
ar
X

iv
:1

20
1.

60
33

v1
 [

cs
.S

E
]

 2
9

Ja
n

20
12

Compact Symbolic Execution

Marek Trt́ık

Faculty of Informatics, Masaryk University, Brno, Czech Republic
trtik@fi.muni.cz

Abstract. We present a generalisation of King’s symbolic execution
technique called compact symbolic execution. It is based on a concept
of templates: a template is a declarative parametric description of such
a program part, generating paths in symbolic execution tree with regu-
larities in program states along them. Typical sources of these paths are
program loops and recursive calls. Using the templates we fold the cor-
responding paths into single vertices and therefore considerably reduce
size of the tree without loss of any information. There are even programs
for which compact symbolic execution trees are finite even though the
classic symbolic execution trees are infinite.

1 Introduction

Classic symbolic execution as proposed by King in 1976 [8] systematically ex-
plores all real paths in an analysed program. There is typically huge (or even
infinite) number of real paths even for very small and simple programs. There-
fore, exploration of the real paths becomes a serious problem. We speak about
the path explosion problem.

Compact symbolic execution also explores all real program paths, but in a
very compact manner. We analyse a given program before we start its symbolic
execution. We look for those parts of the program, which might produce real
paths with some regularities in program states along them. Typically, program
loops and recursion produces these regularities. We analyse the program parts
independently from the remainder of the program. If the analysis of a part suc-
ceeds, then a result is a template, i.e. a declarative parametric description of the
complete behaviour of the analysed part. Therefore, an output from the program
analysis is a set of templates. Now we can execute the program symbolically with
the templates. Until we reach some of the successfully analysed program parts,
we proceed just like in classic symbolic execution. Let us now suppose we have
just reached such a part. Having a template for the part, we do not need to sym-
bolically execute interior of the part. We just instantiate the template into the
end of the current path and then we jump behind the part, where we continue
with classic symbolic execution again.

Let us consider a symbolic execution reaching a loop. The execution may
fork into a huge number of other symbolic executions during the execution of
the loop. Each such execution has its own path in symbolic execution tree of
classic symbolic execution. But having a template for the loop, we represent

http://arxiv.org/abs/1201.6033v1

all these paths by a single one with the instantiated template. In other words,
a single path explored by compact symbolic execution may represent a huge
number of paths explored by classic symbolic execution. And that is the cause
of the considerable space savings of compact symbolic execution. On the other
hand, we will see that compact symbolic execution has higher requirements to
performance of SMT solvers then classic one.

The worst case for compact symbolic execution is, when we fail to compute
any template for a given program. Compact symbolic execution then reduces to
classic one, and we gain no space savings.

2 Overview

In this section we give an intuition of compact symbolic execution. For simplic-
ity of presentation we use the following definition of a program. Although our
programs are simple they support typical imperative constructs and recursion.

Definition 1 (Program) A program is a collection of functions and global
variables. Each function has its own local variables. All program variables and
functions have different names. Exactly one function is marked as starting one.
Each function is represented as an oriented graph. Vertices in the graph identify
program locations, while edges define transitions between them. We distinguish a
single entry and exit location in each graph. There is no in-edge to entry location
and there is no out-edge from the exit one. We label edges by actions to be taken
when moving between connected locations. An action can be

(1) An assignment of the form <variable>:=<expression>,
(2) Call by value statements

(a) <variable>:=<function-name>(<arg-list>), or
(b) <function-name>(<arg-list>)

(3) A return value statement ret <expression>,
(4) skip statement, which does nothing, or
(5) A boolean expression over program variables.

If an edge e = (u, v) is labelled by one of the actions (1)-(4), then out-degree of u
is 1. Otherwise, label of e is an action (5), out-degree of u is 2 and its out-edges
are labelled by boolean expressions γ and ¬γ. No action (2) can reference the
starting function and no entry nor exit location is incident with an edge having
an action (2). Each function f is assigned a unique global variable retf used
for actions (2a) to save a return value being later assigned to the destination
variable. And for simplicity we do not consider pointer arithmetic nor heap allo-
cations. We prevent invalid operations in actions (like division by zero, etc.) by
branchings into error locations. An error location is any location with a single
out-edge heading back to that location and it is labelled with skip action.

We can see an example of a program at Figure 1 (a). The depicted function
linSrch returns the least index i into the array A such that A[i]==x. If x is not
in A at all, then it returns -1.

