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Abstract

One of the main challenges endured when designing a scheduling policy regarding

freshness is to estimate the likelihood of a previously crawled web page being modified

on the web, so that the scheduler can use this estimation to determine the order in which

those pages should be visited. A good estimation of which pages have more chance of

being modified allows the system to reduce the overall cost of monitoring its crawled

web pages for keeping updated versions. In this work we present a novel approach

that uses machine learning to generate score functions that produce accurate rankings

of pages regarding their probability of being modified on the Web when compared to

their previously crawled versions. We propose a flexible framework that uses Genetic

Programming to evolve score functions to estimate the likelihood that a web page

has been modified. We present a thorough experimental evaluation of the benefits of

using the framework over five state-of-the-art baselines. Considering the Change Ratio

metric, the values produced by our best evolved function show an improvement from

0.52 to 0.71 on average over the baselines.

Keywords: Incremental Web Crawling, Scheduling Policies, Genetic Programming.
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Resumo

Um dos principais desafios enfrentados durante o desenvolvimento de políticas de

escalonamento para atualizações de páginas web é estimar a probabilidade de uma

página que já foi coletada previamente ser modificada na Web. Esta informação pode

ser usada pelo escalonador de um coletor de páginas web para determinar a ordem na

qual as páginas devem ser recoletadas, permitindo ao sistema reduzir o custo total de

monitoramento das páginas coletadas para mantê-las atualizadas. Nesta dissertação é

apresentada uma nova abordagem que usa aprendizado de máquina para gerar funções

de score que produzem listas ordenadas de páginas com relação a probabilidade de

terem sido modificadas na Web quando comparado com a última versão coletada. É

proposto um arcabouço flexível que usa Programação Genética para evoluir funções

que estimam a probabilidade de a página ter sido modificada. É apresentado ainda

uma avaliação experimental dos benefícios de usar o arcabouço proposto em relação

a cinco abordagens estado-da-arte. Considerando a métrica Change Ratio, os valores

produzidos pela melhor função gerada pelo arcabouço proposto mostram uma melhora

de 0.52 para 0.71, em média, em relação aos baselines.

Palavras-chave: Coleta Incremental de Páginas Web, Políticas de Escalonamento,

Programação Genética.
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Chapter 1

Introduction

1.1 Motivation

Search engines are systems used daily by users to find information on the Web. The

three main components of a web search engine are: web crawler, indexer, and query

processor. The web crawler is responsible for discovering and downloading new web

pages, and maintaining a local repository with copies of the pages. The indexer builds

a data structure called inverted index which stores the text of the downloaded pages in

a compact format that allows for efficient search. The query processor is the component

which receives the information needs of the user (usually as keywords) and sorts the

documents by relevance according to an information retrieval model.

The development of a large scale web crawler presents several challenges related

to the complexity of the algorithms and data structures needed to manage the amount

of data available on the Web. The basic algorithm of a web crawler works in cycles, as

described in what follows next. First, an initial set of URLs (known as seeds) is added

to the set S of URLs scheduled to be downloaded. After that, the following steps are

repeated until the objectives of the web crawler are reached:

1. The set S of scheduled URLs is downloaded;

2. New URLs are extracted from the downloaded pages and added to the local

repository;

3. A new set S is chosen from the local repository to be downloaded in the next

download cycle.

The step 3 is called scheduling. A scheduling policy is the algorithm that con-

trols how the selection of pages is done. According to the desired objectives, different

1



2 Chapter 1. Introduction

scheduling policies can be used. For instance, a web crawler may want to achieve the

following objectives:

• Coverage – The crawler must be able to download a large fraction of the pages

available on the Web. A large coverage is desired because if a page is not down-

loaded, it will not be indexed and, hence, will not be shown in the search results.

• Importance – There is an unbounded number of web pages available in the web,

but not all of them have useful content. Even if they had high quality content,

no crawler could download all available pages because the resources are limited.

Thus, a crawler should stop downloading pages at some moment and the pages

considered more important should be downloaded first (Baeza-Yates et al., 2005;

Cho and Schonfeld, 2007).

• Freshness – Due to the very dynamic nature of the Web, the local copies of

the pages become outdated compared to the live copy on the Web. Maintain

the local copies updated is important because if the pages remain outdated, the

search results would show pages that do not exist anymore or that have different

content compared to when it was downloaded. Web crawlers usually have access

to a limited bandwidth and perform a complete scan for outdated pages would

take so long that the repository would probably be full of outdated versions of

pages even before the scan finishes. Thus, web crawlers must be able to predict

what pages are more likely to change on the Web in order to update the local

copies more efficiently.

• User Experience – A web search engine should avoid showing pages that do not

exist anymore, or which are irrelevant to the user. On the other side, it is not

worth update a web page if it does not improve search quality. Then, it may be

desirable that a web crawler gives more priority to update pages that are more

likely to be shown in the search results, so the probability of a user see an stale

page in the search results is decreased (Pandey and Olston, 2005; Wolf et al.,

2002).

• Discoverability – At every moment new pages are being created on the Web

(Dasgupta et al., 2007). A web crawler must be able to discover and download

these pages the fastest it can, so users searching for information available in

recently created pages can find the information they want.
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As the resources are limited, some of these objectives may be somewhat con-

flicting. For example, high freshness can be obtained by revisiting a large number of

pages very often. However, the resources used to update a very large number of pages

could be used to download novel pages, and hence, increase the coverage. Thus, it is

necessary a scheduling policy that is able to balance the objectives to ensure proper

freshness and at same time achieve a good coverage. This work contributes to the

efforts for building good scheduling policies for web crawlers.

Another motivation is the ongoing work of development of a web search engine in

the Information Retrieval research line of the Nation Institute of Science and Technol-

ogy for the Web (InWeb). Some key algorithms for this crawler were already proposed

in prior work, such as the algorithm for the verification of URL uniqueness (Henrique,

2011; Henrique et al., 2011) and algorithms for detection of web site replicas (Guidolini,

2011). The algorithm proposed in this work will be integrated to the scheduler of the

InWeb crawler.

1.2 Objectives

The objective of this work is the development of good scheduling policies for web

crawlers. We propose the use of a machine learning based framework to automatically

build scheduling policies that optimizes a given objective. More specifically, we propose

the use of Genetic Programming (GP) to learn functions that provide a score to each

page regarding the given objective. Once the score function is learned, it can be applied

efficiently to select the top-k pages to be downloaded in the next download cycle. In this

work, we propose the application of the proposed framework to the task of scheduling

web page updates with the objective of freshness maximization.

The main specific objectives of this work are:

• Propose the direct use of machine learning techniques to build scheduling policies

for web crawler schedulers;

• Automatically build good policies for scheduling web page updates using the

proposed machine learning based framework.

• Validate the hypothesis that GP provides a way to automatically build scheduling

policies for web crawlers better than the state-of-the-art methods to schedule web

page updates.
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1.3 Contributions

The main contribution of this work is the proposal of a novel machine learning based

framework to automatically build functions that can be used by web crawler schedulers.

Machine learning techniques were already used in tasks related to scheduling in prior

work, but none of them used machine learning to directly build functions to define the

order that the pages will be downloaded as we do here.

We can cite as specific contributions of this work:

1. The proposal of a novel framework to build score functions that optimize a given

objective and can be used in web crawler schedulers.

2. Description of how the proposed framework can be used to learn functions to

schedule web page downloads for freshness maximization.

3. A thorough experimental evaluation of the the proposed framework applied to

the freshness maximization problem using a dataset crawled from the Brazilian

Web.

4. Description of how this framework can be integrated to a large scale crawler

architecture such as the one described by Henrique et al. (2011).

1.4 Organization

The remainder of this work is organized as follows. Chapter 2 shows the basic con-

cepts and related work regarding web crawlers and the Web Crawl Ordering problem.

Chapter 3 presents the proposed framework, shows how to use it to schedule web page

updates, and explains how the proposed framework can be integrated to a large scale

web crawler. Chapter 4 shows an experimental evaluation of the framework. Finally,

Chapter 5 shows the conclusions and future work.



Chapter 2

Basic Concepts and Related Work

In this chapter, we start by discussing basic concepts related to the architecture of

web crawlers (Section 2.1). After that, we present the Web Crawl Ordering problem

(Section 2.2) and prior work related to it, which are basically strategies to order web

page downloads with the following objectives:

• acquire pages of high quality earlier in the crawl (Section 2.3);

• freshness maximization and discovery of novel pages (Section 2.4).

