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Abstract. CT Colonography (CTC) has emerged as a mainstream clin-
ical practice of colonic cancer screening and diagnosis. One of the most
critical problems is to increase compliance with CTC examinations via
minimal bowel preparation (i.e., weak faecal-tagging), which nevertheless
causes much lower signal-noise-ratio than conventional preparation.

In this paper, we present a new algorithm pipeline of electronically
cleansing tagging materials in CTC under reduced oral contrast dose. Our
method has the following steps: 1, robust structure parsing to generate
a list of volume regions of interest (ROIs) of tagging material (avoiding
bone erosion); 2, effectively locating local tagging-air (AT) transitional
surface regions; 3, a novel discriminative-generative algorithm to learn
the higher-order image appearance model in AT using 3D Markov Ran-
dom Fields (MRF); 4, accurate probability density function based voxel
labeling corresponding to semantic classes. Validated on 26 weak faecal-
tagging CTC cases from 3 medical sites, our method yields better visual-
ization clarity and readability compared with the previous approach [1].
The whole system computes efficiently (e.g., < 40 seconds for CT images
of 512× 512× 1000+).

1 Introduction

Colorectal cancer is the second leading cause of cancer-related mortality in west-
ern countries. Computed Tomography Colonography (CTC) has become a feasi-
ble, non-intrusive clinical alternative of traditional optical Colonography, to offer
good sensitivity and specificity for polyp detection via screening the whole colon.
However, similar to traditional examination protocols, the colon is required to be
fully cleansed manually or electronically. Electronic cleansing (eCleansing) of fecal
residues by computed algorithms [1, 2] is very critical to avoid intensive manual
bowel preparation, prior to the examination. The quality of electronic cleansing
method directly impacts radiologist’s image reading performance in 3D, as well
as computer-aided diagnosis. Recently, weak faecal-tagging bowel protocol [3] has
gained popularity in major research clinical sites (e.g., consuming up to 40% CTC
cases) since the dose reduction largely improves patient comfort and compliance.
This protocol however causes much higher imaging noises, inhomogeneous inten-
sity patterns and lower contrast between tagging materials and surrounding soft-
tissue structures. Significant challenges are imposed for radiologists and previous
eCleansing methods [1,2], due to lack of precise statistical data-driven appearance
model. To address this issue, our proposed algorithm is described as follows. The
overall framework is summarized in Fig. 1 (Left).
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Fig. 1. (Left) The overall algorithm diagram of the proposed eCleansing approach.
(Right) Data-calibrated class probability value plots ∈ [0, 4095]. Blue for Air class Fa;
Red for (soft-tissue + bone) class Fs; and Green for tagging material class Ft.

2 Materials and Method

Data-driven Intensity Calibration: To accurately model the intensity varia-
tions of three anatomical classes: air, tagging and soft-tissue (including bone) in
CT images, is an important prerequisite of eCleansing. In a data-driven manner,
we manually label > 100000 voxels per class and perform kernel density estimation
(KDE) fa; fs; ft using these annotated voxels. The class probability values ∈ [0, 1]
are obtained by normalization, i.e., Ft(v) = ft(v)/(fa(v)+fs(v)+ft(v)) where v or
v(x, y, z) denotes the intensity of the voxel at coordinates (x, y, z). To achieve ex-
tremely high efficiency of voxel-level probability evaluation at run-time, we con-
vert the fitted KDE models into look-up tables of normalized Fa(v);Fs(v);Ft(v)
since the CT intensity value is bounded in the range of [0, 4095]. Our intensity
value is equal to its Hounsfield unit (HU) added with a fixed offset, v = HU+1024.

2.1 Bounding Box Generation of Tagging ROIs

We first tackle the problem of spatially detecting and bounding each tagging
material pool using a bounding box in a CT image.