2

We first briefly describe classic symbolic execution as proposed by King [8].
Instead of passing concrete data into parameters of the starting function, we pass
symbols from a set {α0, α1, . . .}. Let us suppose we pass symbols α0 and α1 to
variables a and b respectively. After executing an action c:=2*a+b the variable
c will contain a symbolic expression 2α0+α1 as its value. Symbolic memory is a
function θ from program variables to a set of symbolic expressions. We further
maintain a boolean symbolic expression ϕ called path condition. It represent a
complete identifier of a particular program path taken during an execution. ϕ is
initially true and it can be updated at program branchings. Let θ be a symbolic
memory having θ(a) = α0, θ(b) = α1 and θ(c) = 2α0 + α1 and let c-a>2*b and
c-a<=2*b be actions of out-edges of an branching location. For the first action we
proceed as follows. We evaluate the action in θ. The result is a boolean symbolic
expression α0 + α1 > 2α1. If ϕ → (α0 + α1 > 2α1) is satisfiable, we update
ϕ to ϕ ∧ (α0 + α1 > 2α1) and we continue the execution by crossing the edge
having the action. Then we proceed similarly for the second action. Note that
if both implications are satisfiable, we fork the execution into two parallel and
independent executions. Besides a symbolic memory and a path condition we
commonly have a call stack Ξ and we also need to identify a current program
location l. Putting all the things together we get a program state represented by
a tuple s = (θ, ϕ,Ξ, l). Note that we understand a call stack record as pairs (σ, l),
where l is a return location and σ is a restriction of a symbolic memory to local
variables. Further, we commonly describe the symbolic execution of a program
by a tree structure called symbolic execution tree. Vertices of the tree are related
to program locations visited during the execution and edges reflect transitions
between the locations. Each vertex of the tree is labelled by a related program
state. But instead of labels T and F for branching edges (as proposed by King),
we label them by evaluated actions of the branching edges. Figure 1 (b) depicts a
part of symbolic execution tree of the example program from Figure 1 (a) (with
omitted program states labelling the vertices). Please ignore grey regions in the
tree for now. We assume that classic symbolic execution of the program started
with an initial symbolic memory θ = {(i, α0), (n, α1), (x, α2), (A, α3)}.

We often use the following dot-notation to access elements of tuples. If s =
(θ, ϕ,Ξ, l) is a program state, then s.θ denotes its symbolic memory, s.ϕ denotes
its path condition, s.Ξ is its call stack and s.l is a current program location.
Further, if u is a vertex of symbolic execution tree, then u.s denotes program
state labelling the vertex. And instead of u.s.θ, u.s.ϕ, u.s.Ξ and u.s.l we simply
write u.θ, u.ϕ, u.Ξ and u.l. Finally, if Ξ is a call stack then we use dot-notation
to access record at the top of the call stack. So, for example Ξ.l denotes return
location of record at the top of Ξ.

Symbols {α0, α1, . . .} in classic symbolic execution represent input values
to whole program. We generalise this concept to allow independent symbolic
execution of parts of an analysed program independently to the remainder. Each
such a part uses the symbols {α0, α1, . . .} relative to a chosen entry location to
the part. Then using a composition of program states (defined later) we can
express any run of classic symbolic execution as a composition of program states

3

resulting from analyses of the parts. Let s = (θ, ϕ,Ξ, l) be a program state
resulting from a symbolic execution from a program location l0 (e.g. the entry
location of the starting function), up to an entry location l of an independently
analysed program part. Let s′ = (θ′, ϕ′, Ξ ′, l′) be a program state resulting from
the analysis of the part, i.e. s′ represents a symbolic execution from the entry
location l to some exit location l′ from the part. Then s ◦ s′ = (θ ◦ θ′, ϕ ∧
θ〈ϕ′〉, Ξ ◦ (θ◦Ξ ′), l′) is composed program state representing symbolic execution
from l0 to l′ through the analysed part (entered in location l). We can see that
composition of program states is implemented as composition of their individual
components. We discuss very details of these operations in Section 3. Only note
that composed path condition is ϕ ∧ θ〈ϕ′〉 rather then ϕ ∧ ϕ′. This is because
ϕ′ may contain some symbols. But they are related to the entry location l of
the analysed part and not to the location l0. Therefore, we have to compose ϕ′

with θ first to express ϕ′ in terms of symbols relative to location l0. We do the
similar effect of shifting symbols from location l to l0 in the compositions θ ◦ θ′

and θ ◦ Ξ ′.

a

b

i:=0

c

i<n

f

i>=n

dA[i]!=x

++i

e

A[i]=x

g

ret i

ret -1

a

b

c

0 < α1

f

0 ≥ α1

g
d

α3(0) 6= α2

e

α3(0) = α2

g b

c

1 < α1

f

1 ≥ α1

g
d

α3(1) 6= α2

e

α3(1) = α2

g b

a

b

e

γe

f

γf

g g

s

s′e s′f

(a) (b) (c)

Fig. 1. (a) A program with a function linSrch(A,n,x). (b) Symbolic execution tree
of function linSrch. (c) Compact symbolic execution tree of function linSrch.

