Abstract
Analysis of 4D medical images presenting pathology (i.e., lesions) is significantly challenging due to the presence of complex changes over time. Image analysis methods for 4D images with lesions need to account for changes in brain structures due to deformation, as well as the formation and deletion of new structures (e.g., edema, bleeding) due to the physiological processes associated with damage, intervention, and recovery. We propose a novel framework that models 4D changes in pathological anatomy across time, and provides explicit mapping from a healthy template to subjects with pathology. Moreover, our framework uses transfer learning to leverage rich information from a known source domain, where we have a collection of completely segmented images, to yield effective appearance models for the input target domain. The automatic 4D segmentation method uses a novel domain adaptation technique for generative kernel density models to transfer information between different domains, resulting in a fully automatic method that requires no user interaction. We demonstrate the effectiveness of our novel approach with the analysis of 4D images of traumatic brain injury (TBI), using a synthetic tumor database as the source domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beijbom, O.: Domain adaptations for computer vision applications. Tech. rep., University of California San Diego, arXiv:1211.4860 (April 2012)
Chitphakdithai, N., Duncan, J.S.: Non-rigid registration with missing correspondences in preoperative and postresection brain images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 367–374. Springer, Heidelberg (2010)
Faul, M., Xu, L., Wald, M., Coronado, V.: Traumatic brain injury in the United States: Emergency department visits, hospitalizations and deaths, 2002-2006. CDC, National Center for Injury Prevention and Control, Atlanta, GA (2010)
Irimia, A., Wang, B., Aylward, S., Prastawa, M., Pace, D., Gerig, G., Hovda, D., Kikinis, R., Vespa, P., Van Horn, J.: Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction. NeuroImage: Clinical 1(1), 1–17 (2012)
Niethammer, M., Hart, G.L., Pace, D.F., Vespa, P.M., Irimia, A., Van Horn, J.D., Aylward, S.R.: Geometric metamorphosis. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 639–646. Springer, Heidelberg (2011)
Ou, Y., Sotiras, A., Paragios, N., Davatzikos, C.: DRAMMS: Deformable registration via attribute matching and mutual-saliency weighting. Medical Image Analysis 15(4), 622–639 (2011)
Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering 22(10), 1345–1359 (2010)
Pele, O., Werman, M.: Fast and robust earth mover’s distances. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 460–467. IEEE (2009)
Periaswamy, S., Farid, H.: Medical image registration with partial data. Medical Image Analysis 10(3), 452–464 (2006)
Prastawa, M., Awate, S., Gerig, G.: Building spatiotemporal anatomical models using joint 4-D segmentation, registration, and subject-specific atlas estimation. In: 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), pp. 49–56. IEEE (2012)
Prastawa, M., Bullitt, E., Gerig, G.: Simulation of brain tumors in MR images for evaluation of segmentation efficacy. Medical Image Analysis 13(2), 297–311 (2009)
Sugiyama, M., Nakajima, S., Kashima, H., Von Buenau, P., Kawanabe, M.: Direct importance estimation with model selection and its application to covariate shift adaptation. In: Advances in Neural Information Processing Systems, vol. 20, pp. 1433–1440 (2008)
Trouvé, A., Younes, L.: Metamorphoses through lie group action. Foundations of Computational Mathematics 5(2), 173–198 (2005)
Wang, B., Prastawa, M., Awate, S., Irimia, A., Chambers, M., Vespa, P., van Horn, J., Gerig, G.: Segmentation of serial MRI of TBI patients using personalized atlas construction and topological change estimation. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1152–1155 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Wang, B. et al. (2013). Modeling 4D Changes in Pathological Anatomy Using Domain Adaptation: Analysis of TBI Imaging Using a Tumor Database. In: Shen, L., Liu, T., Yap, PT., Huang, H., Shen, D., Westin, CF. (eds) Multimodal Brain Image Analysis. MBIA 2013. Lecture Notes in Computer Science, vol 8159. Springer, Cham. https://doi.org/10.1007/978-3-319-02126-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-02126-3_4
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02125-6
Online ISBN: 978-3-319-02126-3
eBook Packages: Computer ScienceComputer Science (R0)