Colonic air & bone compartments identification: Since the CTC tagging
materials of interest must be adjacent to air in the abdominal region, an effective
way of detecting these volume ROIs is to start from colonic air components and
search around nearby regions. Air compartments can be effectively extracted using
a generic 3D region growing algorithm and the air intensity range. However they
may be from lung and other extra-colonic regions (e.g., small intestine, stomach)
and we eliminate extra-colonic air findings, via robust component-level structure
parsing using geometric features and rank-one SVM classification [4]. On the
other hand, when searching tagging materials, we need to avoid the bone tissue
voxels since they have similar Hounsfield units or CT intensity values. Anatomical
bone landmarks (e.g., the centers of vertebrae) can be automatically and reliably
detected using a recent cascade classifier [5] or random trees [6]. Most of bone
structures in the thoracic and abdominal regions including ribs and vertebral
columns can be identified by region growing from landmarks.
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Fig. 2. Illustration of ROI detection (in blue) and AT region detection (in red) results
via 3D bounding boxes. (a,b) in axial or transverse views; (c,d) in coronal views; (d)
tagging voxels are annotated in red.

ROI generation: At each transverse CT slice, run 2D connected component
(CC) labeling on the labeled colonic air compartments. From each 2D air CC, we
probe along the direction towards possible tagging materials (posterior if supine
otherwise anterior). If a voxel v(x, y, z) being probed has not been labeled (either
as bone or tagging material), its CT intensity value is used to check if it can
serve as a seed point of tagging material. The above tagging voxel class probabil-
ity function Ft(v(x, y, z)) of intensity is employed. If Ft(v(x, y, z)) indicates high
confidence (e.g., ≥ 0.85), we employ a 3D region growing algorithm from this
seed to propagate a 3D connected component of tagging materials (evaluating
Ft(·) during propagation). For each detected 3D CC (denoted as CCt), its corre-
sponding 3D bounding box is computed. Then we obtain a list of 3D bounding
boxes {CCt} as ROIs per CT volume, where each box represents a cropped sub-
volume containing tagging and surrounding voxels. Fig. 2 shows the volume ROI
detection results, covering tagging voxel pools with various sizes or volumes. Each
ROI can be “eCleansed” in parallel (for computational efficiency) since there is
no logical dependency among processing them. Using region growing to link Ft(·)
responses is more robust than running Ft(·) at every voxel position, which more
prone to small clusters of imaging noise. Optionally, we can reject components
with small volume measurements (e.g., < 3ml), indicating low confidence.

2.2 Efficient ROI Verification & AT Localization

This stage contains posterior or anterior directional gradient profiling and Air-
Tagging (AT) transition region detection via 3D Haar feature boosting.

Dominant air-tagging gradient search: For each ROI, we first mask out
air-class voxels based on its intensity value since Hounsfield unit (HU) in CT for
air is well defined. For remaining voxels at any coordinates (x, y, z), its gradient
vector (∆x, ∆y, ∆z) and gradient orientation (θ, φ) weighted by the magnitude
γ = ‖(∆x, ∆y, ∆z)‖ are computed. In the parameter space of [θ, φ], each voxel vi
will cast one data sample (θi, φi) with weight γi. Then the task of finding dominant
air-tagging gradient direction is essentially a mode-seeking problem that can be
solved effectively by mean-shift [7]. In our case, the distributions of {(θi, φi)} are
noisy but statistically compact. Mean-shift algorithm converges to the dominant
gradient direction (θ̂, φ̂) in 4 ∼ 6 iterations. The orientation of (θ̂, φ̂) coincides
with Y-direction of ≥ 98.5% probability.
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Efficient AT detection via boosted 3D Haar features: For each volume
ROI, there can be at least one or more Air-Tagging (AT) transition regions though
∼= 65% ROIs have only one AT. AT regions are labeled by one bounding box per
AT for 10 CTC volumes (split evenly for training and testing). Each bounding
box precisely covers the AT spatial expansion in CT coronal plane from manual
annotation, which is normally a narrow-band box in Y-direction including several
slices or layers of air and tagging voxels. Detecting bounding boxes in run-time is
approached as a generic 3D object detection problem via Haar features boosted
by Adaboost or Probabilistic Boosting Tree [8]. 3D Haar features are well capable
to capture intensity contrast statistics existing from air voxel layers to tagging.