In symbolic execution tree at Figure 1 (b) there is a single path highlighted
by a sequence of grey regions. Vertices in each region are related to the same
sequence of program locations: b, c, d, b. Moreover, we enter the path at vertex
referencing location b and we can leave the path either by stepping into a vertex
referencing location e or into a vertex referencing location f . Let us denote the
entry vertex into the path as b0 and the exit vertices from the path referencing
locations e and f as e0, e1, . . . and f0, f1, . . . respectively being indexed from the
top down. Our goal is to completely eliminate the path in grey from the tree,
while still representing all real program paths. One way to do so is to represent

4

whole the path by a single vertex, b say, with two direct successors. The first
successor, e say, represents all the exit vertices ei from the path and the second,
f say, representing all the exits fi. Note that names of the vertices b, e and f also
represent program locations they reference. We label the vertex b by the program
state labelling b0. But the question is what program states we should assign to
the vertices e and f . Note that two different vertices ei and ej may be labelled
by different program states. So, for the vertex e we need to introduce a program
state e.sJκK, parametrised by a parameter κ, such that each program state ei.s
can be equivalently expressed by e.sJκK, when κ is substituted by some number
ν. Of course, for different states ei.s and ej .s there are different numbers, say νi
and νj , for parameter substitution. We similarly need a parametrised program
state f.sJκK for the vertex f . We compute the states e.sJκK and f.sJκK before
we start symbolic execution of the program from the Figure 1 (a) by analysing
the following its part. The part consists of all the locations b, c, d, e, f discussed
above and of all the edges between them. Note that the sequence b, c, d, b of
locations forms a cyclic path inside the analysed part. This cycle is actually the
source of the path in grey regions. Nevertheless, we want to describe program
states at exits form the part. The exits from the part are target vertices of those
edges of the part, which do not belong to the cycle. Therefore, locations e and
f are the exits from the part. We also identify the location b as entry location
into the part, since we can enter the part by stepping into location b. The part is
completely defined now. We analyse it independently from the remainder of the
program. It mainly means that if we use some symbols αi in the analysis, then
they are related to the entry location b of the part and not to the entry location
of the whole program. At this point we are more concerned about formulation
of a result from the analysis and its usage then the analysis itself. Therefore,
we postpone its description to Section 5. We assume here that key properties
e.sJκK and f.sJκK from the analysis are already computed, so we may formulate
an output from the analysis of the part as the following template

t = (b, 2, {(θe, ϕe, [], e)JκK, (θf , ϕf , [], f)JκK}),

where b is the entry location to the analysed part, the number 2 identifies number
of following parametrised program states and the remaining two tuples are the
parametrised program states e.sJκK and f.sJκK respectively. Note that [] identifies
empty call stack. The template contains all the information we need to build
compact symbolic execution tree, where the path in grey is folded as described
above.

Let us symbolically execute the program at Figure 1 (a) with the template
t. We construct a compact symbolic execution tree during the execution. The
tree is depicted at Figure 1 (c). We apply classic symbolic execution, until we
reach the entry location t.b. Let b be the vertex in the tree, when we reach the
location t.b and let s be the program state b.s. We now instantiate the template.
Since we have exactly two program states in t, we create exactly two successor
vertices e and f of the vertex b in the tree. The vertices e and f references lo-
cations t.e and t.f respectively and they are further labelled by program states

5

s ◦ (t.θe, t.ϕe, [], t.e)JκK and s ◦ (t.θf , t.ϕf , [], t.f)JκK respectively. We
finish the instantiation of t by creating edges (b, e) and (b, f) labelled by sym-
bolic expressions s.θ〈t.ϕeJκK〉 and s.θ〈t.ϕf JκK〉 respectively. The situation is also
depicted at Figure 1 (c). Then we continue from both vertices e and f inde-
pendently using classic symbolic execution again. These both executions reaches
function exit location g in one step and compact symbolic execution terminates.

