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Abst ract. For computing the greatest comlllon divisor of two univariate 
polynomials with a priori numerical errors 011 their coefficients, we usc 
se\'crai approximate polynomial CGD algorithms: QRCCD, UVGCD, 
STLN-bascd, Fastgcd, GPGCD and so on, Among them, QRGCD is 
the most common algorithm since it has beel] distributed as a part of 
l\'laplc alI<I t here are many papers including their comparisons of ef
ficiency and effcctiveness against Q RCCD. In this paper, we give Ull 

improv("'<:\ QRGCD algori thm (ExQRCCD) which is unfor tunately not 
faster than the original but more accurate and the resulting perturba
tion is able to satisfy the given tolerance. 

1 Introduction 

Computing the greatest common divisor (CCO) of polynomials is one of the 
most primitive computations in symbolic algebraic computa.tions hence scveral 
algorithms are known: the Euclidean algorithm , the haIC CGO algorithm and so 
on (see also t he recent result[I] and the text book[2]). However, in the practical 
situations (e.g. control theory, image processing and so on) , the input polynomi
als are represented by the Hoating-point numbers or derived from the result of 
numerical computations or experiment.s hence in general they have a priori errors 
on their coefficients. For such polynomials, any conventional algorithms can not 
compute their CCO since it easily becomes coprime due to a. priori crrors. This 
problem is called "approximatc polynomial CeD" and there are many known 
studies (sec Doito[3]) . 

Rt.'Ccntly, most of modcrn algorithms for this problcm usc some optimiza
tion teclmiques and matrix decompositions. UVCCD[4] , STLN-based[5] , Fast
gcd[6] and C P GCD[7] arc typical algorithms using optimization techniques. T he 
Causs-Newton algorithm is used in UVCCD and Fastgcd to refine a tentative 
<,pproximate CCO computed by some matrix decomposition and solving a linear 
system. Structured total least norm (ST LN) techniques and "he gradient projec
tion algorithm are used in STLN-bascd and Gre CO, respectively, for seeking 
the approximate ceo din .. 'CUy. 

QRGC D[8] is one of algorithms based on matrix decom positions and is also 
implemented as a part of t.he SNA P lx'l.ckage of Maple. It uscs the QR decomposi
tion of the Sy h·ester mat.rix of the input polynomials and constructs approximate 
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CCO directly from the upper triangular matrix (i .e. QrtGCO does lIot refine the 
resulting approximate factor). It is notable that QrtGCO hns been used as the 
benchmark algorithm for newly proposed algorithms. However, since Q RGCO 
was proposed in the early stage of approximate CCO, its theoretical background 
is not enough analyzed (e.g. detect.abilit.y of approximate CCD by Qrt factoring) . 

In this paper, 'we show some relative closeness and property of the upper 
trianglLiar matrix, which clarify some weak points of QRCCO and for which we 
give an improved QRCCO algorithm (we call it ExQRGCO). Unfortunately our 
algorithm is not faster than the original but more accurate and the resulting 
perturbation is able to satisfy the given tolerance (note that QRGCO is not 
able to do this). '-'Vo introduce the notations and the framework of the Q RG CO 
algorithm in the rest of this section , and give our improved framework based on 
the original QRCC D in the section 2 . We give an improved QrtGCO algorithm 
(ExQRCCD) with theoretical cOIlSiderations in the section 3. In the sections 4 
and 5, we give some numerical experiments and concluding remarks, respectively. 

1.1 Notations 

Let input polynomials I (x ), g(x) E lll[x] of degree m., n be 

m " 

We assume that the input. polynomials have the unit. Euclidean norm (2-Ilorm) 
(i .e . III (x)1I2=ll.g{x)112= 1). Hence we scale the polynomials if they do not have 
the unit norm at the input. In this paper, we usc the followillg (descending te rm 
order and row rnajor) Sylvester matrix of I (x ) and g(x ). 

1m 1", - 1 f, fo 
I", 1",- 1 f, fo 

Syl(J, y ) ~ 1m 1", - 1 II fo 
g" 9,,- 1 .fI1 90 

9" g,,-I 9' go 

gIl g,, - I ... gl go 

For vectors and matrices, 11 ·112 and IHIF denote the Euclidean norm (2-norm ) 
and the Frobenius norm, respcctively. AT and A - I arc the transposc3 and the 
inverse of matrix A , rClipectiveiy. To specify the submatrix of matr ix A, we usc 
t he J\4ATLA B like colon notation: the submatrix consisting of elements in the i l 

t hrough i 2-th rows and il thl"Ough h-th columns is denoted by A (i ,:i 2 ,j,:h ) ' 

~ For t he complex case, we jnst use the conjugate transpose (Hermitian transpose) 
instead of the transpose. 



The coefficient vector (in the descending term order) of p(x) of degree k is 
dcnoted by pE JRk+l . \Ve represent the evaluation of p(x) at the point w E {; as 
p(w) = pTw. where W. = (wI; ... Wi WO)T. We denote the reversal polynomial 
of p(x) by rev(p) (i.e. rev(p) = Xdcg(I')p( l /x» . ~.,'I oreover , we abbreviate "factor 
whose 1·00ts are outside ~he unj~ circle in t.he complex plane·' to "out.side-root. 
facior" and also use "inside-root fador" similarly. 

\\Te llote that approximate polynornial CCO has been dcfi llCd from the several 
point of view ill the literaLlll"es. In this paper, we use the following coefficient-wise 
definition without any constraint on the Bezou t coefHcients, which is compatible 
with most of known rcsults . 

Definit ion 1 (Approximate Polynom ia l GCD). 
POT lhe input polynomiaL54 f(x }, g(x ) E 1R.[x], we call the 7HJly"omial d(x ) E 1R.[x] 
"approximate polynomial GCD" of tolerance £ E R ;?:o if it sa.tisfies 

f(x) + Llf(x) ~ h(x)d(x) , g(x) + Ll,(x) ~ g,(x)d(x) 

for some polynomials .1,(x), Llg (x) , !t(X) ,gl(X) E IR.[x] soch that deg(.1 f ) ~ 
dcg(J), dcg(Ll,) ,; dcg(g), IILlflb< < Ilf ll, and IILl, II,< E 11 911, where 11·11, 
denotes lhe 2-n01m. <0 

Remmk 1. In Lhe recent studies of approximate CCD, one may consider the 
extra conditiOlls that deg(d) is ma.ximized w.d . t he tolerance e or the tolerance 
e is minimized w.r.t. deg(d). However, in this paper, we do not cOHsider Lhesc 
conditions since it is difficult that the QRCCO or similar algorithms guarantee 
these properties without allY refinement (optimization) step. <0 

1.2 Framework and A lgorithm 

The framework of the QRGCO algorithm is as fo llows. 

l. Compute the Qil decomposition of Syl(f, g): Syl(j, g) = QR. 
2. Find the gap between the k-t.h and (k + I )-th row vectors ./"'j. , ·i'k+1 of R and 

for m the polynomial with coefficients i'i" which is an approximate polynomial 
ceo (or its factor ). 

3. Apply the sam e proced ures to the reversal polynomials of cofactors since R 
may not have the approximate outside-root factor. 

T his is basically based on the following well known properties of the QR 
decomposition of the Sylvester matrix. 

Le mma 1. The last non-zero row vector of R gives the (mathem.atically exact) 
coefficients of the polynomial GCD of f( x) and g (x) . (see e.g. /9J) <0 

Lemma 2. The OR fact01ing is numerically oockwunl. stable. Thus, II Syl(j,9) 
QR llz is enough small even if we compute the QR decomposit-ion nume1ically. 

("'" e.g. (l OJ) < 

~ We foc us on polynomials over U{ for easy understanding though QRGCD and our 
algorithm can work also over it. 



Wc bricfly rcview thc original QRCCD algorit.hm below. 

Algorithm 1 (QRGCD in the original pape r) . 
Input: [( x), g(x) E lR [x] and tolerance t: E lR;::o. 

Output: u(x) ,v(x),d(x) E fil [x] (d(x ) is all approx. CCD) 

I. Compute the QR decomposition of Syl(f , 9): Syl(f, g) = QR.. 
2. Suppose that R (k} is the las t (k + 1) x (k + I) submatrix of R. such that 

Iln(k)II,> ' and II R(k- 'lIl,< , . 
Case 1: IIR(O}lb> t: (Approximately Coprime) 
(a) dl (x) := 1, u{x) and vex) forllled by rows of QT . 
Cas<> 2, II Il(k - ' JU,< IOgIIR(kJU, (Big Gap Found) 
(a) dl (x) := thc last k-th row vector of R. 
Case 3: 3kl (biggest), IIR(k, - 1)1I2< 10£ IIR(k· d Il2 (Gap Found) 
(a) dl (x) ;= thc last kl-th row vector of R. 
Case 4: Otherwise (Difficult Ca,>c) 
(a) find thc inside-root factol'S of [ (x) alld g{x) by the algorithm "Split" 

and compute an approximate divisor d1(x) of the inside-root factors. 
3. Apply the above steps to reversal polynomials of cofactors of [ (x) and 9(X) 

w.r.t. dl(x) , to obtain d 2(x) . 
4. Apply the above steps to cofactors I {x) and 9 (X) w.r.t. d(x ) = d1{x)d2{x), 

to obtain u(x) and vex) . 
5. Output u(x} , vex ) and d(x} . <l 

Hcrc, the algorithm "Split." was proposed in thc original papcr[8] which fi.nds 
thc inside-root factor , and we also usc it in our algorithm. Th is is done by 
the Gmeffe's root-squaring, contour integration , Newton 's formula , Newton's 
iteration and lifting steps. T his algorithm is not the purpose of this paper and 
thcre are sim ilar methods in thc literatures hencc \\·c omit this in dctail. 

2 Improved QRG C D Framework 

In this section, we give new lemmas and theorems that guarantee our framework 
similar to that of QIlGCD above. At first. , we cite thc following lemma givc]} 
by Stetter[ll ] (see also [12]), which plays an essential role ill the frameworks of 
QRGCD and OUl" improvemcnt.. 

Lemma 3 (Corollary 7 in [lID. 
Por e E fil>o, let p~ be the polynomial set s.t. p~ = {p(x} E ([: [x] I dcg(p) :0:::; 

deg(p), IIp(x) - V(X) 1I 2::; t:}. Forw E 0::: , we have 

3p(x) E P, (,,), p(w ) ~ 0 =- I,,(w) I "e IIw. II , . 

(no te that the original is intended j()1· the dual norm) <l 



2.1 D e t ectabili ty of a pprox imate GCD by QR factoring 

Let d(x) be the approximate polynomial CeD of !(x) and g(x), of degree k 
and having the unit 2-norm hence d(x) is the exact CeD of f(x) + .:1,(x) and 
g(X)+Ll9(X). Similar to f(x) and g(x) , we denote the Sylvester matrix of f(x) + 
Llj (x} and g(x) + Llg(x) by Syl(f + d j, g + Llg }. For simplicity, we abbreviate 
Syl(f,g) and Syl(f + Ll"g + Ll9) to Sand S + Lls , respe<:tiveiy, where Lls = 
5yl(Ll" ..:19 ) . For Sand 5 + d s, let thei r QR decompositions be 5 = QR and 
5 + d s = OR. where Q , 0 are orthogonal and R, R. are upper triangular matrices. 
\.ye note that the notat ions in this paper are different from t he not.ations used 
ill the original papcr[8] as t he result of simplifications. 1'.,,[oroover, we denote the 
matrices whose column vectors generate the null spaces of Sand S + Lls by N 
and fI, respect.ively, thus we have 5N = 0 and (5 + LlS)}\I = 0 and substituting 
S = QR gives 

• T • 
-RN = Q LlsN. (2.1 ) 

Le mma 4. Let rex) be a polynomial with coefficients .,-: which is a row vector of 
R , and W be any mot of d(x). Then we have 1·,.(w)1 :::; IIdsI 12 I1w.1I 2. <0 

Pmoj. By the equality (2.[ ), we have - Rw . = QTLlsw • . T herefore, we have 
Ir(w)1 :5 IIRw.112 = IIQT.:1sw.1I2 :5 IILl s1l211w*1I2 since r(w} is an element of Rw •. 

o 
Note that any factor of d(x) can be an approximate polynomial CeD by the 
definition. By d •. (x) we denote such a factor of d(x) , and let fl(d r ) = {WI , .. . ,wk} 
be the set of distinct roots of dr (x) and fl. (dr ) be the k x (m+n) matrix whose 
i-th row vector is Wi: = (w;n+n- l wi w? ), the t ranspose of the evaluation 
vector of Wi . We denote the condition number of fl.(d,.) bY,",2(!l*(d r ») . 

T heore m 1. Let 7·(X) be a lJ01Yllomial with coefficients .,-: which is a mw vect01· 
of R. Then, an UppC1' bound ofndative distance ofr(x) from dr(x) , an app1'OX
imate IHJ/yn01lliul GCD of f( x) and y(x), is given by .jk + Ih:2(fl.(dr) Illr1:}II: . 
Moreover, l!teTe may exist another appmximate polynomial GCD of higher degree 

other than r ex) if II!~:)II I" > [. <j 

Pmoj. First claim. Let b •. (x) = dr( x) - J·(x) be the residual polynomial , and all 
the coefficient vectors are treated as polYliOiniais of degree "Ill + n - 1 by padding 
zeros. By Lemma 4, for any w E n(d .. ) we have 

hence the square root of the sum of 17·(wW over all roots w :: !l(d,.) gives 

Therefore, we have t he following relative upper bound of Ilbr (x)1I2 since fl. (d •. ) 
is of ful1 row rank and J? .. (dr)o: = J? (dr)((~. - f) = -J?(dr)f can be solved by 



the least square W. I . t. J~ .. 

II b~ II, < ~ II LIs 112 
II , (x) II , - vk+ I,,(fl.(d,» II " (x) II, 

Second claim. We note that .:15 is the requinx l perturbation of the Syl(J,g) 
so that f (x}+ .:1 j (x) and g(x)+..1g (x) may have an exact polynomial CCO (i.e. 
d(x)) . Therefore, the row vector i:' can become the zero vecto r within the gi ven 
tolerance if lI L1s I1 2> lI r (x) 112 since Q is orthogonal hence the perturbation of 5 
equals to the perturbation of n in the 2-norm. This mean8 that the degree of 
d(x) may be larger than that of l'(x). 0 

If deg(d(x)) = 1 then the first claim is proved easily and dil'ectly by Lemma 3. 
Note that Theorem J gives us only the necessary condition for that a computed 
row vector of n is close to ([(x). 1t does not give us any property of each row 
vector of R, which will be discussed in the next subsect ion. t. loreover, we cannot. 
know t he magn itude lI .1s l1 2 hence we bave to estimate it in ad~1Ulce or in the 
algorithm. We will disCllSS this later in Section 3. 

Remm'k 2. The condition number of f}.(dr) becomes large if the approximate 
polynomial C GO has close roots. This means t.hat QRCCD and our algorithm 
may be weak for polynomials having mutually close roots. <0 

Remm'k 3. A 8imilar theorem is proved by Corless et al. in [81 . Their theorem 
is only for a~olute closeness hence we extend it for the relative closeness . In 
general , lower row vectors of matrix R have smaller 2-norms . For example, we 
may have the case that the expected approximate polynomial CGO is 1O- 6(x
l )(x - 2) (before normalized) and the detected polynomial is IO- 6(x + 1 )(x+ 2). 
This result is llot suitable but may happen since we com pute the QR decompo
s it ion numerically. [n order to prepare for such cases, we extend their theorem 
as above, though this is just a theoretical possibility (we didn 't find any simple 
small exam ple which has this behavior explicitly). <0 

2 .2 R oots ou tsid e t he uni t c ircle 

As reported by Corless et a!. in [8], QR factoring of the Sylvester matrix may 
not det-eeL any outside-root factor of approximate ceo, which has the (approx
imately 5) common roots outside t he unit circle. Therefore, the framework and 
the algorithm compute an inside-root factor aud then compute an outside-root 
factor. In t his subsection, we pro\'e this from the different approach . 

Let PI(X) = f (x), P2 (x) = g(x),p:.s(x) , ... E IR[xl be the polynomial remain
der sequence (PRS) of f (x} and g(x} . We denote the k-th subresultant of f{x} 
and g(x) by resd f , g) which is defined by the determinant as follows . 

. . (/ ) _I Syl(f,x")".,,_k.' . ..,+n_" _', i./(x) 1 
!es~, , 9 - S 1('" ) - ( ) y x ,g ("+I''''+''-~'.I:TII+''-2~'-1) x. g x 

"C":BCY--::"a-p-p-,-o-ximately common root" we denote the roots of approximate CGD. 



where x.f(x) = {X .. - k- I f(x) X l f(x) XO f(x)}T. z.y(x) = (xm - k- Ig(x) .. 
x ly(X) xOg(xHT and /; = 0 and g; = 0 fOl' any negative index (1 < 0). It is 
well known that Pi(X) is a multiple of rcsd<'8(I';_I) - I(f,g) (sec [131 for exam ple) 
and the subresultallt. is related to the Sylvester's single sum ([14j and references 
therein ) <18 folkJws. 

Le mma 5 (Sy lvester's sing le s um) . 
Let A and 8 he lhe sets of aU the roots of f( x ) and g(x), t'CSIJCCtiveiy. Then we 
have 

( 
" ' II.(A \ A' , B ) "'''k /,9) ~ L ll(x , A ) Il(A \ A' N ) 

A' C A, # A' = k ' 

where R (A , 8) = n a EA, l>EB(a - b), R (x , A) = n " EA(x- a) and # A denotes the 
cardinality of A. <l 

To describe some quality of PRS, we cs(.inll.lte the norm of each summand in 
t he si llgle sum for the following specific polynomials (similar cst.imatioll method 
used in [151 for clllSters of close roots) where Winl and Win,; arc roots inside the unit 
circle a nd Wont; and won~,; arc roots outside the unit circle. One may think that 
these polynomials are odd, however, this s ituation easily happens (sec Example 
1 for such actual polynomials). 

f {x) = TI ~':: i (x - Win;) n;:'''t (X - Wont;}, dcg(f) = In , 

( ) - n"'" ( ") n"··' ( , ) I ( ' -gx - j=1 X - Willi j = l X - WontJ , (egg) - 11 

where the magnitudes of roots satisfy IWin; 1 = 0 (0'). IWin.i 1 = 0 (0'), IWout, I = 
0 (0'{3), /lnd IWoUl .i1 = 0 (0'{3) with the common big 0 notation, for O',{3 E lR:;::o 
sat isfyi ng 0' < 1 a nd 0'{3 > J. We asslIme that the roots of f (x ) and g(x) arc 
well isolated respectively, the approximate ceo of f{x) and g(x ) is of degree k, 
the corresponding (approximately col mnon) roots satisfy I w;~ ; - Willi I = O(O'/'in) 
and Iwout; - w<l llti l = O (a{31'oud for some /'ill ,1'out E ITl. :;::o, and the other pairs of 
roots satisfy I"-'in, - Win j 1 = 0(0') and IWollt ; - Woutj I = O(u{3) . l\'loreover, C;n and 
Cont douotre the numbel1; of common inside .-oats of f( x ) and g{x ), and common 
outside roots of f(x) and g(x) , respectively, hellce we have k = Cill + Co uto 

Lemma 6. With the above notatiolls and assumptions, /01' the coefficient 0/ 
each summand of single sum representation o/rcsdf, g), we have 

R(A \ A', B ) 
Il(A \ A' , A') 

1IIhen!. kin, kin. and I..-on ~~ denote the mltllbers of irl .~ide mot.~ included in A' , 
common imide roots included in A' and C01ll1ll011 outS'ide roots included irl A' , 
resl~ctively. <l 

Proof. At first , we estimate the numerator by multiplyi ng each part (inside n OIl

commo n roots: Bin" inside commOll roots: Bine, outside non-common roots: 



B"",. and ou~s ide collunon roots: B"n,_J of B as fo llows. 

B(A \ A' , 8 ) = B(A \ A', 8,,,.) x B(A \ A' , 8;"J 
xR(A \ A' , Bout') x R(A \ A' , BoutJ, 

R( A\ A' , Bin,) = O( o:(m'n - /;"" )( ' ''n -q .. ) (a{J)(m",,, - k, .. ")(",,, -C'n», 

R(A\ A', B,ne) = O( a (m,,, - ki" lc;" -(Cin - ki,,<) (O:"n )C'n- ~' i"~ (ofJ){frlou• - ~'ou' lC,n ) , 

R(A\ A' , BoutJ = O«o:.8)(m- k)("o",-c"",»), 
R(A\ A' , BoutJ = O«o:.8)(""" - k'n lc",,, (o:.8'ond""" " - k"",< 

X (0'.8)( '"0''' - k o,,' )"0'" -(c"", - k o",<» ) . 

Therefore, we have 

Next, we esti mate the denominator in the same way. 

R(A \ A' , A' ) = R(A \ A' , A(,, ) x R(A \ A' , A~ttt), 
= O( a rm, ,, - k,,, )/'"1" (o:f3){m",", - ko",l~'I") X O( (a.8){ ,,, - k)k,,,,, ) 
= O (a(m - k )kp{m-k )k"",+{mou, - ko",)k'n) . 

By substituting m..,ut - kottt = (m - k) - (mitt - kin ) for the power of p, the 
lemma follows from the above directly. 0 

Theorem 2. There exists a pai1' of polynomials [(x) and g(x) such that the QR 
decomposition of Syl(J, g) cannot detect any outside-mot factm' of the approxi
mate CGD, MOl'eove7', we neell to delect such fa ctm's fm1n rev(J) and rev (g) 01' 
thei1' cofactors severnl limes and combine them. <l 

Pmoj. With t he assumptions of Lemma 6 for a fixed k = dcg(d), let An be the 
set of a ll the (appmximately) common roots of I (x) and g(x) and A: be a set 
of An replaced s common outside roots wi th s (not common) inside roots. We 
foclls on the roots of r(x) with coefficients f which is the last (/.: + I )-th row 
vector of R . 

By Lemmas 5 alld 6, the coefficient R(A \A~, B)/ R(A \1"1 ~, A~) of R(x, A~), 
is 0(p(mln+",,"-2~· ; ,, - 8)81'gut) times larger than R(A \ Ao, B )/ R(A \ Ao, An) of 
R(x , Ao) . Therefore, 'r (x) easily becomes to be without common outside roots, 
regardless of their closeness, hence the QR d(.'(:omposition cannot detect lilly 
outside-root factor of the approximate CGO. For such factors, we have to com
pute the QR. decomposition of matrix of rev (f) a nd rev(g) (i.e. transform the 
outs ide roots into inside). 0 

One may think that Theorems and 2 seem like a contrmliction since T he
orem 1 docs not restrict roots to t he inside. However, there is no contradiction . 
Thcorem 2 stat.es only one of propert ies of P R.S which may not have common 
outside roots. As t.he result of the computation of PRS, Theorem I states only 
a necessary condition that the resulting PRS is an approximate CGD (or its 
approximate fact.or). 



!'vloreove1', the above theorem indicatcs a concrete cxamplc bclow that we 
havc to compute approximate CCO from the both of input and reversal poly~ 

nomials. In the rest of paper, by "normal sidell and I' reversal sidell we denote 
the computations from the input and rc\"ersal polynomials (finding inside and 
outside rools) , rl;.'Spcctivciy. 

Example J (Fake Common Inside Roots). 
We compute the QR decomposition of Syl(J,g) of the following f(x) and g(x). 

lex) ~ (x+0.001 Xx - 0.001Xx+l000Xx - 1000), 
y(x) ~ (x+0.0010000001Xx-0.009Xx+ 1000.000I Xx- 2oo0). 

They have the following approximate CCO of tolerance 10- 12 . 

d(x) = 9.99998 X 1O-4 x 2 + 0.999999x + 9.99998 x 10-4 

'" 9.99998 x IO - '(x + 0.00100000)(x + 1000.00). 

T he 2-l1d , 3-rd and 4-th last row vectors of R are as follows. 

4-th las t row: 0.00 143003x 3 + 1.39855x2 -O.00559397x-6.99252x lO- 6 

" 0.00 143003( x - 0.00499981) (x +0.00 1)( x +977.993 ), 
3-rd last row: 0.20978x2 - O.000839074x - 1.04885 x 10- 6 

,,0.20978(x - 0.00499978)(x + 0.00 1), 
2-nd last row: 0.00565685:1: + 5.65685 x 10- 6 

"0.00565685(x + 0.001 ). 

As in the proof of Theorem 2, the 3-1'd last row is not related to the above 
d(x) and has a non-common inside root (i.e. 0.00499978 instead of approximate 
value of 1000). To detcct the correct. common outside root (~ 1000), we have to 
transform t he outside roots into inside. This is a reason that we have to compute 
with reversal polY llomials. In the rest of this paper, these nOli-common inside 
roots detected instead of the common outside roots are called "fake common 
iw;ide roots" . 

We note that the QRCCO algorithm also works for this example since there 
is only one fake common root. However, for polynomials having more than one 
fake common roots, QRGCO may lIot detect the expected degree of GCO si nce 
QRCCD computes from the normal and reversal sides only once. For example, 
suppose that the row vectors of R consist of roots in this order from bottom 
to top: common, fake, common, fake , common roots. In this case, we need to 
compute from t he normal , reversa.l and normal sides (the last normal side is no t. 
done by QR.GCD) . This fact leads us the improved QRGCD algorithm ill the 
next sect ion. 

3 Improved QRGCD A lgorithm 

We propose the following algorithm based on the discussions, which is unfortu
nately not faster than the original but more accurate and the resulting pertur
bation is able to satisfy the given tolerance. \Ve will explain the Higorithm in 
subsections 3.1- 3.5. 



Algorithm 2 (Exte nded QRGCD). 
Input : f(x} ,g(x) E IR[x] and tolerance c E lR~o. 

Output, I, (x),g,(x),d(x) E fil lx] s.t. 
Ilf(x) - d(x)[,(x )II ,< " Ilg(x) - d(x)g,(x)I),< , . 

I. Detennine the first side (normal or reversal Sides), put i := I , fl (x) := /(x) 
and gl(x) := g(x) (or rcv(j) and rev(.q), respectively, if the first side is 
reversal), 

2 Compute the QR decomposition of Syl(fh9d : Syl(h ,9d = QR. 
3. Suppose tlm~ R(k-) is the bottom-righ~mos~ (k + I) x (k + t) submatrix of R 

and 'I~ is the top row vector of n (k ) . 

Case I: IIR(O)II F> Evm + 'It (Approx . Coprime) 
(a) di(x) ,~ I. 
Case 2: II R {O) II r :::; cvm. + n (Trial Divisions) 
(a) for aliI.: :?: ] s.t. IlnUI-I)1I F' S: cvm + n, com pu te e-r k :~ I R(k- I)IIF' / Ili:'k I1 2' 

and sort e1'k in ascending order S.t. €'I'k, S: eTkl S: e 'rk3 S: . 
(b) fol' k = k l , k,}; , k3 (Le. up to the 3-1'£1 smallest erk at most), do 

(i) di(x) ,~,·.(x) mu[ if 3J" g" II f(x ) - <I(x) [,( x)II ,<, and 11 9(x) 
d(X)91(X)1I2< E for d(x) := n d,(x), then goto step 4. 

(i f no factor fou nd in the recursive call by step (e) below, then put 
d;(x) := 1 and goto step 4.) 

(c) find the last two rows of R whose norm is not less than 1.0 and let Pl(X) 
and P2(x) be t heir polynomial representations s .t. dcg(l)t} > deg(1),};) . 

(d) find tbe ins ide-root factors of 1)1 (x), lJ:?(X) by the algorithm "Split" and 
let them be PI ,,,(X) ,1>2,.,(X) . 

(e) apply steps 2 and 3 to P1i ,,(x) and P2;,,(x) and form t he divisor d;(x) . 
4. i := i + I , change the side (nQrmal +-+ reversal) and apply the above steps 

2 and 3 to (if in the reversal side, reversal polynomials of) cofactors fl(X) 
and gl(X) of f(x} and g(x) w.r. t. d(x) := IT d; (x), to obtain d;+I(x) until 
d;(x) = di+I(x) = I for some i . 

5. Output fl (x), gl(X) and d(x) . <J 

3.1 The m atrix norm used 

In the algorithm, we uSC the Frobenius norm instead of the 2-l1onn since it is 
easy to compute. It should be the 2-nonn if we call compute it fastly (but usually 
not fast). 

3.2 Approximate coprime condition 

T he QRGCD and Qur algorithms a rc based on the QR decomposition of Syl(J, g) 
bence t hey cannot detect d(x) directly but may be able to detect rex) close 
to d(x) as the result of the QR factoring, Therefore1 any (approximately) co
prime detection ml1S~ not be against the expected d(x) but be agains~ T(X) with 
coefficients 1-:' which is the last (k + i)-th row of R. From this point of view , 
II R(k)IIF represents a sufficient "tlllsLructtil'cd" magniLude to make Syl(J,g) to 



be rank defieient and / (x) and g(x) may have ',-(x) as an approximate GCO. Note 
that "unstructured" perturbat ion does not preserve a Toeplitz-block structure 
of Sylvester matrix Syl(J , g). Let J(x) + J'f and g(x) +J'y be polynomials whose 
(exact) GCO is rex) . In general , Syl(J'f,J'g) which makes 5111(1 + J'f,9 + 8g ) to 
be rank deficient is the "sLruct.ured" perLurbation hence its norm is larger than 
II R(k1Il F of Il llllstructllrcd" perturbation in most cases . This means t hat 1'(X) is 
not any approximate GCO if we have II R.(I;)IIF> c ..,lm + n hellce 11 5yl(8f , 8g )1I F> 
c ..,lm+n. 

3.3 Trial div isions 

By the same reason of the above subsection and Theorem I , the QR decom
position might not. detect all the inside common roots but detect some 7'(X) 
close to an apPt'Oximate factor of d(x) and its closeness ca n be estimated by 
el'k := IIR (k- !)IIF/ ll iiI 12 though t.his is depending 011 t he condition !lumber il.(dr ) 

and is not the sufficient condition. If we take .,.(x) of the maximal degree, 'I'(x) 
may have some fake inside rOOlS and it becomes difficult. to dctect t.he common 
outside roots from the revCl'Sals of cofactors. Therefore, we try to find 1'(x) for 
which e7'k is as small as possible (since we cannot. estimate the condi t ion num
ber il. (d r )). According to our experiments, the smallest e'l'k gives enough close 
factors ill most ca$CS but to make sure we try to do trial divi::; ious lip to the 3-rd 
smallest e7'k at most. 

3.4 The poly no mials to b e applied to "Split" 

Let Pi(X) and PHI (x) be successive two elements of PRS of 1(x) and g(x), mId 
rex) be an approximate CCO of l ex) and g(x). We have 

f(x) +/1(x) ~ I< (x)r(x), g(x) +8,(x) ~ g,(x)r(x) , 
u,(x)f(x) + V,(X)9(X) ~p,(x), u ,., (x)/(x) + v,., (X)9(X) ~p,., (x) 

where t he coefficients of U.i (x), Vi (x ), 1li+ I (x), 'Vi+ I (x) are sollle column vectors of 
the ort}lOg;onal matrix Q of the QR. decomposi t. ion of SJJl(J •. q) hence they have 
the uni t 2-norm by the orthogonality of Q. Then rex) is an approximate CCO 
of Pi(X) and 1',+1 (x) of tolerance (118fllz + 11<>lI l1z)/ mi n{ 111'i lb, IITJi+dI2 } since we 
have 

p, (x Hu, (x)1< (x )-h>, (x )9 ' (x ))"(x )-(u, (x)8 1 (x }+;r,(x )',(x )), 
PH I (X)=(UHI (X) /I (X)+V;+I (X)91 {x))r(X)-(lt i+1 (x)8f(X}+vHl (x)Ci.g{x)). 

Therefore, we should split pj(x) and PH I (x) whose norms are not small (e.g. 
lI 1'dl 2' 1I1';+ 1 112~ 1.0) since there is a chance that lJ ;(X) and 1'1+ 1(X) have (ap
proximately) oommon roots other than that of lex) and g(x) if their norms are 
small (i.e. tolCratlCe for Pi(X) and ]Ji+I (X) becomes large). 



3.5 The Fail-Sa fe R etry Loop 

13y the same reason of t he section 3.3, we should try to detect. a piece of approxi
mate factors which is enough close to the ideal fac tors. Therefore, our algorithm 
seeks s lich a factor by computing from the normal and reveThal sides several 
times. At the worst case, this makes the com putational coot I.: (the degree of 
approximate CeO) times larger than that of the origina l, hence our algorithm 
unfortunately is not faster than the original. However, this is an inevitable cost 
proven by Theorem 2 and ExQRGCD becomes more stable than the original as 
in the following examples. Note that in our implementation , the first side of this 
retry loop is the normal side if min{ lf", l, Ig,,1} ;::: mill{ lfo l, Igol}. 

4 Numerical Experiments 

AI! the computations in this section are done by I\llaple lu with Oigits:= 16 on 
Linux (Intel Core i7 3.30G Hz and u'IGB memory) . 

4.1 Against SNAP and QRGC D 

At first , we compare ExQRGCD with QRGCD: our algorithm (Algorithm 2) and 
the SNAP implementation of QRGCD (Algorithm 1) , respectively. The vert.ical 
axes of Figure I and 2 denote the sum of detected degrees of approximate CCO 
(larger is better) and the magnitude of required perturbation in the common 
logarithmic scale (smaller is better) , respectively. We note that the oHicial SNAP 
implementation increases the precision ill ease of the difficult. case. However ill 
our experiments we omit this functionalit.y6 to make the cond ition equal. 

Example 2 (Random Polynomials). 
Por i = I, ... , 10, we have generated 100 pairs of (I, g) such that 

f(x) ~ /. (x)<I(x), g(x) ~ g, (x)<I(x), <i(x) ~ L:~" <ljxj, 
h (x) = L;J~ohjxj, 91(X) = LJ~o gl ,jXj 

where fl.i , g1.i> dj E [-99 ,991 c 7Z is randomly chosen , J(x) ,g(x) are normal
ized (1If(x)1I2 = llg(x) 1I 2= 1) and l'Ounded with Digits := 10. We computed with 
tolerance 10- 5 . 

Pigme 1 shows the result that ExQ RCCD and QRCCD are not so different. 
However, we note that QRCCD outputs "failll1'e" or C CDs that cia not satisfy 
the given tolerance as in Table 1 (ExQRGCD does not have t.his problem and 
always can work well). As for cumputillg time, ExQRCCO i~ 1.59 times slower 
than QRCCD. The average of resulting perturbations of QRGCD is better than 
ExQRGCD except failure cases. 4 

() With this functionality, the QIlGCD and ExQRGCD algorithms become to be much 
better since the QR decomposition becomes to be more stable. 
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Fig. 1. Sum of Detected Degrees (failure is COUll ted as 0) 

Example :; (Random Poly. wilh Pel·tm·bations). 
For i = J , ... , 10, we have generated 100 pairs of (J,9) such that 

/(x) ~ f, (x)d(x )/ llf,dlb + 10- 'al(x)/ llal l12. 
9(X ) ~ 9,(x)d(x)/ 1I9,dll , +10-'a,(x)/ lIa,l12. 
A () ",lOi A. • A. () ,",10; A. • 

4-11 x = L...j= oJ..J.ljx' , '-loy x = L...j = ol.J.yjX-' 

where Ll fj , ag . E [-99, 99] C ZZ is randomly chosen, !J(x) , 91 (X), d(x) are the 
polynomials of 'Example 2 and rounded with Digits := 10. 'vVe computed with 
tolerance to- 5 . 

Figure I and Table I show the resul t that ExQRCCD is explicitly better than 
QRGCD. As for computing timc, ExQRGCD is 1.99 times slowcr than QIl.GCD. 
The average of result.ing perturbations of QRGCO is better t.han ExQ RGCO 
except failure cases. 

Exam1)ie 4 ( Fake Common Roots) . 
For 'i = I, ... , 10, we have generated 100 pairs of (J,9) such that 

/ (x) ~ d(x) n;~ , (x - wI,)) nJ~ , (x - Cod, 
g(x) = d(x) nj=l (x - wg,j) rI j= l (x - Wg. j .1, 
d(x) = n~~ l (x - Wd ,j) n~~1 (x - Wd.j) 

where w .. j = O(I0- 2),w .. j = 0(102) is randomly chosen, J(x), g(x) are normal
ized (i.e. II J(x) 1I 2= lI g(x)112= 1) and rounded wit.h Digits:= 10. We com puted 
with tolerance 10- ". We note that the degree of approximate CCO should be 
larger than or equal to 6i. 

Figure 1 and Table 1 show thc resul t that ExQR.CCD is explicitly better than 
QRCCD. As for computing time, ExQRCCD is 39.8 timcs slower than QRC CD 
(note that QRCCD outputs failure for 62% 1l.;1.irs SO computing time is very f<.'lst 
for the rest easy ca&''S) . T he average of resulting perturbations of ExQRCCD is 
better than QRGC D. <;) 

Other than the above, we have tC!;ted with several examples of polynomials of 
higher degree (u p to 1020) which Hre not listed here due to the page restriction. 
Our algorithm also \vorks for such polYllomials. For some of examples we have 
tested by the native version (C with ATLAS , LA PACK and LAPACKE) !;ince 
it is abouL 100 l.imes faster or morc. 
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(The numbers by ExQRG CD are 0) 

4 .2 A gains t Fast gcd a nd U V GCD 
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In this subsection, we compare ExQIlGCD witll Fastgcd and UVGCD by ex
amples given by Bini and Boito[6 , 3]. We note that the results of Fas tgcd and 
UVGCD arc quoted fl·om there hence the following comparisons are just sub
sidiary data since the conditions may not be C<lual. 

Example 5 (Mignotte-like polynomials) . 
Let the input polynomials bc f(x ) = x 100 + (x - 1/ 2)17 and g(x) = f' (x) . We 
compute with tolerance c = 10- 1, • .. , 10- 12 . Table 2 shows the detccted degrees. 
ExQRCCD is almost better than others. We note that this is Example 8.2.2 [3] 
and ExQIlGCD is not better than Fastgcd for the polynomials in Example 8 .2.1 
[3] but same as UVCCD. <l 

Example 6 (A ft ill-conditioned case). 
Let n be an even positive integer and k = n/2; define f (::t) ft (x)d(x) and 

, ExQR.GCD , Fastgcd , UVCCD 
10 99 10 99 10 .. . 10 - 99 
10- 2 25 10- 2 , •. IO-~ 17 10- 3 • . , IO-~ 17 
IO- J 23 10- 6 ... 10- 7 6 10- 6 ... 10- 11 16 
10- 4 20 10-8 ... 10-9 4 10- 12 0 

10- 5 ••• 10- 10 16 10- 10 3 
10- 11 0 10- 11 0 

T a b le 2 . Detected degl ee5 ( r.hgnotte-hke polys .) 



n ExQRGC D Pastgcd UVGCD 
122.86 x 10 1.65 x 10 9.99 x 10 " 
142.67 x 10- 11 4.81 X 10- 14 3.£6 X 10- 1.] 

IG 9.3\ X 10- 10 2.27 X 10- 13 1.54 X 10- 13 

18 4.38 x 10- 0 1.08 X 10- 12 5.21 X 10- 13 

2D 1.22 X 10-7 (detected degree fails) 1.59 x 10- 12 

, -Ta b le 3. Rcsul~mg I ertul batlons ( Ill COnchtlOllcd case) 

9(.7:) = 91 (x)d{x) where 

d(x) = n~=l «x - T10'j)2 + Tr f3;) , T] = 0.5 , '/'2 = 1.5, 

11(x) = n~=l«x - TZO'j)2 + 1'~ f3J), OJ = cos(j1l/n), 
91(X) = Il~'=k+l «x - T10'jf? + 1'rf3J), (3j = sin(j1T/n ). 

Table 3 shows the resulting perturbations in the 2-norlll (i.e. JII Llfll~ + II Ll911~). 
ExQRCCD is not good though it detected the correct degree of approximate 
CCO. <l 

Other than the above, we have tested several examples in Boito(3]. Al
though ExQRGCD is more competitive than t.he original QRGCD algorithm, 
it is not better than Fastgcd and UVGCD for most of those examples. More
over, ExQRGCD requires higher precision (e.g. Digits := 24 or 32) to make it 
competitive against them for those examples. 8xQRGCD and QRGCD do 1I0t; 

refine the resulting factor hence the resulting: perturbation may become largcr 
than those algorithms with refincment stcps. 

5 Concluding R emarks 

In this paper, we improved the QRGCD algorithm from the different approach 
and OUl' algorithm works as same as the original for polynomials without pertur
bations and milch better than the original for polynomials with pcnurbations or 
having fake common roots. We agaill note that ExQRGCD docs not refine the 
output. hence it is notable t.hat. ExQRGCD is almost better than Faslgcd and 
IJVGcn fOl' Mignoup.-likf! polynomilils in EXlilll p lf! 5. 

\ \Fe note that our preliminary implementations on IIdaple lind written in C, 
and generated polynomial data are available at our website: 

http : //wwwmain .h .kobe-u . ac.jp/-nagasaka/r esearch/snap/ exqrgcd/ 

though some l'Qutines derived from the SNAP package are not included . 
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