Without loss of generality, we assume that (θ̂, φ̂) is aligned with Y-coordinates
(i.e., the normal of coronal plane), to eliminate the orientation degrees-of-freedom
(DOF) completely. From above gradient search, we can locate Y -locations with
strong gradient magnitude sums (aggregated on each coronal plane within ROI).
On each XZ plane at a hypothesized Y , we can perform a 2D connected compo-
nent (CC) operation on its tagging class probability response map (by evaluating
Ft(v)) and compute the X and Z spans of the largest tagging CC as X̂, Ẑ. The
only remaining DOF is translation in Y within ROI. In run-time, we obtain the
list of final AT bounding boxes per ROI based the detection probability rank and
non-maximal suppression (to remove overlapped detections). Our detector using
PBT boosted Haar feature can capture the intensity contrast of air and tagging
class voxels in valid AT boxes, and achieves 99.56% sensitivity with no false pos-
itives on validation set. Only 2 very small AT boxes out of 477 annotated boxes
are missed in 5 training CT volumes. Examples are shown in Fig. 2 as red boxes.

2.3 Multivariate Image Model and MRF in AT

Due to partial-volume effect in the air-tagging transition regions and air-tagging-
tissue T-junctions [1, 2] in AT, there are certain amounts of air-tagging mixed,
or pseudo voxels having very similar (single voxel) intensity value as soft-tissue.
Therefore we formulate a high-order intensity pattern to differentiate pseudo and
true soft-tissue voxels through context modeling. The motivation is that soft-tissue
voxels tend to have more soft-tissue neighbors while pseudo voxels having both air
and tagging voxels on both sides in Y-direction (due to gravity). More precisely,
for each voxel v(x, y, z) at location (x, y, z), we form a (2N+1)-dimensional inten-
sity feature vector V (x, y, z) = [v(x, y−N, z), . . . , v(x, y− 1, z), v(x, y, z), v(x, y+
1, z), . . . , v(x, y + N, z)] center at (x, y, z) where N = 3 ∼ 7. Then V (x, y, z) is
classified as a supervised binary learning task. To do so, all voxels inside 36 AT
boxes (Refer to Fig. 2 (d).) randomly extracted from 5 training volumes, are
annotated as positive (+) soft-tissue class versus negative (-) tagging (including
pseudo) class.

High-order intensity pattern modeling: Since KDE does not scale well
with higher dimensionality (2N + 1) in both computation and accuracy, we pro-
pose a new method Multivariate Intensity Histograms with Adaptive Semantic
Binning (MIHASB), via maximizing the Chernoff Information of two empirical
distributions. Chernoff information [9] is defined as follows, given two discrete
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distributions of H(+),H(−).

C(H(+),H(−)) = − min
0≤λ≤1

log(

B∑
b=1

Hλ(+, b)H1−λ(−, b)) (1)

When λ = 1
2 , C becomes Bhattacharyya coefficient [9] which is optimized here.

Notations of histograms H(V +) and H(+) are interchangeable (same for H(V −),
H(−)). Histogram takes an input feature vector V to return the output value,
as recoded in the corresponding bin. Histogram binning is the process on how
to construct histogram by finding its associated bins while maximizing the (+/-)
class separability criterion of C(H(+),H(−)). Maximizing C(H(+),H(−)) brings
the optimized classification accuracy [10, 11]. Therefore our learned models are
discriminative-generative density functions. If the exhaustive histogram binning
parameter search is adopted, even only 100 evenly divided intensity boundaries
(CT intensity ∈ [0, 4095]) to be hypothesized and evaluated by Eq. 1, the compu-
tation complexity is already prohibitively expensive as 1002N+1. Again, we draw
importance samplings by leveraging the knowledge of CT intensity ranges of se-
mantic air, soft-tissue, (weak) tagging and bone anatomies. The sampling param-
eters are data-calibrated similarly using normalized KDE plots as Fig. 1 (Right):
means {µm} = {350, 750, 1100, 1400} (w.r.t. air, soft-tissue, weak tagging and reg-
ular tagging voxel intensity); standard deviations σm = σ+