Let us now have a look at Figure 2 (a) depicting a program with a function
countIf. The function counts number of elements in array A having values equal
to x. We show the symbolic execution tree of the program at Figure 2 (b). There
we can see several sequences of grey regions. According to our experience with the
previous example we can easily detect that all that paths in grey are generated
by a single program part consisting of locations c, d, e, f, g and edges between
them. But there are two cyclic paths π = c, d, e, f, c and π′ = c, d, f, c inside
the part. Nevertheless, the grey regions highlight only the cycle π. So, we ignore
the cycle π′ and π is therefore the only cycle we consider. The remainder is now
obvious. The locations f and g are exits from the part and c is the entry location
into the part. The analysis of the path (discussed later in Section 5) computes
the following template

t = (c, 2, {(θf , ϕf , [], f)JκK, (θg, ϕg, [], g)JκK})

Compact symbolic execution with the template t computes compact symbolic
execution tree depicted at Figure 2 (c). The tree is basically a single link list. Note
that we instantiate the template each time we reach the location c. But for each
such instantiation we need a fresh parameter to prevent parameter collisions from
previous instantiations. We assume we have infinitely many different names for
the parameters. Therefore, expressions and program states at Figure 2 (c) are as
follows: γig = sic.θ〈t.ϕgJκiK〉, γif = sic.θ〈t.ϕf JκiK〉, sig = sic.θ ◦ (t.θg, t.ϕg, [], g)JκiK

and sif = sic.θ ◦ (t.θf , t.ϕf , [], f)JκiK.
The sequences of grey regions in the tree at Figure 2 (b) goes bottom left.

But imagine they would go bottom right. Then each region would represent a
sequence of program locations c, d, f, c. If we analysed closer these sequences of
grey regions, we would realise that there is a part of the program from Fig-
ure 2 (a) consisting of vertices c, d, f, e, g, where c, d, f, c is the only cycle in the
part, c is the entry location into the part and locations e and g are exits from
the part. If we further built a template from the part and run compact sym-
bolic execution with it, we would also receive a compact symbolic execution tree
forming basically a single linked list.

Besides cyclic paths, recursive calls also produce real program paths with
regularities in program states along them. At Figure 3 (a) there is a recursive
function linSrchRec which is equivalent to the function linSrch discussed be-
fore. Symbolic execution tree of the function is depicted at Figure 3 (b). The
root of the tree is the left-most vertex referencing program location a. There
are two sequences of grey regions. The top sequence represents recursive calls,
while the bottom sequence represents returning from the calls. We see that top
sequence goes from left to the right. The bottom sequence goes in the opposite

6

a

b

k:=0

c

i:=0

d

i<n

e

A[i]=x

f

A[i]!=x

++k

++i g

i>=n

h

ret k

a

b

cg
γ1

g

h f

γ1

f

cg
γ2

g

h f

γ2

f

s1g

s2g

s1f

s2f

s1

s2

(a) (c)
a

b

c

d

0 < α1

f

α3(0) 6= α2

e

α3(0) = α2

f

g
0 ≥ α1

h

c

c

d

1 < α1

f

α3(1) 6= α2

e

α3(1) = α2

f

g
1 ≥ α1

h

c

c

d

1 < α1

f

α3(1) 6= α2

e

α3(1) = α2

f

g
1 ≥ α1

h

c

c

d

2 < α1

f
α3(2) 6= α2

e

α3(2) = α2

f

g
2 ≥ α1

h

c

c

d

2 < α1

f
α3(2) 6= α2

e

α3(2) = α2

f

g
2 ≥ α1

h

c

c

d

2 < α1

f
α3(2) 6= α2

e

α3(2) = α2

f

g
2 ≥ α1

h

c

c

d

2 < α1

f

α3(2) 6= α2

e

α3(2) = α2

f

g
2 ≥ α1

h

c

c

(b)

Fig. 2. (a) A program with a function countIf(A,n,x). (b) Symbolic execution tree
of function countIf. (c) Compact symbolic execution tree of function countIf.

direction. We can further see there is one to one correspondence between regions
of both sequences. Below each region in the top sequence, there is a single region
of bottom sequence. Paths in both sequences of regions are connected in the

7

a

b

i<n

c

A[i]!=x

e

A[i]=x

d

t:=linSrch(

A,i+1,n,x)

f

i>=n

gret t

ret i
ret -1

a

f
0 ≥ α1

b

0 < α1

e
α3(0) = α2

c
α3(0) 6= α2

d

g

a

f
1 ≥ α1

b

1 < α1

e
α3(0) = α2

c
α3(1) 6= α2

d

g

a

f

γf

e

γe

g

g

g

g

sf se

s1g s2g

s1 s2

(a) (b) (c)

Fig. 3. (a) A program with a recursive function linSrch(A,i,n,x). (b) Symbolic exe-
cution tree of the recursive function linSrch. (c) Compact symbolic execution tree of
the recursive function linSrch.

tree. But this is not shown in the figure. The connection happens, when all the
recursive calls are done and some basic case is executed in the recursive function.
Then we get to the path of the bottom regions.

Let us first focus on the path at the top sequence of regions. Vertices in each
region are related to the same sequence of program locations: a, b, c, a. Moreover,
we enter the path in a vertex referencing location a and we can leave the path
either by stepping into a vertex referencing location f or into a vertex referencing
location e. If we look at the program (at Figure 3 (a)), the sequence a, b, c, a forms
a cyclic path in it. Of course, the edge (c, a) is not explicit in the program. But
we consider it as a meta-edge labelled by an action simulating the effect of the
function call, as defined by action of edge (c, d). We now define a program part,
say P1, consisting of the cyclic path, the entry location a and two exit locations
f and e. The part represent the phase of recursive calls of the function linSrch.

Now we similarly analyse the path in bottom sequence of regions. Each region
repeats the same sequence of program locations g, d, g. The path is entered in
vertex referencing location g, but there is no exit from the path. The sequence
g, d, g of locations forms a cyclic path in the program (at Figure 3 (a)). Note,
that we assume there is an artificial edge (g, d) enclosing the cycle. Action of this
edge is supposed to simulate the effect of return from the function call, as defined
by action of edge (c, d). We want to define a program part P2 representing the
phase of returning from recursive calls. We have the cyclic path and we have
the entry location g to the part. But there is no exit from the part. Obviously,
the recursive calls ends in location g, where we leave the function. Therefore,
our exit location is g and we have the program part P2. Note that if we want
to formally match the exit location detection algorithm introduced for previous
examples, we may imagine there is an edge from g back to g and labelled by
skip action.

8

For the program parts P1 and P2 we compute the following templates t1 and
t1 as described in the previous examples.

t1 = (a, 2, {(θf , ϕf , [], f)JκK, (θe, ϕe, [], e)JκK})

t2 = (g, 1, {(θgJκK, true, [], g)}).

Note that the path condition of t2 is simply true, since we cannot escape from the
path. In other words, as there is no branching along the path, the path condition
cannot be updated from its initial value true. It is important to note, that both
templates use exactly the same parameter. The use of the same parameter creates
a link between the number of recursive calls and number of returns from them.
Having the templates we are able to formulate the template t for the recursive
function linSrchRec.

t = (a, 2, {(θf , ϕf , [], f)JκK, (θe, ϕe, [], e)JκK}, θgJκK, g)

The template t contains whole the template t1, but it took only symbolic memory
θg and the exit location g from the template t2.

We are ready to start compact symbolic execution with the template t. Sym-
bolic execution tree for the program is depicted at Figure 3 (c). First we step
into the program location a. The tree contains only the root vertex referenc-
ing location a. The location a is the entry location of t. Hence, we instantiate
the first part of t (related to phase of recursive calls, i.e. related to t1) into the
tree. The number 2 in t identifies, that the root will have two successor ver-
tices referencing locations f and e and they will be labelled by program states
sf = (θf , ϕf , [(t, κ)] ◦ [], f)JκK and se = (θe, ϕe, [(t, κ)] ◦ [], e)JκK respectively.
Note that we omitted composition of these states with the initial program state
labelling the root. We could do that, since composition of initial program state
with any other state produces the other state again. Also note that call stacks
of both states (i.e. []) are composed with a call stack containing a single special
record of the form (t, κ). This type of call stack record is introduced only for
templates of recursive functions. First of all, this single record represents any
number of subsequent recursive calls done by classic symbolic execution. And
the record also saves reference to the template t and the parameter κ used in
the instantiation. We note that edges from the root to its successors are labelled
by expressions γf ≡ t.ϕf JκK and γe ≡ t.ϕeJκK. Having computed successors of
the root, we continue by classic symbolic execution independently from both
of these vertices, until we reach the location g. For both the executions we do
the same think at the location g. Let us consider execution continuing from the
successor referencing location f . We need to instantiate the second part of the
template representing returns from the recursive calls. So, we remove the record
(t, κ) from the top of the call stack, but we take the template t and the parame-
ter κ stored in the record (t, κ). In general, between both instantiation parts of
a given template, there might be executed any code, there can be instantiated
many other templates and there can even be instantiated the same template
several times always with different (fresh) parameters. That is why we save the
template and the parameter in the stack record. Let s1 be a program state of

