
ar
X

iv
:1

30
4.

34
83

v2
 [

cs
.S

C
]

 2
2

Ja
n

20
14

Faster sparse interpolation of straight-line

programs∗

Andrew Arnold1, Mark Giesbrecht1, and Daniel S. Roche†2

1Cheriton School of Computer Science, University of Waterloo
2Computer Science Department, United States Naval Academy

June 29, 2018

Abstract

We give a new probabilistic algorithm for interpolating a “sparse”
polynomial f given by a straight-line program. Our algorithm constructs
an approximation f∗ of f , such that f − f∗ probably has at most half the
number of terms of f , then recurses on the difference f−f∗. Our approach
builds on previous work by Garg and Schost (2009), and Giesbrecht and Roche
(2011), and is asymptotically more efficient in terms of the total cost of
the probes required than previous methods, in many cases.

1 Introduction

We consider the problem of interpolating a sparse, univariate polynomial

f = c1z
e1 + c2z

e2 + · · ·+ ctz
et ∈ R[z]

of degree d with t non-zero coefficients c1, . . . , ct (where t is called the sparsity
of f) over a ring R. More formally, we are given a straight-line program that
evaluates f at any point, as well as bounds D ≥ d and T ≥ t. The straight-
line program is a simple but useful abstraction of a computer program without
branches, but our interpolation algorithm will work in more common settings
of “black box” sampling of f .

We summarize our final result as follows.

Theorem 1. Let f ∈ R[z], where R is any ring. Given any straight-line pro-
gram of length L that computes f , and bounds T and D for the sparsity and
degree of f , one can find all coefficients and exponents of f using O (̃LT log3 D+
LT logD log(1/µ))§ ring operations in R, plus a similar number of bit opera-
tions. The algorithm is probabilistic of the Monte Carlo type: it can generate

∗A version of this paper appeared at CASC 2013, doi:10.1007/978-3-319-02297-0 5
†Supported by NSF Award #1319994

1

http://arxiv.org/abs/1304.3483v2
http://dx.doi.org/10.1007/978-3-319-02297-0_5

random bits at unit cost and on any invocation returns the correct answer with
probability greater than 1− µ, for a user-supplied tolerance µ > 0.

1.1 The straight-line program model and interpolation

Straight-line programs are a useful model of computation, both as a theoretical
construct and from a more practical point of view; see, e.g., (Bürgisser et al.,
1997, Chapter 4). Our interpolation algorithms work more generally for N -
variate sparse polynomials f ∈ R[z1, . . . , zN] given by a straight-line program
Sf defined as follows. Sf takes an input (a1, . . . , aN) ∈ RN of length N , and
produces a vector b ∈ RL via a series of L instructions Γi : 1 ≤ i ≤ L of the
form

Γi =

{

γi ←− α1 ⋆ α2, or

γi ←− δ ∈ R (i.e., a constant from R),

where ⋆ is a ring operation ‘+’, ‘−’, or ‘×’, and either αℓ ∈ {aj}1≤j≤n or
αℓ ∈ {γk}1≤k<i for ℓ = 1, 2. When we say Sf computes f , we mean Sf sets γL
to f(a1, . . . , aN) ∈ R.

To interpolate an N -variate polynomial f ∈ R[z1, . . . , zN], we apply a Kro-
necker substitution, and interpolate

f̂(z) = f
(

z, z(D+1), z(D+1)2, . . . , z(D+1)N−1
)

∈ R[z].

While this certainly increases the degree, f and f̂ have the same number of non-
zero terms, and f can be easily recovered from f̂ . This reduces the problem
of interpolating the N -variate polynomial f of partial degree at most D to
interpolating a univariate polynomial f̂ of degree at most (D + 1)N . For the
remainder of this paper we thus assume f is univariate.

It will also be necessary to evaluate our polynomial f ∈ R[z], or rather our
straight-line program Sf for f , in an extension ring of R. Precisely, we want to
evaluate f at symbolic ℓth roots of unity for various choices of ℓ, or algebraically,
inR[z]/(zℓ−1). This may be regarded as transforming our straight-line program
by substituting operations in R with operations in R[z]/(zℓ − 1), where each
element is represented by a polynomial in R[z] of degree less than ℓ. Each
instruction Υi in the transformed branching program now potentially requires
M(ℓ) operations in R, where M(ℓ) is the number of operations in R and bit
operations needed to multiply two degree-ℓ polynomials over the base ring R.
By Cantor and Kaltofen (1991), we may assume M(ℓ) = O(ℓ log ℓ log log ℓ).

Each evaluation of our straight-line program for f in R[z]/(zℓ−1) is called a
probe of degree ℓ. Thus, the cost of a degree-ℓ probe to Sf is O (̃Lℓ) operations
in R, and similarly many bit operations.