m = σ−
m = 40 regardless

of m = 1, 2, 3, 4 for simplicity. Our multivariate MIHASB algorithm is described
in Alg. 1. Semantic Sampling Function (SSF) is equivalent to draw a random sam-
ple sm from [µm − σ−

m, µm + σ+
m] based on uniform sampling, or from Gaussian

Distribution G(µm, σm), {s} = {s} ∪ sm. In this way, SSF implicitly encodes the
intensity patterns such as how many air, soft-tissue, bone, tagging voxels existing
in the relative spatial context and makes MIHASB binning process very efficient
in K = 2N + 1 dimensions. The sampling derivation σ captures the CT data
variations at semantic class boundaries.

In runtime, the histograms H(V +),H(V −) are normalized using likelihood
ratio testing [10] per bin, to form P(+) (i.e., the soft-tissue class Ps).

Ps(V ) =
H(V +)

H(V +) +H(V −)
(2)

Last, Ps is also represented as a multi-dimensional look-up table with the esti-
mated binning boundaries where each cell stores Ps ∈ [0, 1]. Our trained histogram
models H(V +),H(V −),P(+) have 2592 bins (when N = 4). Longer range context
of N = 4 improves over N = 3, but performance saturates after N > 4.

MRF optimization: In each AT bounding box, we first evaluate every inside
voxel v(x, y, z) via its feature vector V (x, y, z) to obtain Ps(x, y, z) at the location
(x, y, z). Each AT voxel is treated as a node of the 3D MRF grid and we use
its negative-log form Edata(x, y, z) = −log(Ps(x, y, z)) [12] as the data term. The
intensity-contrasted pairwise potential function is adopted as a spatially isotropic
smoothness term (26-neighborhood is used). This energy minimization problem
can be solved effectively by Max-Flow/Min-Cut algorithm [12]. The optimization
output is a binary label field: L = 1 meaning the positive soft-tissue class (to
be preserved in eCleansing); L = 0 indicating negative class of air, tagging and
pseudo-enhanced (non soft-tissue) voxels that should be eliminated.
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Algorithm 1: Adaptive Semantic Binning in Joint Multivariate Space

Input: Sets of positive samples {V +} and negatives {V −}; K is the
dimension of the feature vector V ∈ <K=9

Output: Trained multivariate histograms H(V +),H(V −)
Initialize H0(V +),H0(V −) with one bin and C0max = 0;

for t = 1, ...T do
Ctmax = 0;

for k = 1, ...,K do
Generate the hypothesized split set {sk} from semantic sampling
function at Dimension k;

for Each ss ∈ {sk} do
Update intermediate histograms Ht(V +), Ht(V −) by adding
the split ss into Ht−1(V +) and Ht−1(V −) via Cartesian data
repartitioning in <K , respectively;

Evaluate the Chernoff Information C (i.e., eq. 1) given
Ht(V +), Ht(V −) from {V +} and {V −};
if Ctmax < C then
Ctmax = C; and record the current optimal split ss;

end

end

end

if (Ctmax − Ct−1
max) > ε then

Update and finalize Ht(V +), Ht(V −) for iteration y, by adding
the recorded optimal split ss (according to Ctmax) into Ht−1(V +),
Ht−1(V −) via data repartitioning;

else
Return Ht(V +), Ht(V −) as the final output (converged) and exit;