Finally, we present basic concepts of Genetic Programming (Section 2.5), which is the

machine learning technique we use to build the scheduling functions in this work.

2.1 Web Crawler Architecture

In this section, we present a high-level description of the crawler architecture we adopt

when developing our framework for scheduling web page downloads. The crawler archi-

tecture, further discussed in Henrique et al. (2011), has four main components: fetcher,

extractor of URLs, verifier of uniqueness and scheduler. While our results can be ap-

plied to other crawler architectures, this architecture plays here the role of a sample,

useful to give the reader a context about the problem we address. Figure 2.1 illustrates

the crawl cycle involving the four components. The fetcher is the component that sees

the Web. In step 1, the fetcher receives from the scheduler a set of URLs to download

web pages. In step 2, the extractor of URLs parses each downloaded page and obtains

a set of new URLs. In step 3, the uniqueness verifier checks each URL against the

repository of unique URLs. In step 4, the scheduler chooses a new set of URLs to be

sent to the fetcher, thus finishing one crawl cycle.

5



6 Chapter 2. Basic Concepts and Related Work

Figure 2.1. Web page crawling cycle.

Considering cycle i, the fetcher locates and downloads web pages. It receives

from the scheduler a set of candidate URLs to be crawled and returns a set of URLs

actually downloaded. The set of candidate URLs is determined by the amount of

memory space available to the uniqueness verifier. The downloaded pages are stored

on disk for efficient access and retrieval. The interval between two accesses to the same

server must follow politeness rules, which might cause a significant slowdown in the

whole process. In this work, we will not address these issues but rather concentrate on

the algorithm for choosing the pages that will be downloaded at each cycle i. In the

next section we discuss this problem in details.

2.2 Web Crawl Ordering Problem

Aside the politeness restrictions that a crawler must follow, the order of the downloads

a crawler performs is free. The crawl order is a very important issue because it is

not possible to download all pages available on the Web. To select a good crawling

order there are two main issues: coverage, the fraction of desired pages that the crawler

downloads successfully; and freshness, the degree to which the downloaded pages re-

main up-to-date, relative to the current live web copies. As the amount of crawling

resources is finite, there is a trade-off between coverage and freshness. There is no con-

sensus about the best way to balance the two. Olston and Najork (2010) argue that

balancing the two objectives should be left as a business decision, i.e., it is a question

of preferring broad coverage of content that may be somewhat out-of-date, or narrower

coverage with fresher content.

Most work on Crawl Ordering Problem assume a simplified model, in which at

every point in time the crawler has already acquired some content and must plan the
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order in which the pages will be downloaded in the future. The order that the pages

will be downloaded is determined by a scheduling policy, which relies on data already

acquired by the crawler and other information sources to decide the future crawl order.

In this scenario, there are two approaches for managing downloads:

• Batch Crawling – The planned crawl ordering does not contains any duplicated

URL, i.e. every page is downloaded only once. To acquire updated versions of a

page, the entire crawl must be restarted and all pages must be downloaded again.

• Incremental Crawling – A URL may appear several times in the planned crawl,

i.e. whenever an updated version of a page is needed, it can be downloaded again.

Conceptually, the crawl is a continuous process that never ends.

Batch Crawling is usually used when only a snapshot of the Web is desired.

When up-to-date versions of the pages are needed, Incremental Crawling is better

because it has the advantage that it allows re-visitation of the pages at different crawl-

ing rates. It is believed that most commercial crawlers perform incremental crawling

(Olston and Najork, 2010). In Section 2.3, we discuss previous work in Batch Crawl

Ordering in details, whereas in Section 2.4 we discuss about Incremental Crawl Order-

ing.

2.3 Batch Crawling

2.3.1 Comprehensive Web Crawling

As mentioned earlier, the Web may be considered infinite due to its rate of growth and

mainly because of the dynamic generated content. To illustrate this, we can think in

a web page that displays a calendar with the current day of the month. This page

may contain a link to another page that shows the next month. These pages create a

infinite chain of pages with very similar (and possible useless) content. Thus, it is very

important to web crawlers have means to acquire content of high quality earlier in the

crawl.

A common metric used to measure the quality of the content acquired by a web

crawler at any discrete time point t (assuming the crawler has a fixed crawl rate) is

the Weighted Coverage (WC), defined as:

WC(t) =
∑

p∈C(t)

w(p)
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where t denotes time since the crawl began, C(t) denotes the set of pages downloaded up

to time t, and w(p) denotes a numeric weight associated with the page p. The function

w(p) must reflect the importance of the page regarding the crawling objective.

Figure 2.2 illustrates a common way to compare different crawl policies using

the Weighted Coverage metric. In the figure, we can see the results of four scheduling

policies. Omniscient shows the results of a hypothetical policy which knows a priori

the weights w(p) of all pages and produces a perfect crawl ordering. It is a theoretic

upper-bound curve. Random shows a basic policy which is linear in t. This is a baseline

upon which all other policies should try to improve. A shows a policy which yields

better results earlier in the crawl, whereas B shows a policy which performs better

towards the end. The choice between the two depends on how much time the crawl

will take.

t

WC(t)

A

B

random

omniscient

Figure 2.2. Weighted Coverage as a function of the elapsed time t since the
beginning of the crawl (Figure based on Olston and Najork (2010)).

When the purpose of the crawl is to acquire content for a web search engine,

a widely used metric to estimate the quality w(p) of a web page is the PageRank

(Page et al., 1998). Fetterly et al. (2009) evaluated the impact of crawl policies on

web search effectiveness by measuring the maximum potential NDCG (Normalized

Discounted Cumulative Gain) (Järvelin and Kekäläinen, 2002) that is achievable using

a particular crawl policy. They showed that metrics such as in-degree, trans-domain in-

degree and PageRank all allow better retrieval effectiveness than a simple breadth-first

crawl1. They found also that PageRank is the most reliable and effective method of the

three. In the next subsection, we present the scheduling policies previously proposed

in the literature to acquire important pages earlier in the crawl.

1See Section 2.3.2 for a detailed explanation of this policies.
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2.3.2 Scheduling Policies for Batch Crawling

Cho et al. (1998) were the first to study scheduling policies for Web Crawlers. They

performed a crawl simulation using a collection of 180 thousand web pages crawled from

the domain stanford.edu. In their study, they compared three scheduling policies:

• Breadth-first – which is a simple strategy that downloads pages in the same order

they are discovered;

• Backlink-count – which gives more importance to a page p proportionally to the

number of links found on the Web that point to p;

• Partial PageRank – which performs partial PageRank calculations using the data

acquired so far.

Experimental results show that the policy Partial PageRank was the best one

(Cho et al., 1998).

Abiteboul et al. (2003) proposed a scheduling policy based on an algorithm called

OPIC (Adaptive On-line Page Importance Computation), which computes an approxi-

mation of PageRank during the crawler operation. In OPIC, all pages start with equal

“cash” values, which are propagated to the URLs extracted from the downloaded pages.

OPIC reduces the high overhead of the traditional PageRank computation because it

does not require to store the complete link matrix.

Castillo et al. (2004) and Baeza-Yates et al. (2005) performed a comprehensive

comparison of several existing scheduling policies and proposed new ones based on

historical information of previous crawls. Initially, they evaluated the policies Breadth-

first, Backlink-count, Partial PageRank, OPIC, and a new strategy called Larger sites

first, which gives priority to download pages of the sites with the largest number of

known pages. They also considered the Omniscient theoretical policy which knows

a priori the importance of all pages. In their crawl simulation they also considered

the politeness constraints a crawler must obey. The results showed that although the

Omniscient policy is good in the beginning, towards the end the performance is close

to a random policy. This happens because this policy is too greedy and downloads

all pages with high PageRank very early, reducing the number of web sites available

in the final stages of the crawl. A reduced number of sites can cause a significant

slowdown because the crawler must wait some time between subsequent accesses to

the same site. The policies Partial PageRank and Backlink-count did not perform well

in their experiments because they tend to get stuck in pages that are local optimal,

and then fail to discover other pages. The best policies without historical information
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were OPIC and Larger-sites-first. They note that the policy Larger-sites-first was able

to acquire a large coverage earlier, uses few resources and is very simple to implement.