This is easily connected to the more “classical” view of sparse interpolation,
in which probes are simply evaluations of a “black-box” polynomial at a single

§For summary convenience we use soft-Oh notation: for functions φ,ψ ∈ R>0 → R>0 we
say φ ∈ O (̃ψ) if and only if φ ∈ O(ψ(logψ)c) for some constant c ≥ 0.

2

point (and we do not have any representation for how f is calculated). Each
probe in the straight-line program model can be thought of as evaluating f at
all ℓth roots of unity in the classical model. Since we charge M(ℓ) = O (̃ℓ)
operations in R for a degree ℓ probe in the straight-line program model, i.e.,
about ℓ times as much as a single black-box probe, this is consistent with the
costs in a classical model. We note that algorithms for sparse interpolation
presented below could be stated in this classical model, though we find the
straight-line program model convenient and will continue with it throughout
this paper.

1.2 Previous work

Straight-line programs, or equivalently algebraic circuits, are important both
as a computational model and as a data structure for polynomial computation.
Their rich history includes both algorithmic advances and practical implemen-
tations (Kaltofen, 1989; Sturtivant and Zhang, 1990; Bruno et al., 2002).

One can naively interpolate a polynomial f ∈ R[z] given by a straight-line
program using a dense method, with D probes of degree 1. Prony’s (1795)
interpolation algorithm — see (Ben-Or and Tiwari, 1988; Kaltofen et al., 1990;
Giesbrecht et al., 2009) — is a sparse interpolation method that uses evaluations
at only 2T powers of a root of unity whose order is greater than D. However, in
the straight-line program model for a general ring, this would require evaluating
at a symbolic Dth root of unity, which would use at least Ω(D) ring operations
and defeat the benefit of sparsity. Problems with Prony’s algorithm are also
seen in the classical model in that the underlying base ring R must also support
an efficient discrete logarithm algorithm on entries of high multiplicative order
(which, for example, is not feasible over large finite fields).

We mention two algorithms specifically intended for straight-line programs.

1.2.1 The Garg-Schost deterministic algorithm.

Garg and Schost (2009) describe a novel deterministic algorithm for interpo-
lating a multivariate polynomial f given by a straight-line program. Their
algorithm entails constructing an integer symmetric polynomial with roots at
the exponents of f :

χ =
t
∏

i=1

(y − ei) ∈ Z[y],

which is then factored to obtain the exponents ei.
Their algorithm first finds a good prime: a prime p for which the terms

of f remain distinct when reduced modulo zp − 1. We call such an image
f mod (zp − 1) a good image. Such an image gives us the values ei mod p and
hence χ(y) mod p.

Example 2. For f = z33 + z3, 5 is not a good prime because f mod (z5− 1) =
2z3. We say z33 and z3 collide modulo z5 − 1. 7 is a good prime, as the image
f(z) mod (z7 − 1) = z5 + z3 has as many terms as f(z) does.

3

In order to guarantee that we have a good prime, the algorithm requires
that we construct the images f mod (zp − 1) for the first N primes, where N
is roughly O (̃T 2 logD). A good prime will be a prime p for which the image
f mod (zp − 1) has maximally many terms, which will be exactly t. Once we
know we have a good image we can discard the images f mod (zq − 1) for bad
primes q, i.e. images with fewer than t terms. We use the remaining images to
construct χ(y) =

∏t
i=1(y − ei) ∈ Z[y] by way of Chinese remaindering on the

images χ(y) mod p.
We factor χ(y) to obtain the exponents ei, after which we directly obtain

the corresponding coefficients ci directly from a good image.
The algorithm of Garg and Schost (2009) can be made faster, albeit Monte

Carlo, using the following number-theoretic fact.

Fact 3 (Giesbrecht and Roche, 2011). Let f ∈ R[z] be a polynomial with at
most T terms and degree at most D. Let λ = max(21, ⌈ 53T (T − 1) logD⌉). A
prime p chosen at random in the range [λ, 2λ] is a good prime for f(z) with
probability at least 1

2 .

Thus, in order to find a good image with probability at least 1 − ε, we
can inspect images f mod (zp − 1) for ⌈log 1/ε⌉ primes p chosen at random in
[λ, 2λ]. As the height of χ(y) can be roughly as large as DT , we still require
some O∼(T logD) probes to construct χ(y).

1.2.2 The “diversified” interpolation algorithm.

Giesbrecht and Roche (2011) obtain better performance by way of diversifica-
tion. A polynomial f is said to be diverse if its coefficients ci are pairwise
distinct. The authors show that, for f over a finite field or C and for appro-
priate random choices of α, f(αz) is diverse with probability at least 1

2 . They
then try to interpolate the diversified polynomial f(αz).

Once we have t with high probability, we look at images f(αz) mod (zp− 1)
for primes p in [λ, 2λ], discarding bad images. As f(αz) is diverse, we can
recognize which terms in different good images are images of the same term.
Thus, as all the ei are at most D, we can get all the exponents ei by looking at
some O (̃logD) good images of f .

1.3 Deterministic zero testing

Both the Monte Carlo algorithms of Garg and Schost (2009) and Giesbrecht and Roche
(2011) can be made Las Vegas (i.e., no possibility of erroneous output, but un-
bounded worst-case running time) by way of deterministic zero-testing. Given
a polynomial f represented by a straight-line program, each of these algorithms
produces a polynomial f∗ that is probably f .

Fact 4 (Bläser et al. (2009); Lemma 13). Let R be an integral domain, and
suppose f = f∗ mod (zp − 1) for T logD primes. Then f = f∗.

4

Table 1: A “soft-Oh” comparison of interpolation algorithms for straight-line
programs

Probes Probe degree Cost of probes Type
Dense D 1 LD deterministic

Garg & Schost T 2 logD T 2 logD LT 3 log2 D deterministic

*Las Vegas G & S T logD T 2 logD LT 3 log2 D Las Vegas

*Diversified logD T 2 logD LT 2 log2 D Las Vegas

†Recursive logT logD T log2 D LT log3 D Monte Carlo

*Average # of probes given; † for a fixed probability of failure µ

Thus, testing the correctness of the output of a Monte Carlo algorithm re-
quires some O (̃T logD) probes of degree at most O (̃T logD). This cost does
not dominate the cost of either Monte Carlo algorithm. We note that this deter-
ministic zero test can dominate the cost of the interpolation algorithm presented
in this paper if T is asymptotically dominated by logD.

1.4 Summary of results

We state as a theorem the number and degree of probes required by our new
algorithm presented in this paper.

Theorem 5. Let f ∈ R[z], where R is a ring. Given a straight-line program
for f , one can find all coefficients and exponents of f with probability at least

1− µ using O˜
(

log T (logD + log 1
µ)
)

probes of degree at most O(T log2 D).

Table 1 gives a rough comparison of known algorithms. Our recursive algo-
rithm improves by a factor of T/ logD over the Giesbrecht-Roche diversification
algorithm — ignoring “soft” multiplicative factors of (log(T/ logD))O(1) — and
as such is better suited for moderate values of T . Our algorithm recursively
interpolates a series of polynomials of decreasing sparsity. An advantage of this
method is that, when we cross a threshold where logD begins to dominate T ,
we can merely call the Monte Carlo diversification algorithm instead.

2 A recursive algorithm for interpolating f

Entering each recursive step in our algorithm we have our polynomial f rep-
resented by a straight-line program, and an explicit sparse polynomial f∗ “ap-
proximating” f , that is, whose terms mostly appear in the sparse representation
of f . At each recursive step we try to interpolate the difference g = f − f∗. To
begin with, f∗ is initialized to zero.

We first find an “ok” prime p which separates most of the terms of g. We
then use that prime p to build a approximation f∗∗, containing most of the
terms of g, plus possibly some additional “deceptive” terms. The polynomial

5

f∗∗ is constructed such that g = f − f∗ has, with high probability, at most T/2
terms. We then recursively interpolate the difference g − f∗∗.

Producing images f∗ mod (zℓ − 1) is straightforward, we merely reduce the
exponents of terms of f∗ modulo ℓ. We assume g has a sparsity bound Tg ≤ T .

2.1 A weaker notion of “good” primes

To interpolate a polynomial g, the sparse interpolation algorithm described by
Giesbrecht and Roche (2011) requires a good prime p which keeps the exponents
of g distinct modulo p. That is, g mod (zp − 1) has the same number of terms
as g. We define a weaker notion of a good prime, an ok prime, which separates
most of the terms of g. To that end we measure, for fixed g and prime p, how
well p separates the terms of g.

Definition 6. Fix a polynomial g =
∑t

i=1 ciz
ei ∈ R[z] with non-zero c1, . . . , ct ∈

R, where ei < ej for i < j, we say ciz
ei and cjz

ej , i 6= j, collide modulo zp − 1
if ei ≡ ej mod p. We call any term ciz

ei of f which collides with any other
term of f a colliding term of f modulo zp − 1. We let Cg(p) ∈ [0, t] denote the
number of colliding terms of g modulo zp − 1.

Example 7. For the polynomial g = 1+z5+z7+z10, Cg(2) = 4, since 1 collides
with z10 and z5 collides with z7 modulo z2 − 1. Similarly, Cg(5) = 2, since z5

collides with z10 modulo z5 − 1.