end

end

2.4 Probabilistic Voxel Labeling and Smoothing in RT

Recall that in Sec. 2.1, we obtain a 3D connected component of tagging mate-
rials CCt (guided by Ft()) to bound each ROI. Possible tiny holes ∈ CCt (e.g.,
created by air bubbles in the inhomogeneous tagging pool) can be filled by stan-
dard hole-filling algorithm. For each remaining voxel v ∈ RT = CCt ∩ (/∈ AT ),
Fs(v) = fs(v)/(fa(v) + fs(v) + ft(v)) is used to assign the normalized soft-
tissue class probability ∈ [0, 1]. The Fs(v)-weighted intensity value is computed as
vs(x, y, z) = v(x, y, z) × Fs(x, y, z) for v. Finally, we apply a simple 3D isotropic
Gaussian smoothing filter G (variance = 1mm) on {vs(x, y, z)} to obtain denoised
{G(vs(x, y, z))} and set label L = 0 for voxels satisfying G(vs) < 350. The thresh-
old 350 is defined by our clinical collaborator. To prepare CTC visualization, all
voxels with label L = 0 are set as 0 intensity value, thus “electronically cleansed”.
Voxels in the ROI but outside of CCt remain unprocessed or “untouched”.
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Fig. 3. Examples of E-cleansing results: original volume rendering (Top), generated by
an implementation of GMM-EM method [1] (Middle) and our method (Bottom).

3 Experimental Results & Discussion

Data: Twenty-six weak faecal-tagging CTC scans (15 patients) from three hos-
pitals in Europe are used. Variations of bowel preparations with different combi-
nations of doses were employed. The axial image slice numbers vary from 728 to
1089 and the slice thickness ranges from 0.798 mm to 1.25 mm.

Accuracy: Tagging voxels of 10 out of 26 scans are annotated using interactive
graph-cut [12] and manual touch-up. 10 volumes are split evenly for training and
testing. Two performance criteria are used: Sensitivity (S) on the detected and
removed tagging voxels versus all labeled tagging voxels; and Accuracy (A) on the
number of removed tagging voxels versus all removed voxels. For comparison, we
implement the Gaussian Mixture Model (GMM) based eCleansing method [1]. Our
method has S = 99.2% and A = 99.3% while S = 93.6% and A = 98.9% are for
our version of [1]. The main difference is on sensitivities. Although S = 93.6% is
not low, a lot of tagging voxels at three-material (i.e., air, tagging and soft-tissue)
transitional areas in AT are not effectively cleansed. There are severe artifacts
“left-overs” floating in the air or adjacent to colon wall which imposes significant
technical challenges for clinicians to perform 3D CTC reading. The joint use of
KDE and MIHASB shows better intensity modeling accuracy among different
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voxel classes than GMM. Without explicit physics based three-material transition
modeling [2], our data-driven approach achieves highly competitive results in less
computational cost (refer “bath-tub ring” effect in Fig. 9 of [2]). We also conduct
CTC 3D fly-through user study to subjectively evaluate the reader’s impact on all
26 volumes, prepared by our proposed method and [1], respectively. The visualized
comparison is demonstrated in Fig. 3.

Speed: MIHASB algorithm is compared with GMM [1] and random trees (RF)
via random intensity testing [6]. RF-11 and RF-15 (i.e., 11 or 15 decision trees)
provide comparable or slightly better accuracy than MIHASB (S/A: 87.5%/95.1%
and 87.9%/95.4% versus 87.7%/95.5% in testing). Random trees need hundreds of
arithmetic operations per voxel evaluation; MIHASB only requires 9-13 times of
integer comparison. After MRF optimization, S/A are improved to 96.2%/98.6%.
Segmenting the voxels into mixtures [1] runs as the slowest.

In summary, our main contributions are three-fold. 1), We propose a new
volume ROI based algorithm pipeline in a divide-and-conquer manner, which is
substantially novel from previous work [1,2]. 2), We present statistical data-driven
generative and discriminative-generative models (e.g., MIHASB) throughout the
paper that effectively cope well with the emerging minimal bowel preparation
protocols. 3), Our method has been validated under various quantitative criteria
and user study, using 26 CTC studies from multiple clinical sites.
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