The policies with historical information use the PageRank value of the web pages

downloaded previously to guide future web crawls. Note that some web pages may

have not been downloaded in the previous web crawls, so they propose the following

alternative methods for using historical information to prioritize novel pages:

• Historical-pagerank-omniscient – new pages receive a weight from a oracle which

knows the PageRank of all web pages;

• Historical-pagerank-random – new pages receive a random numeric weight;

• Historical-pagerank-zero – new pages receive weight equal to zero;

• Historical-pagerank-parent – new pages receive the PageRank value of the web

page that it was discovered.

In general, the scheduling policies that use historical information performed better

than the ones which do not have such information. The policy Historical-pagerank-

omniscient was the one which performed better. Surprisingly, the strategy Historical-

pagerank-random also performed well. Finally, although the policy OPIC (which does

not uses historical information) did not perform well in the beginning, it was able

to outperform the policies with historical information (except Historical-pagerank-

omniscient) towards the end of the crawl.

Cho and Schonfeld (2007) proposed a new policy for crawl ordering based on an

alternative way of computing PageRank, which uses summation of path probabilities.

Their algorithm, referred to as RankMass, gives a high priority to important pages such

as previous approaches, so that the search engine can index the most important part

of the Web first. In addition, RankMass provides a theoretical guarantee on how much

of the “important” part of the Web it will download after crawling a certain number of

pages. This guarantee may be used to decide when to stop downloading the Web.

More recently, Alam et al. (2012) proposed a slight modification to the RankMass

algorithm to skip the propagation of path probabilities towards the pages that were

already downloaded. Besides that, they proposed a set of new algorithms which in-

corporates other features such as partial link structure, inter-host links, page titles,

and topic relevance into the RankMass algorithm. Their set of algorithms, referred to

as Fractional PageRank, were able to outperform the original RankMass algorithm in

their experiments.



2.4. Incremental Crawling 11

All scheduling policies presented in this section do not have a direct connection

with this work, once here we focus only in the use of GP for scheduling Web page

updates. However, the framework we propose here can be easily adapted to build

scheduling policies for batch crawling with the objective of acquire important pages

early. For that, it suffices to change the objective function that is being optimized and

the features used by the GP framework. This effort is not studied here and is left for

future work.

2.4 Incremental Crawling

An incremental crawler must interleave first-time download of new web pages with the

re-visitation of already downloaded pages to maintain freshness. At each step, the

crawler must decide between two actions:

1. Download a new page – which improves coverage, and may supply links to novel

pages (which by its turn, improves the estimations of page importance, relevance,

ability of spam detection, and so on);

2. Re-download an old page – may improve freshness, detect removed pages, and

supply links to new pages as in the first action.

As mentioned earlier, there is no consensus about the best way to balance the two

actions. Most published work on crawling focuses either on coverage or on freshness.

In Section 2.3, we already reviewed previous works that deal with coverage. In the

remainder of this section, we review the efforts on freshness. We discuss freshness

maximization and freshness models in Section 2.4.1. In Section 2.4.2, we discuss tech-

niques previously proposed for the problem of re-visiting known URLs to acquire an

updated version of their content. These techniques are used by incremental crawlers to

detect web page changes that may affect the quality of search engine results. Finally,

in Section 2.4.3, we present the metrics commonly used to evaluate such techniques.

2.4.1 Maximizing Freshness and Freshness Models

One common goal of previous works is to maximize the Weighted Freshness (WF ) of

the local repository of pages, defined in Olston and Najork (2010) as:

WF (t) =
∑

p∈C(t)

w(p) · f(p, t)
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where WF (t) denotes the weighted freshness of the repository at time t, C(t) denotes

the set of pages crawled up to time t, w(p) denotes a numeric weight associated with

page p and f(p, t) is the freshness of page p at time t, measured in ways we discuss

next.

Most works assume that the set C of crawled pages is fixed for each crawling

cycle, i.e., C is static, so there is no dependence on t. Its also assumed that each

page p ∈ C exhibits a stationary stochastic pattern of content changes over time (see

Section 2.1 for the explanation of a crawling cycle).

There are two known models for measuring the freshness of a page. The first is

the binary freshness model, in which f(t, p) ∈ {0, 1}. More specifically:

f(p, t) =

{

1 if the copy of p is identical to the live copy on the Web

0 otherwise.

The second way of measuring freshness is the continuous freshness model, in which some

pages may be “fresher” than others. Considering this model, Cho and Garcia-Molina

(2003a) proposed a temporal freshness metric called age, in which f(p, t) ∝ −age(p, t),

where

age(p, t) =

{

0 if the local copy of p is identical to the live copy on the Web

a otherwise

where a denotes the amount of time the local copy has diverged from the copy on

the Web. The intuition behind age is that the longer the local copy diverged from

the live copy, the more their content tend to differ. Also considering the continuous

freshness model, Olston and Pandey (2008) proposed a way of measure the freshness of

web pages based directly on content. Instead of using the age of the page, they divided

a page in a set content fragments and measured the fraction of fragments in common

between the local copy and the live copy.

There is no consensus about what is the better freshness model in the

literature. Some works (Cho and Garcia-Molina, 2000; Cho and Ntoulas, 2002;

Tan and Mitra, 2010) adopt the binary model, while others adopt the continuous model

(Olston and Pandey, 2008). In this work, we adopt the binary model and consider that

all pages are equally important, i.e. w(p) = 1 for all pages.
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2.4.2 Refresh Policies for Incremental Crawlers

Probabilistic models have been proposed to approximate the history of changes of web

pages and to predict their changes in the future. Coffman et al. (1998) postulated a

Poisson model of web page change. For each page p, the occurrence of change events

is governed by a Poisson process with parameter λp, which means that changes occur

randomly and independently, with an average of λp changes per time unit. In practice,

the independence assumption may not strictly holds, but it has been shown that the

Poison model provides a good approximation of the reality.

Cho and Garcia-Molina (2003b) studied how one can effectively estimate the

change frequency of elements that are updated autonomously and independently. They

identified various scenarios and proposed estimators for each of them. In the case of

a web crawler, in which the information about change of pages is incomplete (i.e., a

crawler knows whether a page has changed between accesses, but not the number of

times it changed), they proposed the following estimator:

λp = − log

(

n−X + 0.5

n+ 0.5

)

(2.1)

where n is the number of visits and X is the number of times that page p changed in

the n visits. This estimator is an improved version of the intuitive frequency estimator
X
T

(ratio of detected changes X in the monitoring period T ), for the case of incomplete

information about changes. Using real data, they showed that a web crawler can achieve

improvement in freshness by setting its refresh policy to visit pages proportionally more

often based on this improved estimator.

The strategy used by the crawler WebFountain (Edwards et al., 2001) does not

assume any change model a priori. Its strategy categorizes pages adaptively into buck-

ets based on their recent history of changes. Thus, it is not necessary to build a change

model for each page explicitly, but only a model for each bucket.

Wolf et al. (2002) studied the problem considering a non-uniform change model,

in which the change probability distribution is known. They proposed that the objec-

tive of a crawler must be avoid showing stale pages to the user in the search results.

For that, the crawler must revisit preferentially frequently clicked pages in order to

minimize the “embarrassment” incidents in which a search result shows a stale page.

Pandey and Olston (2005) argued that minimizing the embarrassment can not

guarantee a good search experience because, even if the search results generates no

embarrassment, the low quality of the returned web pages can still substantially degrade

the user experience. In their work, they proposed the user-centric approach that is
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based on the impact that an update may cause in the average quality of the local

repository. The rationale for this approach is that, if the change does not affect the

search engine results, there is no need to perform the update. The average quality can

be measured as follows:

Avg.Quality ∝
∑

q

(

freqq ·
∑

pi∈U

(V (pi) · (rel(q, pi)))

)

(2.2)

where V (pi) is the likelihood of viewing page pi and is computed using a scoring function

over a query q and the cached pages of the local repository; rel(q, pi) is the relevance

computed using the same score function over q and the live copy of pi; freqq is the

frequency of query q. All these values can be obtained using the user logs of search

engines and the downloaded pages.

Olston and Pandey (2008) introduced an approach that takes into account the

longevity of the content. For example, the “today’s blog entry”, which remains for a

long time in the page, is more important than the “quote of the day” fragment, which

is substituted every day. Under this view, the objective of a crawler is to minimize

the amount of incorrect content in the local repository. The optimal resource allo-

cation policy proposed in Olston and Pandey (2008) differentiates between long-lived

and ephemeral content, as well as frequently and infrequently changing pages.

Cho and Ntoulas (2002) proposed a sampling-based algorithm to detect web page

changes. In their approach, first a sample of pages of the web site is downloaded. Then,

the number of pages that changed is used to decide if the entire web site should be

updated. Their sampling is at the level of a web site, which may not be a good

granularity for grouping pages for updates, because the pages of a web site may have

different change patterns (Fetterly et al., 2003).

Tan and Mitra (2010) proposed a clustering-based method to solve the aforemen-

tioned problem. In their approach, first the pages are grouped into k clusters of pages

with similar change behavior using several features. Then, the clusters are sorted based

on the mean change frequency of a representative cluster’s sample. Finally, the algo-

rithm proceeds downloading a sample of pages from the clusters to check if the pages

have changed since their last download. If a significant number of pages in a cluster

have changed, the remaining pages of the cluster are downloaded. The clusters are

checked starting from the highest-ranked cluster to the lowest, or until the resources

are exhausted. They proposed four different ways to calculate the weights associated

with a change in each of the downloaded cycles, which we consider as baselines to

compare with our GP approach.
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Our work differs from Tan and Mitra (2010) in the sense that our approach is

not sampling based, but rather uses machine learning to directly build a score function

that allows the scheduling of web page updates. Once the score function has been

learned, which is performed off-line, it can be applied on-line efficiently, thus allowing

large scale web crawling using the architecture explained in Section 2.1. We notice that

the ranking functions obtained by our GP approach may be used to sort the clusters

in the clustering-based method, an effort that is left for future work.

Barbosa et al. (2005) were the first to exploit the use of static features extracted

from the content of the pages to predict its change behavior. Based on this idea,

Tan and Mitra (2010) proposed the use of new dynamic features, and other features

extracted from the web link structure and web search logs to group pages with similar

change behavior. More recently, Radinsky and Bennett (2013) went a step further and

proposed a web page change prediction framework that uses not only features from the

web page’s content, but also the degree and relationship among the page’s observed

changes, the relatedness to other pages and the similarity in the kinds of changes they

experienced. In this work, we do not exploit such features yet, as our interest is to

assess the potential benefits of employing GP to build the scheduling functions. To the

best of our knowledge, no previous work has exploited GP for that task. Thus, we here

focus only on a basic set of features related to a single source of information: whether

the page changed or not during each cycle. Nevertheless, given the flexibility of GP,

our approach can be easily extended to include those other features in the future.

2.4.3 Evaluation Metrics for Incremental Crawlers

A widely used evaluation metric for incremental crawlers is the Change Ratio, which

was proposed in Douglis et al. (1997). It can be used to measure the ability of the

scheduling policy to detect web page changes. It can be defined as:

Ci =
Dc

i

Di

(2.3)

where Dc
i is the number of downloaded and changed web pages, and Di is the total

number of downloaded web pages, in the ith download cycle. The intuition behind

Change Ratio is that as higher is the concentration of changed pages in the set of

scheduled URLs, as better is the scheduling. Notice that for defining Change Ratio

it is necessary to determine the amount of pages to be downloaded in each download

cycle.

In practice, some pages may be more important than others. The Change Ratio
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metric does not capture this fact. To solve this probem, Cho and Ntoulas (2002)

proposed a Weighted Change Ratio, which gives different weights w(p) to the changed

pages p. The weights w(p) can represent different types of importance of pages, such

as the PageRank of each page. The Weighted Change Ratio can be defined as follows:

Cw
i =

1

Di

∑

p∈Di

w(p) · I1(p)

where I1(p) is a an indicator function:

I1(p) =

{

1 if p ∈ Dc
i

0 otherwise.

Another way to measure the quality of a refresh policy is to evaluate the quality

of the local repository with respect to the quality of users’ experience when they use

the search engine. The evaluation metrics that pursue this objective are referred to as

query-based metrics in Tan and Mitra (2010). Wolf et al. (2002) proposed the embar-

rassment level metric which measures the probability that the user issues a query, click

in a URL returned by the search engine, and finds that the web page is irrelevant to the

query. Pandey and Olston (2005) proposed the user-centric metric, which measures the

impact of the change in the average quality of the local repository after updating its

pages. The average quality was measured using the equation 2.2 mentioned previously.

The query-based metrics measure the quality of the whole repository. Tan et al.

(2007) proposed that the evaluation of incremental crawlers should consider only the

web pages shown in the top of the ranking returned by the search engine. For that,

they used the following metrics:

• Top-k Freshness – reflects the percentage of the web pages in the k first positions

of the ranking returned by the search engine which are synchronized with the

real copy on the Web.

• Top-k MAP (Mean Average Precision) – measures the average precision for the

first k web pages of the ranking returned by the search engine. Note that this

metric evaluates the relevance of the returned web pages instead of its freshness.

2.5 Genetic Programming

GP is a problem-solving technique based on the theory of evolution of species that

adopts principles of biological inheritance and evolution of individuals in a popula-
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tion (Koza, 1992). Given an optimization problem with a large space of solutions, it

searches for a near-optimal solution by combining evolutionary selection and genetic

operations to create better performing individuals in subsequent generations.

GP evolves a number of candidate solutions, called individuals, represented in

memory as tree structures with pre-defined maximum depth d. Every internal node

of the tree is a function and every leaf node, known as terminal, represents either a

variable or a constant. The maximum number of available nodes of an individual is

determined by the depth of the tree, which is defined before the evolution process

begins. An example of an individual represented by a tree structure is provided in

Figure 2.3.

pow1

−

e *

tλp

Figure 2.3. Tree structure representing the individual 1 − eλpt, which is the
change probability function that will be presented in Equation 4.1.

The GP process starts with an initial population composed by Np individuals.

This initial population is generated randomly. Each individual is evaluated by a fitness

function and is associated with a fitness value. This fitness function is defined by

the problem where GP is applied and is used to guide the evolutionary process. For

instance, it is used to select only those individuals that are closer to the desired goal

or those that achieve better fitness results. The individuals will evolve generation by

generation through the reproduction, crossover, and mutation genetic operations.

The reproduction operation consists in simply reproducing an individual of a

generation into the next. The mutation operator has the role of ensuring some diversity

of individuals in the population. It works by replacing randomly chosen subtrees of the

individuals by another randomly chosen tree. The crossover operation allows genetic

content exchange between two other individuals, the parents, selected among the best

individuals of the current generation. Then, a random subtree is selected from each

parent and a new individual, the offspring, is formed by swapping the selected subtrees

of the parents. The offspring is then used to form the next generation.

Regarding the operations aforementioned, the following parameters should be set:

reproduction rate, the percentage of elements which are copied to the next generation,
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chosen among the best individuals according to the fitness function; crossover rate, the

percentage of elements which will be used to the crossover operation; mutation rate, the

percentage of elements which can be affected by mutations; Moreover, the maximum

crossover depth, which is the maximum depth of trees given as input to the crossover

operation, should also be defined.

At the end of the evolutionary process, a new population is created to replace

the current one. The process is repeated over many generations until the termination

criterion has been satisfied. This criterion can be a pre-established maximum number

of generations Ng or some additional problem-specific success measure to be reached

(e.g., an intended value of fitness for a specific individual).

2.6 Summary of the Chapter

In this chapter, we discussed several works related to the architecture of web crawlers,

development of scheduling policies for ordering page downloads, and the machine learn-

ing technique called Genetic Programming. These are basic concepts used to build our

proposed framework, which is described in the next chapter.



Chapter 3

Genetic Programming for

Incremental Crawling

In this chapter we present GP4C – Genetic Programming for Crawling, a framework for

building scheduling policies for web crawlers. In Section 2.5, we already discussed the

basic concepts related to Genetic Programming (GP). From Section 3.1 to Section 3.5

we discuss how GP is applied to our target problem. In Section 3.6, we discuss how the

scheduling policies created using GP4C can be incorporated in a large scale web crawler

architecture. Finally, in Section 3.7, we provide an analysis of the computational costs

involved in the framework.

3.1 GP4C – Genetic Programming for Crawling

In this section, we discuss how GP can be applied to the problem of scheduling web page

updates. Specifically, we use GP to derive score functions that capture the likelihood

that a page has been modified. Pages with higher likelihood of having been modified

should receive higher scores, and ultimately higher priority in the scheduling process.

Our GP process is adapted from the one presented in da Costa Carvalho et al.

(2012), where GP is applied to learn how to mix a set of sources of relevance evidence

in a search engine at indexing time. The main steps of our method are described

in Algorithm 1. It is an iterative process with two phases: training (lines 1–8) and

validation (lines 9–11).

We create our training and validation sets considering a general updating scenario,

in which an initial set of pages is used for training and the learned functions are

validated using a distinct set of pages. This scenario is close to the one found in large

crawling tasks, such as when performing a crawling to a world wide search engine,

19
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where a scheduling policy must generalize well for web pages unseen in the training

phase.

As shown in Algorithm 1, GP4C starts with the creation of an initial random

population of individuals (line 1) that evolves generation by generation using genetic

operations (line 8). The process continues until the number of generations of the

evolutionary process reaches a maximum value given as input. Recall that, in the

training phase, a fitness function is applied to evaluate all individuals of each generation

(lines 5–6), so that best individuals are more likely to be selected to continue evolving

than inferior individuals (line 8). Furthermore, the Nb best individuals found across

all generations are stored (line 7) to be evaluated using the validation set.

After the last generation is created, the validation phase (lines 9–11) is applied to

avoid selecting individuals that work well in the training set but do not generalize for

different pages (a problem known as over-fitting). In this phase, the fitness function is

also used, but this time over the validation set. Individuals that perform the best in

this phase are selected as the final scheduling solutions (line 12).

Algorithm 1: Genetic Programming for Crawling (GP4C)

input : T : a training set of pages crawled in a given period;
V: a validation set of pages crawled in a given period;
Ng: the number of generations;
Nb: the number of best individuals maintained for validation;

1 P ← Initial random population of individuals;
2 Bt ← ∅;
3 foreach generation g of Ng generations do

4 Ft ← ∅;
5 foreach individual i ∈ P do

6 Ft ← Ft ∪ {g, i, fitness(i, T )}

7 Bt ← getBestIndividuals(Nb , Bt ∪ Ft);
8 P ← applyGeneticOperations(P, Ft, g);

9 Bv ← ∅;
10 foreach individual i ∈ Bt do

11 Bv ← Bv∪ {i, fitness(i, V))}

12 BestIndividual ← applySelectionMethod(Bt , Bv);

3.2 Individuals, Terminals and Functions

In the case of GP4C, each individual represents a function that assigns a score to each

page. Such score combines information useful for estimating the likelihood of a given
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page being updated in a period of time, taking into account information such as its

behavior in previous downloads.

An individual is represented by terminals (leaves) and functions (inner nodes),

organized in a binary tree structure, as illustrated in Figure 2.3. Terminals contain

information (features) obtained from the pages that may help in the task of charac-

terizing their updating behavior and thus can be useful as parameters to compose the

final score function.

In our GP4C approach we considered only three basic terminals that contain

information about the pages:

1. n: Number of times that the page was visited;

2. X: Number of times that the page changed in n visits;

3. t: Number of cycles since the page was last visited.

In addition to these terminals, we also used constant values. Each constant is a

different terminal. They are: 0.001; 0.01; 0.1; 0.5; 1; e; 10; 100; 1000.

As functions in the inner nodes, we use addition (+), subtraction (−), multi-

plication (∗), division (/), logarithm (log), exponentiation (pow), and the exponential

function (exp). Specifically for the functions division and logarithm, we used protected

versions to avoid the computation of log and division by zero. For division, if the

denominator is zero (or very close to zero), we return a very large number with the

same signal. For logarithm, we consider that log 0 returns 0.

All terminals and functions we use in GP4C were extracted from functions found

in the literature that we use as baselines. The rationale for using them is that GP can

recombine these functions and terminals to create more effective functions than the

ones proposed in the literature.

3.3 Genetic Operations

GP relies on a set of genetic operators to evolve the population across generations.

These operators probabilistically combine genes of individuals based on its fitness value

in order to create new candidate solutions for the problem. In GP4C, we use the

genetic operators reproduction, crossover and mutation. The reproduction operator

simply makes a copy of an individual to the next generation. We also employ elitism,

which means that the best individual of a population is always reproduced in the
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next generation. Regarding the mutation operation, we use two types available in the

GPC++ class library1:

1. Node replacement mutation (also known as point mutation) – a node of the tree is

chosen at random, and its value is swapped by another random value. Terminals

are always replaced by other terminals and functions are always replaced by other

functions with the same number of arguments. For instance, Figure 3.1 shows

an individual that the terminal e was randomly chosen and swapped by the

terminal n. Figure 3.2 shows a mutation in a function node, where the function

exponentiation (pow) was swapped by the function division (/).

pow1

−

e *

tX

1

−

n *

tX

pow

Figure 3.1. Example of node replacement mutation in a terminal node.

pow1

−

e *

tX

/1

−

e *

tX

Figure 3.2. Example of node replacement mutation in a function node.

2. Shrink mutation – a function node is chosen at random and is replaced by a

randomly chosen terminal, as shown in Figure 3.3. The shrink mutation causes

a reduction in the size of the tree, which reduces its structural complexity and

can make it easier to understand.

For crossover operation, two parent individuals are randomly selected among the

top best individuals of the current generation. Then, a node in each parent is chosen

at random. Finally, the subtrees located in the selected nodes are swapped, creating

two new individuals called offsprings. Figure 3.4 shows an example of two individuals

being combined using crossover.

1GPC++ refers to node replacement mutation as swap mutation. Here, we follow the same termi-
nology of Poli et al. (2008) and use the term node replacement.
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pow1

−

e *

tX

1

−

e X

pow

Figure 3.3. Example of shrink mutation.

pow1

−

e *

tX

/exp

∗

x tX

1

−

/

tX

exp

∗

x

pow

e *

tX

parents offsprings

Figure 3.4. Example of crossover operation.

3.4 Fitness Function

In GP4C, the fitness function measures the quality of the ranking generated using a

given individual for the whole training period. Algorithm 2 presents the computation

of the fitness of an individual. To compute the fitness of an individual, we perform a

crawl simulation. The training set is used to create an “oracle” which has information

about the changes of all pages for the whole training period. Then, the oracle is used to

simulate the downloads. Instead of performing a connection to the Web to download

a page, the oracle is asked whether the page changed or not since the last time it

was visited. As shown in Algorithm 2, the crawl simulation starts by creating a local

repository of pages (line 1). Then, we must ensure that all pages of the repository are

revisited some times in order to get basic information about its change behavior (lines

2–4). After that, the remaining download cycles available (line 5) in the training set

are used to perform the crawl simulation (lines 6–14) to evaluate the performance of

the individual. For that, we take the score it produces for each page (lines 9–10) in

the training set of each given download cycle and generate a schedule by choosing the
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pages with the highest scores (line 11) to be crawled in the next download cycle (lines

12–13). The quality of this ranking is then evaluated by the fitness function (line 14).

We adopted the Change Ratio metric as fitness function, which means that the quality

of the ranking is the ratio of pages that were scheduled to be downloaded and that

really changed in a given download cycle2. Finally, the final fitness value is the average

Change Ratio produced in all simulated download cycles (line 15).

Algorithm 2: Fitness Function Computation

input : f : a scheduling function represented by an individual;
O: an oracle which knows when each page changed;
No: the number of download cycles that O is aware of changes;
Nw: the number of times a page must be visited to get basic

information of change;
k: the max number of pages that can be downloaded using the

available resources;

1 R ← A new local repository of pages;
2 foreach warm-up cycle w of Nw do

3 foreach page p of R do

4 updateChangeInformation(p, w, O);

5 Nsim ← No −Nw;
6 C ← ∅;
7 foreach download cycle c of Nsim do

8 W ← ∅;
9 foreach page p of R do

10 W ←W ∪ {c, p, score(p, c, f)};

11 S ← selectPagesWithHighestScores(R, W, k);
12 foreach page p ∈ S do

13 updateChangeInformation(p, c, O);

14 C ← C ∪ {c, evaluateScheduling(S, c, O)} ;

15 return average(C);

3.5 Selection of the Best Individuals

The selection of the best individual is accomplished by running the GP4C process with

a set of distinct randomly selected seeds (da Costa Carvalho et al., 2012). The whole

GP process depends on the selection of an initial random seed to produce its results.

To reduce the possible risks of finding a low performance local best individual, we run

2See Section 2.4.3 for the definition of the Change Ratio metric
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N processes with distinct random seeds, and pick the best individual among those

generated by these N runs.

The best individual of a GP4C process is chosen using a selection method (line

12 of Algorithm 1). The first selection method we used choses the individual that

performed better in the training phase. We refer to this approach as GP4CBest. As

proposed in de Almeida et al. (2007), we also consider two other selection strategies

that are based on the average and the sum of the performances of each individual

in both the training and validation sets, minus the standard deviation value of such

performance when selecting best individuals. In this work, the standard deviation was

computed using the Change Ratio produced in all download cycles of the training and

validation sets. In de Almeida et al. (2007), the authors referred to these methods as

Avgσ and Sumσ. The individual with the highest value of Sumσ (or Avgσ) is selected

as the best. Here, we refer to GP4C using these selection strategies as GP4C Sum and

GP4CAvg. These specific selection strategies are used to avoid selecting an individual

that perform well in the training set, but do not generalize well for unseen web pages.

Besides that, these strategies are useful to produce more stable results when running

a GP process.

3.6 Using GP4C in a Large Scale Web Crawler

Some web crawler architectures, such as the one described in Section 2.1, use a scoring

function to choose the pages that will be visited in each download cycle. Then, the

functions learned using GP4C are suitable for selecting the web pages that will be

downloaded in each download cycle. The training phase of GP4C, where the scheduling

function is learned, must be performed off-line. Once the function is learned, the score

of each page can be computed efficiently in constant time during the crawler operation.

To choose the pages, a sort can be performed to pick the k pages with the highest scores.

Large scale crawlers deal with billions of pages, so its unfeasible to perform ran-

dom accesses to the repository to update the pages (as well as to verify uniqueness

of the extracted links at each download cycle). To solve this problem, state-of-the-art

algorithms (Henrique et al., 2011; Lee et al., 2009) accumulate the links extracted by

the Extractor in a buffer, so the verification of uniqueness can be performed efficiently

in batches in a single-pass in the repository. The terminals used in this work can be

computed efficiently while performing the verification of unique URLs. During the

uniqueness check, whenever the crawler finds that a downloaded page already exists in

the repository, it can update its terminal values.
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3.7 Computational Costs

The computational cost to apply the function during the crawler operation depends on

the time to compute the terminal values of the learned function. As mentioned earlier,

all terminals used in this work can be computed efficiently in constant time during the

crawler operation. Thus, the cost to apply the function on-line is given by the time

necessary to compute the score, plus the time to pick the pages with highest scores.

Now we turn to the running time of the training phase that is performed off-

line. The most time consuming task in the GP4C process, shown in Algorithm 1, is

the computation of the fitness of each individual (line 6), which is accomplished by

the crawl simulation further detailed in Algorithm 2. The number of crawl simulations

performed is determined by the number of generations Ng and the size of the population

|P|, plus the number of best individuals |Bt| maintained for the validation phase. Then,

the total number of crawl simulations that must be performed in the worst case is given

by:

Ng × |P|+ |Bt|

The values Ng and |P| are determined empirically, but usually values smaller than

500 are sufficient for convergence. |Bt| must also be a small number, otherwise bad

performing individuals would be selected for the validation phase.

The cost of a crawl simulation is determined mainly by the number of pages

and number of download cycles available in the training set, as shown in the following

analysis of Algorithm 2. First, in line 1, a new repository of |R| pages is created, being

|R| the number of pages available in the training set. In lines 2–4, Nw×|R| downloads

of pages are simulated. In practice, Nw must be a small number since it is unfeasible for

a web crawler download all pages several times. Then, for each remaining cycle Nsim,

the following steps must be performed. The score of |R| pages must be computed

(lines 9–10). Since the individuals are represented using a tree, a traversal must be

performed to compute the final score value, which give us a cost of |R| × n, being n

the average size of the trees. In line 11, a sort with worst case cost of |R| × log |R|

must be performed to pick the pages with the highest scores. In lines 12–13, |S| pages

must be checked for change and have its change information updated. |S| is equal to

k, which is the number of pages that can be downloaded using the resources available.

In practice, k is a fraction of the number of pages |R| of the repository. Finally, in line

15, the average of Nsim values must be computed. Thus, considering only most costly

operations, the worst case performance of the Algorithm 2 is in the order of:

O(No × |R| × log |R|)



3.8. Summary of the Chapter 27

If we consider the total cost of all crawl simulations in the GP4C process, it is in

the order of:

O ((Ng × |P|+ |Bt|)× (No × |R| × log |R|))

Despite the total computational cost of the GP4C process be quite high, it can

be performed in a reasonable time, as shown in the experiments in Chapter 4. Fur-

thermore, each crawl simulation is data independent from each other. Thus, if more

computing power is available, the computation of the fitness of each individual can be

distributed into multiple processors.

3.8 Summary of the Chapter

In this chapter we presented GP4C, our Genetic Programming based framework for

generating scheduling policies for web crawlers. We also explained how the framework

can be used in a large scale web crawler architecture and provided an analysis of

computational costs of the framework.





Chapter 4

Experimental Evaluation

In this chapter, we present an experimental evaluation of the GP4C framework. We

evaluate the effectiveness of the scheduling policies generated by GP4C using a dataset

crawled from the Brazilian Web. We compare GP4C with five functions found in the

literature used to estimate the likelihood of a page being modified on the Web since

its last visit. We also measured the running time of the GP4C process to show that it

is a practical approach that can be used by large scale web crawler schedulers.

In Section 4.1, we present the baselines and in Section 4.2, we present the dataset

used in our evaluation. In Section 4.3, we describe the experimental methodology and

evaluation metric. In Sections 4.4 and 4.5 we present the GP parameters and setup

used to run the experiments. Some representative results of the scheduling policies

created by GP4C are presented in Section 4.6. Finally, we show the performance of

GP4C in Section 4.7.

4.1 Baselines

To evaluate our framework, we compare the three proposed strategies, GP4CBest,

GP4C Sum and GP4CAvg, with five baselines we called CG, NAD, SAD, AAD and

GAD. The five baselines are described next.

The first baseline we consider, CG, is the change frequency estimator proposed

in Cho and Garcia-Molina (2003b), which is defined as:

CG = − log

(

n−X + 0.5

n+ 0.5

)

where n is the number of visits and X is the number of times that page p changed in

the n visits.

29
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The other four functions we consider as baselines were proposed in Tan and Mitra

(2010). In order to compute the change probability of the pages, they assume that each

page p follows a Poisson process with parameter λp. Considering T the time that the

next change will happen, the probability ϕ that the page will change in the interval

(0, t] is calculated by integrating the following probability density function:

ϕ = Pr{T ≤ t} =

∫ t

0

fp(t)dt =

∫ t

0

λpe
−λptdt = 1− eλpt (4.1)

As ϕ depends on the change frequency parameter λp and time t, we set t to be the

number of cycles since the page was last downloaded and compute λp using the change

history of the pages:

λp =

n
∑

i=1

wi · Ii(p),

where n is the number of times the page was downloaded so far, wi is a weight associated

with a change occurred in the ith download of the page (
∑n

i=1wi = 1), and Ii(p) is an

indicator function defined as:

Ii(p) =

{

1 if page p changed in the ith download

0 otherwise.

We computed the weights wi using the same four adaptive settings proposed in

Tan and Mitra (2010):

• NAD (Nonadaptive) – considers that all changes have the same importance, that

is:

w1 = w2 = · · · = wn =
1

n

• SAD (Shortsighted adaptive) – considers that only the last change is important,

that is:

w1 = w2 = · · · = wn−1 = 0, wn = 1

• AAD (Arithmetically adaptive) – considers that the most recent changes have

more importance and that the weight of the more old changes decrease slowly

following an arithmetic progression:

wi =
i

∑n

i=1 i
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• GAD (Geometrically adaptive) – as the previous setting, considers that the most

recent changes have greater importance. However, the importance decreases more

quickly, following geometric progression:

wi =
2i−1

∑n

i=1 2
i−1

Summarizing, the baselines NAD, SAD, AAD and GAD we consider are computed

using the change probability as defined in Equation 4.1, using the four weight settings

proposed in Tan and Mitra (2010).

We also consider two simpler approaches to build score functions, referred to as

Rand and Age. In Rand, the scores are random numeric values, whereas in Age, they

are equal to the time t since the page was last downloaded.

4.2 Dataset

Our evaluation was performed using a web page dataset collected from the Brazil-

ian Web (.br domain). This dataset was gathered using the crawler presented

in Henrique et al. (2011), whose architecture was described in Section 2.1. Table 4.1

summarizes the final dataset, which is referred to as BRDC’12 from now on1. It was

collected between September and November 2012. The dataset consists of a fixed set

of web pages, which were crawled on a daily basis during approximately two months.

Table 4.1. Overview of our dataset (after filtering errors).

BRDC’12

Monitoring period 57 days

# web pages 417,048

# web sites 7,171

Min # web pages/site 1

Max # web pages/site 2,336

Average web pages/site 58.15

% downloads with errors 2.92

To build BRDC’12, we used as seeds approximately 15,000 URLs of the most

popular Brazilian sites according to Alexa2. Only sites under the .br domain were

considered as seeds. A breadth-first crawl from these seeds downloaded around 200

1BRDC’12 dataset is available on-line at http://homepages.dcc.ufmg.br/˜aeciosantos/datasets/brdc12
2http://www.alexa.com/topsites/countries/BR.
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million web pages, from where more URLs were further extracted. From these URLs,

we then selected a set of 10,000 web sites using stratified random sampling, thus keeping

the same distribution of the number of web pages per site of the complete dataset. Next,

for each selected site, we chose the largest number of web pages that could be crawled

in one day without violating politeness constraints. We selected, in total, 3,059,698

web pages, which were then daily monitored. The complete BRDC’12 has about 1 Tb

of data.

During the monitoring periods, our crawler run from 0 AM to approximately

11 PM, recollecting each selected web page every day, which allowed us to determine

when each page was modified. In order to detect changes in a page, we used the

SimHash technique (Manku et al., 2007) to create a fingerprint of the plain text ex-

tracted from the pages. Accesses to web pages from the same site were equally spaced

to avoid hitting a web site too often.

We did observe download errors during monitoring periods. Such errors might

be due to, for instance, the page being removed, the web site’s access permissions

(robots.txt) being changed, or the download time reaching a predefined limit (30 sec-

onds). We removed from the BRDC’12 collection all web pages with more than two

errors, thus including only pages with fewer errors in our analysis.

Note that, in case of an error, we cannot tell whether the page changed on that

particular day. Thus, we guess this information by analyzing the history of changes of

that web page in the days that preceded the error. Specifically, let us say the download

of a page p failed on day d. We then analyze the distribution of the number of days

between successive changes of p in the first d−1 days, and use the most frequent period

without change to determine whether we should consider that p changed on day d.

Note from Table 4.1 that the filtered dataset contains a number of web pages

larger than previous work (Tan and Mitra, 2010). Note also that the errors that re-

main in the BRDC’12 collection after filtering represents only 2.92% of all downloads

performed. Although these errors might somewhat impact the quantitative results of

each method, we note that all considered approaches might be affected. Thus, the

remaining errors should not significantly impact our conclusions.

4.3 Experimental Methodology

Our evaluation was performed using 5-fold cross validation. The dataset was divided

into 5 equal-sized folds; 4 folds were further equally divided into training set and

validation set, and the last fold was used as test set. The training set was used to
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evolve the population of individuals in the GP4C process, whereas the validation set

was used to choose the best individuals, as discussed in Section 3.5, particularly to

compute Avgσ and Sumσ. The best individuals selected were evaluated using the test

set.

In order to evaluate the score functions and compute fitness values we simulate

a crawl as described in Algorithm 2. Our simulation starts with a warm-up period

Nw=2 days, during which data of BRDC’12 is used to build basic statistics about

each page. For each day following warm-up, we apply our proposed score function and

each baseline to assign scores to each page. The download of the top-k pages with

highest scores (i.e., most likely of having been changed) is then simulated by updating

statistics of the page such as number of visits (i.e., downloads), number of changes,

etc. Specifically, we use the collected data to determine whether a page changed or not

since the last time it was visited.

Our main evaluation metric is Change Ratio (Equation 2.3). In the case of GP4C,

the metric Change Ratio is used both as evaluation criterium and fitness function.

When evaluating a scheduling using Change Ratio, it is necessary to determine the

maximum number of web pages that can be crawled in each day, referred to as k in

our experiments. The k value represents the resources available to crawler. Once the

resources are limited, k must be a small fraction of the pages present in the repository.

We here set k equal to 5% of the total number of web pages in the dataset, which is

a value close to values used in previous work. For each day, we compute the Change

Ratio metric using the top-k pages in the sorted list produced by each method. Notice

that, whenever the actual number of pages changed in a day is smaller than k, no

evaluated algorithm can reach a maximum Change Ratio. This particular detail may

cause variations in the Change Ratio obtained by a function when comparing results

in distinct days. This variation however does not affect the conclusions about the

comparison of the relative performance of each method.

4.4 GP Parameters

All GP operations were implemented using the open-source class library GPC++3.

Regarding parametrization of the GP framework, we experimented several values for

each parameter and selected the best ones we found, as described next. We set Np equal

to 300 individuals, created using the ramped half-and-half method (Koza, 1992). Due

to the stability of results, we set Ng equal to 50 generations as termination criterion.

3GPC++ is freely available at http://www0.cs.ucl.ac.uk/staff/W.Langdon/ftp/weinbenner/gp.html
(accessed in February 22, 2013).
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We adopted tournament selection of size 2 to select individuals to evolve and set the

crossover, reproduction, shrink mutation, and node replacement mutation rates equal

to 90%, 15%, 5% and 5%, respectively. We set the maximum tree depth d to 10 and the

maximum depth for crossover to 9. During the evolution process we kept the Nb = 50

best individuals discovered through all generations to the validation phase. We run

the GP4C process using 5 random seed values.

4.5 Setup

All experiments were executed in server machines PowerEdge R710 Dell with 64 Gb of

RAM memory and 2 processors Intel Xeon X5680 of 3.33 GHz with 6 cores. Despite

of the large amount of memory available, the GP4C process used less than 3% of

available memory during the evolution process. The GP4C process is a CPU intensive

task, consuming about 100% of processing power during evaluation of fitness of the

individuals. The fitness evaluation was parallelized using threads to take advantage of

the multiple processors available.

4.6 Results

We now discuss the results obtained by our GP4C framework and the baselines using

the data in the BRDC’12 collection. We present a experiment using only a basic set

of terminals, n, X and t (see Section 3.2), to show that our GP framework can derive

good functions which are equal or better than the ones used as baselines.

We start by comparing the Change Ratio produced by the three strategies

GP4CBest, GP4CAvg and GP4C Sum (see Section 3.5 for description of the strategies),

on each day. Figure 4.1 shows the average Change Ratio for each day computed across

all 5 folds. We omit 95% confidence intervals to improve clarity. Note that all three

curves are very close to each other. Indeed, we performed a pairwise t-test for each pair

of methods finding that all three methods are statistically tied, with 95% confidence,

for almost all days. The only exception is for GP4CBest, which outperforms GP4CAvg

in one day and GP4C Sum in two days. In this case, the fact that GP4CBest has good

performance in both training set and test set suggests that the individuals generated

by GP4C framework do not suffer of over-fitting and generalize well for unseen web

pages. Thus, we chose GP4CBest to compare against the baselines.

When observing the results of the the experiments in detail, we realized that the

functions generated by GP4C are quite stable when changing the set of pages where
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Figure 4.1. (Color online) Average Change Ratio for our three GP4C approaches
computed across all folds of each download cycle

they are applied. Table 4.2 shows the Change Ratio obtained when applying the best

functions to the training, validation and test sets. As we can see, the results obtained in

the test set are pretty close to the ones obtained in the training and validation sets in all

folds. These results indicate GP4C have produced quite stable and generic functions,

which is one of the properties desired when applying machine learning solutions to any

problem.

Table 4.2. Change Ratio of best functions found by GP4CBest in each fold

Fold Train set Validation set Test set

1 0.709357 0.708086 0.703514

2 0.704912 0.698197 0.706889

3 0.718066 0.715886 0.711833

4 0.706658 0.708875 0.713094

5 0.696098 0.694009 0.693782

An interesting property of our GP4C framework is that it can also be used as a

tool for better understanding the scheduling problem. For instance, we realized that

quite simple functions provide results superior to the ones achieved by the baselines.

Further, when analyzing the results, we also realized that the best ones followed the

pattern giving more importance to the number of cycles since the page was last visited

(t) and to the number of times it changed in last visits (X). We notice that the value

of n does not impact much the final score in such functions. That is probably due to

the fact that the period of crawling adopted for training was about only two months.

In larger periods, the importance of n may increase, but experiments in larger periods

are now unfeasible for us, since it requires a continuous crawling. We stress anyway

the ability of our method to adapt its functions to the dataset given for training.
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To show an example, we present an extremely simple, but also effective, function

generated by our method: t ∗X.

While simple, this function resulted in final performance superior to most of the

baselines, achieving average Change Ratio above 0.69. It was not the best function

found by GP4C, but illustrates how the framework can be applied not only to derive

good score functions, but also to give insights about the most important parameters.

Figure 4.2 shows the Change Ratio results of the best GP4C variation (GP4CBest)

and all considered baselines, namely NAD, SAD, AAD, GAD and CG. Once again,

we show only average results to improve readability, but we draw our conclusions

from statistical pairwise t-tests (with 95% confidence). We note that GP4CBest is

statistically superior, with 95% confidence, to each of the baseline methods in most

days, being tied to these methods in just a few days. In particular, we find that NAD,

AAD, GAD and CG are the the most competitive baselines.
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Figure 4.2. (Color online) Average Change Ratio for GP4CBest and the five
baselines, computed across all folds of each download cycle

GP4CBest is statistically superior to NAD, AAD, GAD and CG in 22, 47, 49 and

50 of the simulated download cycles, respectively, being statistically tied with them

in all other days. The only exception is for the three initial days of download cycles,

when GP4CBest is statistically inferior to AAD in days 1 and 3 and to GAD in day

1. In other words, after the third day, GP4CBest is not outperformed by any of the

baselines in any of the download cycles. This result corroborates the flexibility of our

framework as it is able to produce results at least as good, if not better, than all five

baselines.

Unlike the findings of Tan and Mitra (2010), the non-adaptive (NAD) weighting

setting performed better than the adaptive ones (AAD and GAD) in our dataset. This

might have happened because of the granularity of downloading cycles of our dataset.
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While in the work of Tan and Mitra one download cycle was set to two weeks, in here the

granularity of a download cycle is one day. Also, their dataset is composed of snapshots

of the pages from the WebArchive4 in period of 1 year, whereas we monitored pages

by approximately 2 months. Lastly, the shortsighted-adaptive (SAD), which considers

only the last visit, was the worse of the four weighting settings in our dataset. This

shows once more that the history of the pages is an important source of information

for prediction of future change behavior of pages.

Table 4.3 presents the average Change Ratio achieved by all methods. When

looking to these results, we can see again that our GP4C approach produced score

functions superior to all baselines. We observe that the results for Rand and Age are

far away from the five baselines and the three GP4C approaches. Recall that in Rand,

the scores are randomly chosen, whereas in Age, they are equal to the time elapsed

since the page was last visited. These results stress the importance of good scheduling

policies to improvement of resources usage.

Another important point to observe in Table 4.3, is that our GP4C method

uses only the set of parameters adopted by the score function proposed by

Cho and Garcia-Molina (2003b) (i.e., n,X), plus the time since last visit t. When

comparing our results to the ones obtained by their proposed function, we can see that

our method was able to produce fair better results, increasing the Change Ratio from

about 0.64 to about 0.70, which represents an improvement of almost 10%. These

results become more important when considering that our framework can easily derive

other functions if more parameters are given as input.

The best baseline method in the experiments was NAD, with Change Ratio of

about 0.69. This baseline uses other set of parameters that may provide more useful

information about the updating behavior of the web pages. However, still our function

was slightly better than it.

4.7 Performance

We measured the execution time of each phase of the GP4C process. Table 4.4 shows

the total time spent in the whole GP4C process, as well as the time spent only in the

population evaluation during training and validation phases. For each seed value, we

report only the total time for all 5 folds in each phase, which means that the times

include 5 training phases and 5 validations phases (one for each fold of the dataset).

We can observe that the time spent executing the crawl simulations corresponds

4http://archive.org
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Table 4.3. Average Change Ratio for all days

Method Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Rand 0.185346 0.186671 0.185507 0.185537 0.185372 0.185687

Age 0.212147 0.213900 0.212727 0.213534 0.212928 0.213047

NAD 0.683776 0.693682 0.686584 0.694109 0.688084 0.689247

SAD 0.509400 0.518945 0.515104 0.523776 0.515605 0.516566

AAD 0.627277 0.642546 0.628031 0.642494 0.631454 0.634360

GAD 0.597471 0.607425 0.596756 0.605747 0.600741 0.601628

CG 0.639913 0.650251 0.637702 0.648119 0.643575 0.643912

GP4CBest 0.703514 0.706889 0.711833 0.713094 0.693782 0.705822

GP4C Sum 0.703375 0.705202 0.711441 0.707909 0.676050 0.700795

GP4CAvg 0.703375 0.705202 0.711441 0.707909 0.688882 0.703362

to more than 99% of the total time of the GP4C process. The times for each seed

value vary because different individuals are created across generations for different

seed values, and the time to compute the scores depend on the structural complexity

of each individual created. Although there are differences, the coefficient of variation

of the execution times for all seeds is only 1.5%, which means that the seed values do

not have a very large impact in the execution time.

Table 4.4. Execution time of each phase of the GP4C process in seconds.

Seed values
Phase 111 222 333 444 555 Total %

Population Evaluation 43213 44321 44452 43095 44236 219316 99.624%
Validation 161 149 196 142 171 819 0.372%

Pop. Eval. + Validation 43374 44470 44647 43237 44407 220136 99.996%

Total time 43375 44472 44649 43239 44409 220144 100.000%

4.8 Summary of the Chapter

In this chapter we presented an experimental evaluation of GP4C using a dataset

crawled from the Brazilian Web. We showed that the scheduling policies created using

GP4C were able to create functions that outperform the baselines considered in most

download cycles using only a very simple set of terminals. We also presented the

execution time of the GP4C process to show that it is a viable solution to web crawlers.
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Conclusions and Future Work

In this work, we presented a Genetic Programming based framework to automatically

generate score functions to be used by schedulers of web crawlers. We experiment our

framework in the task of providing a score function to rank web pages according to

their likelihood of being modified on the web since the last time they were crawled.

The problem of finding such score function has been addressed by several authors in

literature, and we compare the performance of the functions generated by our method

to the best baselines we found.

The experiments have shown the ability of our framework to derive good compet-

itive score functions for scheduling web pages updates. The functions generated were

superior to all the baselines considered. For instance, the functions created using our

GP4CBest method were statistically superior in most of the simulated download cycles.

An advantage of our framework is that it provides means for deriving new score

functions if new features are provided as input, while previous work presented only

punctual score functions, instead of a framework to generate them. For instance, our

method would be able to incorporate information such as PageRank of the pages, cost

for crawling, and even take the novelty of pages into account.

Further, the fitness function can also be adapted to take new crawling objectives

into account, such as the importance of the pages, the likelihood of the page being

presented to the final users in search results, the click through of pages in the system,

chances of finding novel pages and so on. Once the input and the fitness functions

are defined, our framework can be used to derive new functions. We intent to better

explore such alternatives as future work.

Finally, in another research direction, we want to investigate the usage of our

framework to derive score functions that allows the crawler to download important

pages earlier in the crawl. The features in these case should be the ones usually
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adopted in scheduling policies which pursue that objective, and the fitness function

could be the weighted coverage metric previously presented.

We also plan to study the possibility of deriving functions to balance the two

main objective functions of a scheduler: freshness and coverage. Besides that, there

is a plenty of work regarding multi-objective optimization in Genetic Programming,

which can also be explored to improve the scheduling policies generated.
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