We say ciz
ei and cjz

ej collide modulo zp − 1 because both terms have the
same exponent once reduced modulo zp − 1. All other terms of g we will call
non-colliding terms modulo zp − 1.

In the sparse interpolation algorithm of Giesbrecht and Roche (2011), one
chooses a λ ∈ Z>0 such that the probability of a prime p ∈ [λ, 2λ], chosen at
random and having Cg(p) = 0, is at least 1

2 . However, in order to guarantee that
we find such a prime with high probability, we need to choose λ ∈ O(T 2 logD).

In this paper we will search over a range of smaller primes, while allowing
for a reasonable number of collisions. We try to pick λ such that

Pr (Cg(p) ≥ γ for a random prime p ∈ [λ, 2λ]) < 1/2,

for a parameter γ to be determined.

Lemma 8. Let g ∈ R[z] be a polynomial with t ≤ T terms and degree at most

d ≤ D. Suppose we are given T and D, and let λ = max
(

21,
⌈

10T (T−1) ln(D)
3γ

⌉)

.

Let p be a prime chosen at random in the range λ, . . . , 2λ. Then Cg(p) ≥ γ with
probability less than 1

2 .

Proof. The proof follows similarly to the proof of Lemma 2.1 in (Giesbrecht and Roche,
2011).

Let B be the set of unfavourable primes for which Cg(p) ≥ γ terms collide
modulo zp − 1, and denote the size of B by #B. As every colliding term

6

collides with at least one other term modulo zp − 1, we know pCg(p) divides
∏

1≤i6=j≤t(ei − ej). Thus, as Cg(p) ≥ γ for p ∈ B,

λ#Bγ ≤
∏

p∈B

pγ ≤
∏

1≤i6=j<t

(ei − ej) ≤ dt(t−1) ≤ DT (T−1).

Solving the inequality for #B gives us

#B ≤ T (T − 1) ln(D)

ln(λ)γ
.

The total number of primes in [λ, 2λ] is greater than 3λ/(5 ln(λ)) for λ ≥ 21 by
Corollary 3 to Theorem 2 of (Rosser and Schoenfeld, 1962). From our definition
of λ we have

3λ

5 ln(λ)
>

2T (T − 1) ln(D)

ln(λ)γ
≥ 2#B,

completing the proof.

2.1.1 Relating the sparsity of g mod (zp − 1) with Cg(p)

Suppose we choose λ according to Lemma 8, and make k probes to compute
g mod (zp1 − 1), . . . , g mod (zpk − 1). One of the primes pi will yield an image
with fewer than γ colliding terms (i.e. Cg(pi) < γ) with probability at least
1 − 2−k. Unfortunately, we do not know which prime p maximizes Cg(p). A
good heuristic might be to select the prime p for which g mod (zp − 1) has
maximally many terms. However, this does not necessarily minimize Cg(p).
Consider the following example.

Example 9. Let
g = 1 + z + z4 − 2z13.

We have
g mod (z2 − 1) = 2− z, and g mod (z3 − 1) = 1.

While g mod (z2−1) has more terms than g mod (z3−1), we see that Cg(2) = 4
is larger than Cg(3) = 3.

While we cannot determine the prime p for which g mod (zp − 1) has max-
imally many non-colliding terms, we show that choosing the prime p which
maximizes the number of terms in g mod (zp− 1) is, in fact, a reasonable strat-
egy.

We would like to find a precise relationship between Cg(p), the number of
terms of g that collide in the image g mod (zp− 1), and the sparsity s of g mod
(zp − 1).

Lemma 10. Suppose that g has t terms, and g mod (zp − 1) has s ≤ t terms.
Then t− s ≤ Cg(p) ≤ 2(t− s).

7

Proof. To prove the lower bound, note that t−Cg(p) terms of g will not collide
modulo zp − 1, and so g mod (zp − 1) has sparsity s at least t− Cg(p).

We now prove the upper bound. Towards a contradiction, suppose that
Cg(p) > 2(t − s). There are Cg(p) terms of g that collide modulo zp − 1. Let
h be the Cg(p)-sparse polynomial comprised of those terms of g. As each term
of h collides with at least one other term of h, h mod (zp − 1) has sparsity
at most Cg(p)/2. Since none of the terms of g − h collide modulo zp − 1,
(g−h) mod (zp−1) has sparsity exactly t−Cg(p). It follows that g mod (zp−1)
has sparsity at most t−Cg(p)+ Cg(p)/2 = t−Cg(p)/2. That is, s ≤ t−Cg(p)/2,
and so Cg(p) ≤ 2(t− s).

Corollary 11. Suppose g has sparsity t, g mod (zq − 1) has sparsity sq, and
g mod (zp − 1) has sparsity sp ≥ sq. Then Cg(p) ≤ 2Cg(q).

Proof.
Cg(p) ≤ 2(t− sp) by the second inequality of Lemma 10,

≤ 2(t− sq) since sp ≥ sq,
≤ 2Cg(q) by the first inequality of Lemma 10.

Suppose then that we have computed g mod (zp−1), for p belonging to some
set of primes S, and the minimum value of Cg(p), p ∈ S, is less than γ. Then
a prime p∗ ∈ S for which g mod (zp

∗ − 1) has maximally many terms satisfies
Cg(p∗) < 2γ. We will call such a prime p∗ an ok prime.

We then choose γ = wT for an appropriate proportion w ∈ (0, 1). We show
that setting w = 3/16 allows that each recursive call reduces the sparsity of
the subsequent polynomial by at least half. This would make λ = ⌈ 103w (T −
1) ln(D)⌉ = ⌈ 1609 (T − 1) ln(D)⌉. As per Lemma 8, in order to guarantee with
probability 1−ε that we have come across a prime p such that Cg(p) ≤ γ, we will
need to perform ⌈log 1/ε⌉ probes of degree O(T logD). Procedure FindOkPrime
summarizes how we find an ok prime.

A practical application would probably choose random primes by selecting
random integer values in [λ, 2λ] and then applying probabilistic primality test-
ing. In order to ensure deterministic worst-case run-time, we could pick random
primes in the range [λ, 2λ] by using a sieve method to pre-compute all the primes
up to 2λ.

2.2 Generating an approximation f ∗∗ of g

We suppose now that we have, with probability at least 1 − ε, an ok prime p;
i.e., a prime p such that Cg(p) ≤ 2wT for a suitable proportion w. We now use
this ok prime p to construct a polynomial f∗∗ containing most of the terms of
g = f − f∗.

For a set of coprime moduli Q = {q1, . . . , qk} satisfying
∏k

i=1 qi > D, we will
compute g mod (zpqi − 1) for 1 ≤ i ≤ k. Here we make no requirement that the
qi be prime. We merely require that the qi are pairwise co-prime.

8

Procedure FindOkPrime(Sf, f∗, Tg, D, ε)

Input:
• Sf , a straight-line program that computes a polynomial f
• f∗, a current approximation to f
• Tg and D, bounds on the sparsity and degree of g = f − f∗ respectively
• ε, a bound on the probability of failure

Output: With probability at least 1− ε, we return an “ok prime” for
g = f − f∗

λ←− max
(

21,
⌈

160
9 (Tg − 1) lnD

⌉)

(max sparsity, p)←− (0, 0)
for i←− 1 to ⌈log 1/ε⌉ do

p′ ←− a random prime in [λ, 2λ]
if # of terms of (f − f∗) mod (zp

′ − 1) ≥ max sparsity then

max sparsity←− # of terms of (f − f∗) mod (zp
′ − 1)

p←− p′

return p

We choose the qi as follows: denoting the ith prime by pi, we set qi =

p
⌊logpi

x⌋

i , for an appropriate choice of x. That is, we let qi be the greatest power
of the ith prime that is no more than x. For pi ≤ x, we have qi ≥ x/pi and
qi ≥ pi. Either x/pi or pi is at least

√
x, and so qi ≥

√
x as well.

By Corollary 1 of Theorem 2 in Rosser and Schoenfeld (1962), there are
more than x/ lnx primes less than or equal to x for x ≥ 17. Therefore

∏

pi≤x

qi ≥
(√

x
)x/ lnx

.

As we want this product to exceed D, it suffices that

lnD < ln
(

(√
x
)x/ ln x

)

= x/2.

Thus, if we choose x ≥ max(2 ln(D), 17) and k = ⌈x/ lnx⌉, then
∏k

i=1 qi will
exceed D. This means qi ∈ O(logD) and pqi ∈ O(T log2 D). The number of
probes in this step is k ∈ O(log(D)/ log log(D)). Since we will use the same set
of moduli Q = {q1, . . . , qk} in every recursive call, we can pre-compute Q prior
to the first recursive call.

We now describe how to use the images g mod (zpqi − 1) to construct a
polynomial f∗∗ such that g − f∗∗ is at most T/2-sparse.

If cze is a term of g that does not collide with any other terms modulo zp−1,
then it certainly will not collide with other terms modulo zpq−1 for any natural
number q. Similarly, if c∗ze

∗ mod p appears in g mod (zp − 1) and there exists a
unique term c∗ze

∗ mod pqi appearing in g mod (zpqi − 1) for i = 1, 2, . . . , k, then
c∗ze

∗

is potentially a term of g. Note that c∗ze
∗

is not necessarily a term of g:
consider the following example.

9

Example 12. Let

g(z) = 1 + z + z2 + z3 + z11+4 − z14·11+4 − z15·11+4,

with hard sparsity bound Tg = 7 and degree bound D = 170 and let p = 11. We
have

g(z) mod (z11 − 1) = 1 + z + z2 + z3 − z4.

As deg(g) = 170 < 2 ·3 ·5 ·7 = 210, it suffices to make the probes g mod z11q−1
for q = 2, 3, 5, 7. Probing our remainder black-box polynomial, we have

g mod (z22 − 1) = 1 + z + z2 + z3 − z15,

g mod (z33 − 1) = 1 + z + z2 + z3 − z26,

g mod (z55 − 1) = 1 + z + z2 + z3 − z48,

g mod (z77 − 1) = 1 + z + z2 + z3 − z15.

In each of the images g mod zpq − 1, there is a unique term whose degree is
congruent to one of e = 0, 1, 2, 3, 4 modulo p. Four of these terms correspond
to the terms 1, z, z2, z3 appearing in g. Whereas the remaining term has degree
e satisfying e = 1 mod 2, e = 2 mod 3, e = 3 mod 5, and e = 1 mod 7. By
Chinese remaindering on the exponents, this gives a term −z113 not appearing
in g.

Definition 13. Let c∗ze
∗

, e∗ ≤ D be a monomial such that c∗ze
∗ mod p appears

in g mod zp − 1, and c∗ze
∗ mod pqi is the unique term of degree congruent to e∗

modulo p appearing in g mod (zpqi − 1) for each modulus qi. If c∗ze
∗

is not a
term of g we call it a deceptive term.

Fortunately, we can detect a collision comprised of only two terms. Namely,
if c1z

e1 + c2z
e2 collide, there will exist a qi such that qi ∤ (e1 − e2). That is,

g mod (zpqi − 1) will have two terms whose degree is congruent to e1 mod p.
Once we observe that, we know the term (c1 + c2)z

e1 mod p appearing in g mod
(zp−1) was not a distinct term, and we can ignore exponents of the congruence
class e1 mod p in subsequent images g mod (zpqj − 1).

Thus, supposing g mod (zp − 1) has at most 2γ colliding terms and at least
t−2γ non-colliding terms, f∗∗ will have the t−2γ non-colliding terms of g, plus
potentially an additional 2

3γ deceptive terms produced by the colliding terms of
g. In any case, g− f∗∗ has sparsity at most 8

3γ. Choosing γ = 3
16Tg guarantees

that g−f∗∗ has sparsity at most Tg/2. This would make λ = ⌈ 1609 (Tg−1) ln(D)⌉.
Procedure ConstructApproximation gives a pseudocode description of how

we construct f∗∗.
If we find a prospective term in our new approximation f∗∗ has degree greater

thanD, then we know that term must have been a deceptive term and discard it.
There are other obvious things we can do to recognize deceptive terms which we
exclude here. For instance, we should check that all terms from images modulo
zpq − 1 whose degrees agree modulo p share the same coefficient.

10

Procedure ConstructApproximation(Sf, f∗, D, p,Q)
Input:
• Sf , a straight-line program that computes a polynomial f
• f∗, a current approximation to f
• D a bound on the degree of g = f − f∗

• p, an ok prime for g (with high probability)
• Q, a set of co-prime moduli whose product exceeds D

Output: A polynomial f∗∗ such that, if p is an ok prime, g − f∗∗ has
sparsity at most ⌊Tg/2⌋, where g has at most Tg terms.

// Collect images of g
E ←− set of exponents of terms in (f − f∗) mod (zp − 1)
for q ∈ Q do

h←− (f − f∗) mod (zpq − 1)
for each term cze in h do

if E(e mod p),q is already initialized then E ←− E/{e mod p} else
E(e mod p),q ←− e mod q

// Construct terms of new approximation of g, f∗∗

f∗∗ ←− 0
for ep ∈ E do

e←− least nonnegative solution to {e = Eep,q mod q | q ∈ Q}
c←− coefficient of zep term in (f − f∗) mod (zp − 1)
if e ≤ D then f∗∗ ←− f∗∗ + cze

return f∗∗

Procedure Interpolate(Sf, T,D, µ)

Input:
• Sf , a straight-line program that computes a polynomial f
• T and D, bounds on the sparsity and degree of f , respectively
• µ, an upper bound on the probability of failure

Output: With probability at least 1− µ, we return f

x←− max(2 ln(D), 17)
Q ←− {p⌊logp x⌋ : p is prime, p ≤ x}
return InterpolateRecurse(Sf , 0, T,D,Q, µ/(logT + 1))

11

Procedure InterpolateRecurse(Sf, f∗, Tg, D,Q, ε)
Input:
• Sf , a straight-line program that computes a polynomial f
• f∗, a current approximation to f
• Tg and D, bounds on the sparsity and degree of g = f − f∗, respectively
• Q, a set of coprime moduli whose product is at least D
• ε, a bound on the probability of failure at one recursive step

Output: With probability at least 1− µ, the algorithm outputs f

if Tg = 0 then return f∗

p←− FindOkPrime(Sf , f∗, Tg, D, ε)
f∗∗ ←− ConstructApproximation(Sf , f∗, D, p,Q)
return InterpolateRecurse(Sf , f∗ + f∗∗, ⌊Tg/2⌋, D,Q, ε)

2.3 Recursively interpolating f − f ∗

Once we have constructed f∗∗, we refine our approximation f∗ by adding f∗∗

to it, giving us a new difference g = f − f∗ containing at most half the terms
of the previous polynomial g. We recursively interpolate our new polynomial
g. With an updated sparsity bound ⌊Tg/2⌋, we update the values of γ and λ
and perform the steps of Sections 2.1 and 2.2. We recurse in this fashion logT
times. Thus, the total number of probes becomes

O
(

logT (logD
log logD + log(1/ε))

)

,

of degree at most O(T log2 D).
Note now that in order for this method to work we need that, at every

recursive call, we in fact get a good prime, otherwise our sparsity bound on
the subsequent difference of polynomials could be incorrect. At every stage we
succeed with probability 1−ε, thus the probability of failure is 1− (1−ε)⌈log T⌉.
This is less than ⌈logT ⌉ε. If we want to succeed with probability µ, then we
can choose ε = µ

log T+1 ∈ O(
µ

log T).
Interpolate pre-computes our set of moduli Q, then makes the first recur-

sive call to InterpolateRecurse, which subsequently calls itself.

2.4 A cost analysis

We analyse the cost of our algorithm, thereby proving Theorems 1 and 5.

2.4.1 Pre-computation.

Using the wheel sieve (Pritchard, 1982), we can compute the set of primes up to
x ∈ O(logD) in O (̃logD) bit operations. From this set of primes we obtain Q
by computing p⌊logp x⌋ for p ≤ √x by way of squaring-and-multiplying. For each

12

such prime, this costs O (̃log x) bit operations, so the total cost of computing
Q is O (̃logD).

2.4.2 Finding ok primes.

In one recursive call, we will look at some log 1/ε = O(log 1/µ log logT) primes
in the range [λ, 2λ] in order to find an ok prime. Any practical implementation
would select such primes by using probabilistic primality testing on random
integer values in the range [λ, 2λ]; however, the probabilistic analysis of such
an approach, in the context of our interpolation algorithm, becomes somewhat
ungainly. We merely note here that we could instead pre-compute primes up to
our initial value of λ ∈ O(T logD) in O (̃T logD) bit operations by way of the
wheel sieve.

Each prime p is of order T logD, and so, per our discussion in Section 1, each
probe costs O (̃LT logD) ring operations and similarly many bit operations.
Considering the O(logT) recursive calls, this totals O (̃LT logD log 1/µ) ring
and bit operations.

2.4.3 Constructing the new approximation f∗∗.

Constructing f∗∗ requires O (̃logD) probes of degree O (̃T log2 D). This costs
O (̃LT log3 D) ring and bit operations. Performing these probes at eachO(log T)
recursive call introduces an additional factor of logT , which does not affect the
“soft-Oh” complexity. This step dominates the cost of the algorithm.

Building a term cze of f∗∗ amounts to solving a set of congruences. By
Theorem 5.8 of Gathen and Gerhard (2003), this requires some O(log2 D) word
operations. Thus the total cost of Chinese remaindering to construct f∗∗ be-
comes O(T log2 D). Again, the additional logT factor due to the recursive calls
does not affect the stated complexity.

3 Conclusions

We have presented a recursive algorithm for interpolating a polynomial f given
by a straight-line program, using probes of smaller degree than in previously
known methods. We achieve this by looking for “ok” primes which separate
most of the terms of f , as opposed to “good” primes which separate all of the
terms of f . As is seen in Table 1, our algorithm is an improvement over previous
algorithms for moderate values of T .

This work suggests a number of problems for future work. We believe our
algorithms have the potential for good numerical stability, and could improve on
Giesbrecht and Roche’s (2011) work on numerical interpolation of sparse com-
plex polynomials, hopefully capitalizing on the lower degree probes. Our Monte
Carlo algorithms are now more efficient than the best known algorithms for
polynomial identity testing, and hence these cannot be used to make them error
free. We would ideally like to expedite polynomial identity testing of straight-
line programs, the best known methods currently due to Bläser et al. (2009).

