scholar 

  9. Periaswamy, S., Farid, H.: Medical image registration with partial data. Medical Image Analysis 10(3), 452–464 (2006)

    Article  Google Scholar 

  10. Prastawa, M., Awate, S., Gerig, G.: Building spatiotemporal anatomical models using joint 4-D segmentation, registration, and subject-specific atlas estimation. In: 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), pp. 49–56. IEEE (2012)

    Google Scholar 

  11. Prastawa, M., Bullitt, E., Gerig, G.: Simulation of brain tumors in MR images for evaluation of segmentation efficacy. Medical Image Analysis 13(2), 297–311 (2009)

    Article  Google Scholar 

  12. Sugiyama, M., Nakajima, S., Kashima, H., Von Buenau, P., Kawanabe, M.: Direct importance estimation with model selection and its application to covariate shift adaptation. In: Advances in Neural Information Processing Systems, vol. 20, pp. 1433–1440 (2008)

    Google Scholar 

  13. Trouvé, A., Younes, L.: Metamorphoses through lie group action. Foundations of Computational Mathematics 5(2), 173–198 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, B., Prastawa, M., Awate, S., Irimia, A., Chambers, M., Vespa, P., van Horn, J., Gerig, G.: Segmentation of serial MRI of TBI patients using personalized atlas construction and topological change estimation. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1152–1155 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, B. et al. (2013). Modeling 4D Changes in Pathological Anatomy Using Domain Adaptation: Analysis of TBI Imaging Using a Tumor Database. In: Shen, L., Liu, T., Yap, PT., Huang, H., Shen, D., Westin, CF. (eds) Multimodal Brain Image Analysis. MBIA 2013. Lecture Notes in Computer Science, vol 8159. Springer, Cham. https://doi.org/10.1007/978-3-319-02126-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02126-3_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02125-6

  • Online ISBN: 978-3-319-02126-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics