
Compact Querieable Representations

of Raster Data⋆

Guillermo de Bernardo1, Sandra Álvarez-Garćıa1, Nieves R. Brisaboa1,
Gonzalo Navarro2, and Oscar Pedreira1

1 Databases Lab., University of A Coruña, Spain
2 Department of Computer Science, University of Chile, Chile

Abstract. In Geographic Information Systems (GIS) the attributes of
the space (altitude, temperature, etc.) are usually represented using a
raster model. There are no compact representations of raster data that
provide efficient query capabilities. In this paper we propose compact rep-
resentations to efficiently store and query raster datasets in main mem-
ory. We experimentally compare our proposals with traditional storage
mechanisms for raster data, showing that our structures obtain competi-
tive space performance while efficiently answering range queries involving
the values stored in the raster.

1 Introduction

The raster model is widely used to represent spatial attributes [14]. A raster is
essentially a matrix representing a region of the space, in which the space is split
into cells and a value of the spatial attribute is stored for each of these cells. An
uncompressed raster representation requires much space (e.g., a 50, 000×50, 000
grid of integers requires around 10 GB), so it is typically stored in secondary
memory. Compressed raster representations are mainly designed to reduce stor-
age, and are based on well-known compression techniques such as run-length
encoding or LZW [15]. In these representations the full file must be decom-
pressed even to display a small region of the space. Some representations split
the raster into fixed size tiles and compress each tile independently, providing
some level of direct access to regions and taking advantage of the locality of
values to enhance compression (for example, GeoTIFF 3 images can be used to
represent raster data and they support this partition into tiles with different
compression techniques including LZW).

Geographic Information Systems (GIS) [16, 14] routinely make use of raster
data to represent various kinds of information. They usually need not only direct
access to regions (e.g. to display a local map), but also need to find the cells whose
value is within some range. A classic example is the visualization of pressure or

⋆ GdB, NB, SAG and OP were funded by MICINN (PGE and FEDER) grants
TIN2009-14560-C03-02, TIN2010-21246-C02-01 and CDTI CEN-20091048, and by
Xunta de Galicia (co-funded with FEDER) ref. 2010/17. GN was founded by Mil-
lennium Nucleus Information and Coordination in Networks ICM/FIC P10-024F.

3 http://trac.osgeo.org/geotiff/



temperature bands, which require retrieving the coordinates that have values
within a given range. Another example is retrieving the regions of a raster with
an altitude above a given threshold to find zones with snow alert, or below a value
to find regions with risk of floods. However, usual raster representations lack
indexing capabilities on the values stored in the raster. These representations
need to traverse the complete raster in order to return the cells that contain a
given value, even when the results may be restricted to a small subregion of the
space.

One solution is to consider the raster as a 3-dimensional matrix and use
computational geometry solutions to answer all these queries as range reporting
queries [5]. However, these solutions require superlinear space and therefore they
are not suitable to the large datasets involved. Reading the raster row-wise and
storing the sequence of values we could use a compressed sequence representation
[10, 9, 1] to return the cells with a given value (or a range of values [10, 13])
efficiently, but further restricting the search to a spatial range is not efficiently
handled. Furthermore, these sequence representations achieve at best the zero-
order entropy space of the sequence, and this is not a significant space reduction
in many cases.

In this paper we present several proposals that aim at providing at the same
time a compact representation of raster data and efficient support of queries in-
volving spatial windows and intervals of values. We design our structures to solve
queries such as retrieving all the values of a given area, retrieving all the coordi-
nates with a given value, or retrieving all the entries of the raster within a spatial
window and with values in a given range. Our structures are enhancements of
an existing data structure called k2-tree [4], originally designed to represent
sparse binary matrices. Our first contribution is a variant of the k2-tree that can
compress not only large regions of zeros but also regions of ones. This enhance-
ment allows our structure to compress efficiently not only sparse matrices but
also binary images that contain large homogeneous regions. We experimentally
compare our structure with a Linear Quadtree [8] representation showing its su-
periority in space and even time. Our second contribution is a generalization of
the k2-tree to represent multi-dimensional data. We call this structure a kn-tree.
We use these new structures to provide different representations of raster data,
each with different strengths. We test our proposals experimentally to demon-
strate their low space requirements and their ability to efficiently solve queries.
Finally, we describe other application domains where our proposals could be of
interest.

2 Previous Work: The k2-tree

The k2-tree [4] is a data structure for the compact representation of sparse binary
matrices. In this paper we use its simplest variant, k=2, so the k2-tree is similar
to a compact Quadtree [7]. It corresponds to a recursive partition of the binary
matrix. At each partitioning step, the matrix is divided into k2 submatrices of
equal size. Each submatrix is represented using a single bit: 1 if the submatrix



contains at least one 1, or 0 otherwise. The method proceeds recursively for each
1-child until the current submatrix is full of 0s or we reach the cells of the original
matrix. This conceptual tree is traversed levelwise and stored in two bit arrays:
T stores all the levels except the last one, and L stores the last level. Figure 1
shows an example of k2-tree. In order to navigate the tree we need to build a
rank structure over T. This structure stores a set of counters that allow us to
compute the number of ones in the bitmap up to any position (rank1 operation)
in constant time using sublinear space [12]. Given a value 1 at position pos in
T , its k2 children will start at position pos′ = rank1(T, pos) × k2 of T : L.
This property provides simple navigation over the conceptual tree using only
the bitmaps and the additional rank structure over T . A k2-tree can solve single
cell queries, row/column queries or general range reporting queries (i.e., report
all the 1s in a range) using only rank operations, by visiting all the necessary
subtrees.

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000 00

00011100 00

00000000 10

01000011 00

00000000 00

10000000 01

00000000 01

01000000 00

01000000 00

00000000

00

00000000

00000000

00000000

00000000

01010000
1 1 0000 1 1 11 0 0 10 0 1 0 10 0

0011 0010

1 1 1 0

1 1 0 1 1 0 1 0 0 1 0 0

0011 0010 0001 0100 0010 10100010

00 11

0010 1000

T = 1110 1101 1010 0100 0110 1001 0101 0010 1010 1100

L = 0011 0011 0010 0010 0001 0010 0100 0010 1000 0010 1010

Fig. 1. Binary matrix and its k2-tree representation, for k=2. The matrix is virtually
expanded to the next power of k.

The original k2-tree was designed as a static data structure. A dynamic
variant of the k2-tree, called dk2-tree, also exists [3]. The dk2-tree essentially
splits the bitmaps T and L in chunks and builds tree structures to store these
chunks. The internal nodes of the trees store counters that replace those of static
rank structures and allow access to specific positions in T or L. The dk2-tree
provides the same query capabilities of the original k2-tree but allows at the
same time update operations, including changes in the values of the cells and
insertion of new rows/columns at the end of the matrix. See the original paper
[3] for further details.

3 Compression of Ones

In this section we propose variants of the k2-tree that are able to compress
efficiently these large regions of ones and zeros. We will show 2 variants: the
first performs better when the number of ones and zeros in the matrix is not too



different; the second variant is designed to be used when the proportion of zeros
and ones is very different (without loss of generality, we will consider that the
less frequent value is 1).

The idea behind our proposals is to stop the decomposition of the binary
matrix when a uniform region is found, be it of zeros or ones. This means that
in our k2-tree we must discriminate among the 3 possible “colors” of a node:
white nodes are regions of zeros, black nodes are regions of ones and gray nodes
are internal nodes that correspond to regions with zeros and ones. With this
information, large regions of ones can be represented using a single node, just
like regions of zeros in the original k2-tree. The variants with compression of
ones can be traversed like the original k2-trees, and provide in addition a way to
find the color of a node. Using the additional navigation rules, all the operations
supported by original k2-trees can be implemented directly in a k2-tree with
compression of ones. The algorithms must only be adapted to expand automat-
ically all the results that fall in the submatrix covered by a black node. We now
propose two specific representations of the color of nodes.

3.1 2-bits Variant

In this variant, we mark with a 1 all the regions that contain both zeros and
ones (i.e., the internal or gray nodes), whereas uniform regions are assigned a 0.
In order to tell apart white from black nodes, we create a second bitmap T ′ in
addition to T , that stores the value of each uniform region (that is, T ′ contains
a bit for each 0 in T that will store the color of that region). The navigational
properties of the original k2-tree still hold: the children of the (gray) node at
position p will start at position p′ = rank1(T, p)× k2, because each bit set to 1
in T represents a gray node and only gray nodes have children. If a position p

in T is set to 0, we can check T ′[rank0(T, p)] to see if it corresponds to a region
of zeros or of ones. The bitmap L behaves as in original k2-trees.

Figure 2 shows a k2-tree with compression of ones and the bitmaps generated
for this variant (left). We highlight a black node and the positions where its bits
are assigned in the bitmaps T and T ′.

3.2 Unbalanced (1-5)-bits Variant

In this variant, we achieve compression of ones using the same bitmaps of the
original k2-tree. White nodes will be represented with a 0 and gray nodes will
be assigned a 1, exactly like in original k2-trees. Black nodes will be encoded
as a gray node with k2 = 4 white children (i.e., they are encoded using 5 bits).
This combination, that can not appear in the original k2-tree (gray nodes, by
definition, represent regions with at least a 1), is used to represent regions of
ones without the need of additional structures. Figure 2 (right) shows the bit
distribution for this variant. To take into account regions of ones, at each step
of the k2-tree traversal, we must check the k2 − 1 siblings of the current node to
detect if the current node is white (the current bit is 0, but one of its siblings is



Fig. 2. Example of k2-trees with compression of ones.

1)4 or we are in a region of ones (the current bit is 0 and all its siblings are 0,
meaning that the parent node was actually black).

This approach will obtain worse compression than the one based on 2 bits
in most cases. However, it may obtain better compression when there are blocks
of ones but the zeros are much more frequent. Also, this variant will never use
more space than the original k2-tree.

Both variants of k2-trees with compression of ones can also be applied to
dynamic k2-trees. Each bitmap used by the static representations is replaced by
a tree structure as in the original dk2-tree, to support updates as well as access
and rank queries.

3.3 Comparison of k2-tree with Linear QuadTree

The QuadTree (QT) [7] is a well-known spatial index structure for representing
binary images. The partitioning principle of QT and k2-tree is the same. At the
root of the tree, the matrix is partitioned into four quadrants, which correspond
to the four children of the root. In the QT, the quadrants that are not entirely
black or white are recursively partitioned following the same principle until we
reach a fully black or white region or the unitary cells of the matrix. To access
a particular position of the raster, the tree is traversed from the root to the
leaves following the appropriate path. Depending on the distribution of black
and white cells in the matrix, the QT can represent the binary matrix while
saving significant space and providing efficient access.

The Linear QuadTree (LQT) [8] was proposed as a representation of QTs
without pointers that can be easily managed in secondary memory and requires
less space than the original QTs. At each node, the branches corresponding to
the NW, NE, SW, and SE quadrants are labelled with 0, 1, 2, and 3 respectively.
A leaf is formed when the submatrix is full of points. LQTs assign a quadcode to
each leaf of the QT, which describes the (4-ary) path from the root to that leaf.
To represent the quadcode of each leaf, a digit is added for each branch that is

4 The k2 bits are contiguous, so we perform this check in constant time



traversed. An additional symbol is used to represent that a region is not further
partitioned (i.e., the subregion covered by that branch is full of ones, i.e., it is
a leaf). All these quadcodes are then stored in a B-Tree in secondary memory.
To access a position of the raster, we search for its corresponding quadcode or a
quadcode that contains it in the B-Tree.

Other representations of QTs that achieve less space requirements have been
proposed, such as the FBLQ [6] and the CBLQ [11]. However, they are designed
mainly to represent binary images and support union, intersection and difference
of two images, which require a full traversal of the raster.

The original k2-trees cannot be used to represent a wide class of binary images
because they do not efficiently compress regions of ones. Our variants of k2-tree
with compression of ones overcome this limitation. As a proof of concept of the
capabilities of our proposals we compare our k2-trees with LQTs.

Experimental comparison We compare the space requirements and search
performance of k2-trees and LQTs. Since k2-trees work in main memory, we im-
plemented in-memory versions of the LQT. To provide fair comparisons, we build
two different variants of LQT. The first one (LQT-BTree) stores the quadcodes
in a B-Tree maintained in main memory. This representation can handle mod-
ifications, so we compare it with a dk2-tree. The second variant (LQT-Array)
stores the sorted sequence of quadcodes directly in an array, and a binary search
is used to find them. We compare the LQT-Array with a static k2-tree with
compression of ones. We run all our experiments on an AMD-Phenom-II X4
955@3.2 GHz, with 8GB DDR2 RAM. The operating system is Ubuntu 9.10.
All our implementations are written in C and compiled with gcc version 4.4.1
with -O9 optimizations.

We use five collections in our comparison. The first three are binary images
obtained from elevation rasters of the Digital Terrain Model MDT05 of the
Spanish Geographic Information Center 5. A threshold is applied to each raster,
generating a binary image with 25% of ones, corresponding to the higher values.
The last two collections are adjacency matrices of Web graphs [2], and therefore
difficult to compress using LQTs because they are very sparse. Table 1 shows
the space required by all the representations. Table 2 shows the average time
needed to retrieve a cell of the matrix. To obtain this time, we run a million
random queries in each dataset and compute the average access time.

Our results show that the space required by k2-trees is an order of magnitude
smaller than the required by our two variants of LQTs, while the access time is
also better in most cases, particularly in static k2-trees.

4 Multi-dimensional k2-trees: The kn-tree

The k2-tree has been applied in several contexts to the representation of binary
relations. Intuitively, the k2-tree can be extended to solve problems of higher

5 Original rasters are available for download at http://cnig.es/



Dataset rows × cols #ones k2-tree LQT-Array LQT-BTree
Static Dynamic

mdt-600 3961×5881 11,647,287 0.02 0.04 0.25 0.31
mdt-700 3841×5841 13,732,734 0.02 0.04 0.17 0.17
mdt-800 3921×6001 21,580,638 0.01 0.02 0.11 0.11

cnr 325,557×325,557 3,216,152 3.14 4.95 41.32 41.46
eu 862,664×862,664 19,235,140 3.81 5.86 49.92 50.07

Table 1. Space utilization of k2-trees and LQTs (in bits per one).

Dataset k2-tree LQT-Array LQT-BTree
Static Dynamic

mdt-600 0.46 0.86 1.64 1.27
mdt-700 0.50 1.00 1.64 1.27
mdt-800 0.36 0.56 1.64 1.20

cnr 0.86 2.88 3.16 3.06
eu 0.90 3.85 3.76 3.85

Table 2. Time to retrieve the value of a cell of the binary matrix, in µs/query.

dimensionality extending its space partitioning while maintaining the represen-
tation techniques used. We call the extension of the k2-tree a kn-tree.

A kn-tree represents a binary n-dimensional matrix Mm1×...×mn
by recur-

sively partitioning it into kn n-dimensional submatrices of equal size. This par-
titioning strategy generates a conceptual tree similar to a k2-tree in which each
node has kn children. The conceptual tree can then be represented and queried
using the same techniques of k2-trees.

Notice that a 1 in a cell of a binary matrix that has another 1 falling in
the same submatrix does not consume any additional space in the k2-tree, but
isolated ones induce a complete branch in the k2-tree, consuming much space.
In other words, the k2-tree takes advantage of the proximity of the ones in the
matrix, because paths in the conceptual tree to each of these ones can be shared
for most of the levels. This feature becomes more important as the value of k
increases, and also if we build a kn-tree for a high n, because each node of a
kn-tree will have kn children that must be represented if the region represented
contains ones and zeros. Therefore, a kn-tree may not be useful for unclustered
data without any regularities. We will use the kn-tree as an efficient method to
represent multi-dimensional data in a way that ensures that the data is clustered
across the different dimensions. Particularly, we will show its application to the
representation of raster matrices.

5 Representation of Raster Data using k2-tree Variants

In this section we design several structures for the representation of general
raster data using the k2-tree variants we have proposed in previous sections.

We assume in our proposals that the raster values have a “realistic” preci-
sion6, so that the number of different values in the third dimension is not too

6 When representing spatial attributes, in many cases the values stored can not be con-
sidered as an accurate estimation of actual values (e.g. a temperature measurement



high. We consider that the raster has m different values and denote by vi the
i-th different value of the raster in ascending order.

Our first representation of a raster dataset consists of a collection of k2-trees
(k2-base), one for each different value of the raster (i.e., we build a k2-tree Ki

that stores all the cells with value vi). A variant with compression of ones will be
used in order to exploit the regularities of spatial attributes. This representation
can efficiently answer queries asking for cells with a given value, because these
cells are indexed in a single k2-tree. However, queries that ask for cells with
values in a range [vℓ, vr] require traversing many k2-trees.

We also propose an alternative representation using “accumulated” k2-trees
(k2-acc). In this representation, each k2-tree Ki will store not the cells whose
value is vi but all the cells whose value is smaller or equal to vi. While this
increases the number of cells to represent in each k2-tree, it will also increase
the clustering of ones and therefore the ability of each k2-tree to compress these
regions. To ask for the value of a given cell in this variant, we can binary search
the first k2-tree that contains the desired cell of the raster. This variant also has
an advantage when asking for cells with values within a given range, as we only
need to query at most two k2-trees: the cells with values in the range [vℓ, vr] are
the cells of Kr that do not appear in Kℓ−1. As a counterpart, two k2-trees must
be queried instead of one in order to obtain the cells with a given value.

Finally, we propose a k3-tree as a better representation of the raster data, as it
is an indexed representation of the spatial coordinates and the values altogether.
Our k3-tree stores the tuples 〈x, y, z〉 such that the coordinate (x, y) of the raster
has value z. Notice that for each pair (x, y) only one z value will be set, so we
will not find (cubic) regions of ones in this case. Because of this, our k3-tree is
based on the original k2-tree codes, without compression of ones. To query for
the value of a cell in the k3-tree, we traverse all the paths found in the k3-tree for
fixed x and y values. To return all the cells with a given value, the z coordinate
is fixed and all the pairs (x, y) of the corresponding k3-tree slice are returned.
To ask for cells with a range of values the query is similar, traversing the k3-tree
only within the bounds given by the interval [zℓ, zr].

5.1 Experimental Framework

To test the efficiency of our proposals we use several real raster matrices obtained
from the MDT05 collection. Table 3 gives details about the different fragments
taken. The number of different values in each raster is also shown in the table,
after rounding the elevation values to a precision of 1 meter.

To measure query results, we first determine a sufficiently large number of
queries to obtain accurate results for each type of query. Then we build a different
set of random queries of each type for each dataset. All the time results shown
correspond to CPU time.

may be given in a precision of one thousandth of a degree, but this measurement
may only be accurate in terms of a degree or a tenth of a degree).



Dataset Raster size #values Description

mdt-500 4001× 5841 578 Raster 500
mdt-700 3841× 5841 472 Raster 700

mdt-medium 7721 × 11081 978 Rasters 47,48, 72 and 73 combined
mdt-large 48266 × 47050 2142 Raster covering the region of Galicia

Table 3. Raster datasets used.

5.2 Experimental Results

We show the space required to represent each dataset with all our proposals. To
provide an element of comparison we convert the rasters to GeoTIFF7 format
using two different sets of options. The first, tiff-plain, is a plain representa-
tion without compression, that stores all the values in row order (we use 16-bit
integers as the datatype for the representation). The second representation, tiff-
comp, is optimized for space: the image is divided in tiles of size 256× 256 and
each tile is compressed using a linear predictor and LZW encoding.

Table 4 shows the space utilization of our proposals and the reference Geo-
TIFF images, in bits per cell of the raster. As an additional reference, columns
2 and 3 show the base-2 logarithm of the number of different values in each
raster and the zero-order entropy H0 of these values. These columns represent
the minimum space that would be required by a representation of the raster as an
uncompressed or entropy-compressed sequence, respectively. The k3-tree clearly
obtains the best space utilization amongst our approaches in all the datasets,
being very close to the compressed GeoTIFF representation and using much less
space than the zero-order entropy. Notice that the GeoTIFF format only offers,
at best, random access to the raster data, whereas our proposals are indexed
representations that efficiently solve various types of queries.

Dataset log(#values) H0(values) k
2-base k2-acc k3-tree tiff-plain tiff-comp

mdt-500 9.17 5.43 2.83 2.30 1.83 16.01 1.52

mdt-700 8.88 4.39 2.13 2.40 1.38 16.01 1.12

mdt-medium 9.93 5.86 3.06 2.72 1.77 16.01 1.52

mdt-large 11.06 5.32 3.16 4.37 1.62 16.00 1.35

Table 4. Space utilization of all approaches (in bits/cell).

Next we compare the query times of all our proposals for some queries of in-
terest. We implement the same queries over the GeoTiff images used to compress
the rasters. We build simple algorithms on top of the libtiff library8 to retrieve
fragments from the GeoTIFF images and run each query type. This comparison
is given as a simple sanity check, since libtiff is not designed to process these
queries9. We only aim to show that these queries are not easy to solve with the
traditional formats.

7 http://trac.osgeo.org/geotiff/
8 http://www.libtiff.org
9 The library libtiff reads the images from disk, but we are considering only CPU
time.



First we measure the time required to retrieve the value of a single cell of the
raster. This operation shows the ability of the representations to provide random
access to the raster. Table 5 shows the results obtained. The k3-tree representa-
tion obtains the best results among our proposals, showing the efficiency of the
multi-dimensional index in this context. The approach based on independent
k2-trees, as expected, behaves much worse than our other proposals, since it
has to scan the k2-trees one by one. The accumulated k2-tree approach obtains
also good results because it can binary search the first k2-tree that contains the
cell. Note that the tiff-plain representation should obtain much faster times, but
libtiff spends a lot of time copying chunks of the image that are useless for this
query. On the other hand, the tiff-comp representation presents poor query times
in comparison with the uncompressed version, as not only the appropriate tile
of the image has to be recovered but also decompressed in order to recover a
single cell.

Dataset k2-base k2-acc k3-tree tiff-plain tiff-comp

mdt-500 66.7 4.6 2.2 2.6 491.7
mdt-700 39.6 3.0 1.8 2.7 461.9

mdt-medium 76.4 5.3 2.6 5.2 499.0
mdt-large 415.3 11.1 2.8 87.9 494.8

Table 5. Retrieving the value of a single cell. Times in µs/query.

Next we show the efficiency of the representations to select the cells of the
raster that contain a specific value. The results are shown in Table 6. Not sur-
prisingly, our representations obtain much better results than the tiff repre-
sentations, because the latter must always traverse the complete raster. In this
case, the k2-base obtains better results, as expected, because only one k2-tree
is accessed and the regions of the ones in the k2-tree can be decoded efficiently.
The k2-acc has to access two k2-trees, essentially doubling the query time of the
independent k2-trees. The k3-tree only needs to traverse the appropriate slice,
but it may need to explore many more nodes that correspond to regions with
close values.

Dataset k2-base k2-acc k3-tree tiff-plain tiff-comp

mdt-500 3.9 5.8 9.4 39.5 221.4
mdt-700 3.0 6.0 7.3 37.5 199.5

mdt-medium 8.2 13.6 18.9 142.6 799.0
mdt-large 110.2 255.1 196.6 3,838.9 19,913.4

Table 6. Retrieving all the cells with a given value. Times in ms/query.

Finally, we measure the efficiency of window-range queries, that ask for cells
of the raster within a spatial window and a range of values. These queries are
widely used when processing raster data corresponding to spatial attributes (for
instance, regions with risk of floods or snow alert may be computed from el-
evation rasters selecting the cells with values above a threshold or in a given



interval). In this case, the k3-tree and the k2-acc take advantage of their struc-
ture to obtain the best times. The k2-acc only needs to perform a window query
in two k2-trees, and the k3-tree can restrict the navigation of the tree in all the
dimensions to the given bounds.

Dataset Window Range k2-base k2-acc k3-tree tiff-plain tiff-comp
size length

mdt-500
10

10 5.9 1.6 1.9 24.5 525.7
50 27.4 1.9 2.6 24.4 525.0

50
10 10.3 3.6 5.1 124.0 697.1
50 51.0 5.4 16.2 124.0 699.5

mdt-700
10

10 5.9 1.6 1.6 24.3 496.0
50 27.6 1.8 2.3 24.5 493.4

50
10 10.1 3.6 4.5 123.7 653.2
50 49.2 5.0 13.6 123.8 649.9

mdt-medium
10

10 6.4 2.4 2.0 45.7 531.4
50 28.4 2.5 2.5 45.9 533.6

50
10 9.9 3.7 4.2 229.2 705.4
50 46.5 4.7 10.9 228.5 705.4

mdt-large
10

10 10.5 3.9 2.2 285.5 519.1
50 44.2 3.9 2.5 287.4 545.8

50
10 13.1 4.6 3.2 1,021.6 693.6
50 54.5 5.2 5.8 1,009.6 691.9

Table 7. Retrieving cells inside a window and within a range of values. Times in
µs/query.

6 Conclusions

We have presented several compact data structures that can represent raster
data in reduced space, supporting not only access to random areas in the raster
but also advanced queries involving the values stored in the raster. We compare
our representations, based on k2-trees, with existing formats used to store and
process raster data. Our experiments show that the k3-tree can obtain very good
space results, being close to the compressed GeoTIFF representation. The k3-
tree also shows competitive times in all the queries tested, being the fastest
to retrieve the value of a cell and in some window queries. The variant with
independent k2-trees obtains the best time results to retrieve all the cells with
a given value, but it is much slower in queries involving a range of values. The
variant with accumulated k2-trees obtains the best results in most of the queries
involving ranges of values. In all the queries tested the results of our proposals
are clearly better than the representations based on GeoTIFF images.

We believe that the proposed variants of the k2-tree could be used in a
wider range of application domains. We have shown, as a proof of concept, the
applicability of the k2-tree with compression of ones to the representation of
binary images. Variants of kn-tree could also be used to represent, for instance,
spatio-temporal raster datasets and moving region databases. Spatio-temporal
raster datasets can be seen as a collection of rasters stored for different time



instants, so we can consider the time as a fourth dimension in the matrix that
represents the raster and use a k4-tree to represent space, time and values stored.
An example of spatio-temporal raster is a collection of temperature rasters in
different days. In this example it is expected that the values stored for cells close
in space or for the same cell along time are similar. Moving region databases
represent regions of space that change with time. These regions can be encoded
with a 3-dimensional matrix that stores spatial coordinates covered by a region
along time, so that cells of the matrix determine if the region covered a given
position at a given time. In many cases, these regions are continuous and change
only slightly between time instants (e.g., the evolution of oil spills along time will
yield a 3-dimensional matrix with large uniform regions that will change slowly
with time). Therefore, a k3-tree with compression of ones could exploit these
regularities to obtain good compression results, providing also spatio-temporal
query support.

References

1. J. Barbay, T. Gagie, G. Navarro, and Y. Nekrich. Alphabet partitioning for com-
pressed rank/select and applications. In Proc. 21st ISAAC, pages 315–326, 2010.

2. P. Boldi and S. Vigna. The Webgraph framework I: compression techniques. In
Proc. 13th WWW, pages 595–602, 2004.

3. N. R. Brisaboa, G. de Bernardo, and G. Navarro. Compressed dynamic binary
relations. In Proc. 22nd DCC, pages 52–61, 2012.

4. N. R. Brisaboa, S. Ladra, and G. Navarro. K2-trees for compact Web graph
representation. In Proc. 16th SPIRE, pages 18–30, 2009.

5. T. M. Chan, K. G. Larsen, and M. Pătraşcu. Orthogonal range searching on the
RAM, revisited. In Proc. 27th SoCG, pages 1–10, 2011.

6. H. K. Chang and J. W. Chang. Fixed binary linear quadtree coding scheme for
spatial data. In Proc. 9th VCIP, volume 2308, pages 1214–1220, 1994.

7. R. A. Finkel and J. L. Bentley. Quad trees: A data structure for retrieval on
composite keys. Acta Informatica, 4:1–9, 1974.

8. I. Gargantini. An effective way to represent quadtrees. Communications of the

ACM, 25(12):905–910, 1982.
9. A. Golynski, J. I. Munro, and S. S. Rao. Rank/select operations on large alphabets:

a tool for text indexing. In Proc. 17th SODA, pages 368–373, 2006.
10. R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes.

In Proc. 14th SODA, pages 841–850, 2003.
11. T. W. Lin. Set operations on constant bit-length linear quadtrees. Pattern Recog-

nition, 30(7):1239–1249, 1997.
12. J. I. Munro. Tables. In Proc. 16th FSTTCS, pages 37–42, 1996.
13. G. Navarro. Wavelet trees for all. In Proc. 23rd CPM, pages 2–26, 2012.
14. P. Rigaux, M., and A. Voisard. Spatial databases - with applications to GIS. Else-

vier, 2002.
15. T. A. Welch. A technique for high-performance data compression. Computer,

17(6):8–19, 1984.
16. M. Worboys and M. Duckham. GIS: A Computing Perspective, 2nd Edition. CRC

Press, Inc., 2004.