13

Finally, we believe there is still room for improvement in sparse interpolation
algorithms. The vector of exponents of f comprises some T logD bits. Assum-
ing no collisions, a degree-ℓ probe gives us some t log ℓ bits of information about
these exponents. One might hope, aside from some seemingly rare degenerate
cases, that logD probes of degree T logD should be sufficient to interpolate f .

4 Acknowledgements

We would like to thank Reinhold Burger and Colton Pauderis for their feedback
on a draft of this paper.

References

Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse mul-
tivariate polynomial interpolation. In Proceedings of the twentieth annual
ACM symposium on Theory of computing, pages 301–309. ACM, 1988.

Markus Bläser, Moritz Hardt, Richard J. Lipton, and Nisheeth K. Vishnoi.
Deterministically testing sparse polynomial identities of unbounded degree.
Information Processing Letters, 109(3):187–192, 2009.

Nicolas Bruno, Joos Heintz, Guillermo Matera, and Rosita Wachenchauzer.
Functional programming concepts and straight-line programs in computer
algebra. Mathematics and Computers in Simulation, 60(6):423–473, 2002.
doi: 10.1016/S0378-4754(02)00035-6.

Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi. Algebraic Complex-
ity Theory, volume 315 of Grundlehren der mathematischen Wissenschaften.
Springer-Verlag, 1997.

David G. Cantor and Erich Kaltofen. On fast multiplication of polynomials over
arbitrary algebras. Acta Informatica, 28:693–701, 1991.

R. de Prony. Essai expérimental et analytique sur les lois de la dilabilité et sur
celles de la force expansive de la vapeur de l’eau et de la vapeur de l’alkool,
à différentes températures. J. de l’École Polytechnique, 1:24–76, 1795.

Sanchit Garg and Éric Schost. Interpolation of polynomials given by
straight-line programs. Theor. Comput. Sci., 410(27-29):2659–2662,
June 2009. ISSN 0304-3975. doi: 10.1016/j.tcs.2009.03.030. URL
http://dx.doi.org/10.1016/j.tcs.2009.03.030.

Joachim von zur Gathen and Jurgen Gerhard. Modern Computer Algebra.
Cambridge University Press, New York, NY, USA, 2nd edition, 2003. ISBN
0521826462.

14

http://dx.doi.org/10.1016/j.tcs.2009.03.030

Mark Giesbrecht and Daniel S. Roche. Diversification improves interpola-
tion. ISSAC ’11, pages 123–130, 2011. doi: 10.1145/1993886.1993909. URL
http://doi.acm.org/10.1145/1993886.1993909.

Mark Giesbrecht, George Labahn, and Wen-shin Lee. Symbolic–numeric sparse
interpolation of multivariate polynomials. Journal of Symbolic Computation,
44(8):943–959, 2009.

Erich Kaltofen. Factorization of polynomials given by straight-line programs.
In Randomness and Computation, pages 375–412. JAI Press, 1989.

Erich Kaltofen, Y. N. Lakshman, and John-Michael Wiley. Modular rational
sparse multivariate polynomial interpolation. In Proceedings of the interna-
tional symposium on Symbolic and algebraic computation, ISSAC ’90, pages
135–139, New York, NY, USA, 1990. ACM. doi: 10.1145/96877.96912.

Paul Pritchard. Explaining the wheel sieve. Acta Informatica, 17(4):477–485,
1982.

J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some func-
tions of prime numbers. Illinois J. Math., 6:64–94, 1962. ISSN 0019-2082.

Carl Sturtivant and Zhi-Li Zhang. Efficiently inverting bijections given by
straight line programs. In Foundations of Computer Science, 1990. Pro-
ceedings., 31st Annual Symposium on, pages 327–334. IEEE, Oct 1990. doi:
10.1109/FSCS.1990.89551.

15

http://doi.acm.org/10.1145/1993886.1993909

	1 Introduction
	1.1 The straight-line program model and interpolation
	1.2 Previous work
	1.2.1 The Garg-Schost deterministic algorithm.
	1.2.2 The ``diversified'' interpolation algorithm.

	1.3 Deterministic zero testing
	1.4 Summary of results

	2 A recursive algorithm for interpolating f
	2.1 A weaker notion of ``good" primes
	2.1.1 Relating the sparsity of g -5mumod5mu-(zp-1) with Cg(p)

	2.2 Generating an approximation f** of g
	2.3 Recursively interpolating f-f*
	2.4 A cost analysis
	2.4.1 Pre-computation.
	2.4.2 Finding ok primes.
	2.4.3 Constructing the new approximation f**.

	3 Conclusions
	4 Acknowledgements