9

the current leaf vertex of the tree. We create its only successor vertex labelled
with program state s1g = (s1.θ ◦ t.θJκ1K, s1.ϕ, [], g). We see that there are two
differences between states s1 and s1g. First of all call stack of s1g does not contain
the special record (t, κ) as we have popped it from the stack. And second, the
symbolic memory of s1g is the composition s1.θ◦ t.θJκ1K. Further classic symbolic
execution form the vertex terminates, since we are leaving exit location of the
starting function. We proceed similarly for the other run of symbolic execution
(from the second successor of the root), where we get the final program state
s2g = (s2.θ ◦ t.θJκK, s2.ϕ, [], g).

To summarise, a general scheme for compact symbolic execution of the ex-
amples above is as follows. We enumerate parts in a given program producing
paths with regularities in program states along them. Such sources are mainly
cyclic paths and pairs of cyclic paths representing recursion. For each enumer-
ated part we compute a template. Then we run compact symbolic execution
with the computed templates.

3 Definition

In this section, we give precise definition of templates parametrised by a single
parameter. Templates for recursion consists of two parts instantiated indepen-
dently into symbolic execution tree. These instances share the same parameter.
We therefore show a process of information passing between different instances
of the same template. And we further present compact symbolic execution algo-
rithm using templates with one parameter with possible information exchange
between instances. We start with basic terms valid for compact symbolic execu-
tion with any kinds of templates. We assume for the rest of this section that P
is a program.

An injective function Θ from a set of all program variables of P to a set of
symbols {α0, α1, α2, . . .} is an initial symbolic memory of P . For each program
variable a its symbol Θ(a) represents some yet unknown value of that variable.
So, Θ(a) must belong to a domain of a (i.e. Θ(a) is of a’s type). Further, nu-
meric symbolic expression is application of operators to numeric constants and
symbols. Boolean symbolic expression is either an equality or inequality predi-
cate over numeric symbolic expressions, or an application of logical connectives
to other boolean symbolic expressions. Symbolic expression is either numeric or
boolean symbolic expression. We have already given the definition of symbolic
memory, call stack and program state in Section 2. But we in addition define
for any program state s = (θ, ϕ,Ξ, l) that θ(a) = Θ(a), for each local variable a
undefined at location l. Also note that Θ is just a special symbolic memory.

The pseudo-code of Algorithm 1 represents two algorithms. If we consider
only unmarked lines, we get algorithm of classic symbolic execution. If we add
lines marked with � we get algorithm of compact symbolic execution with tem-
plates with a single parameter. The lines marked by ∗ are responsible for con-
struction of symbolic execution tree. Obviously, both classic and compact sym-

10

bolic executions can appear at both versions: with and without construction of
the tree.

We now describe the algorithm of classic symbolic execution. At line 2, there
we create initial program state and then we insert it into a queue Q. The queue
Q keeps all program states for which we have not been computing successor
program states yet. Until Q becomes empty, we iterate the loop at lines 5–
38. At line 7 we detect whether actually processed program state s is final or
not. If it is not, we compute its successors at line 32. In short, the function
computeClassicSuccessors either executes actions of out-edges from location
s.l or it resolves return from a call, if s.l is a function exit location. We already
gave an intuition how to symbolically execute actions at the beginning of Sec-
tion 2. We further see at line 34 that we discard all successors of s, whose path
conditions are not satisfiable. Discarded states do not represent real behaviour
of the program.

Now we focus on ∗-version of the algorithm.We create root of the tree labelled
by the initial program state at line 4. When processing a state s inside the loop
we take the only leaf in the tree labelled with s at line 33. We compute its
successor vertices at lines 36 and 37. Note that the successors are labelled by
successor states of s.

We have to postpone description of �-version of the algorithm, until we
have properly defined templates the algorithm uses. The first step toward the
definition is introduction of parameters and their substitution.

We distinguish a set {κ, τ, κ1, τ1, κ2, τ2, . . .} of variables called parameters,
ranging over non-negative integers. We extend numeric symbolic expressions
such that they may also contain application of operators to parameters. We
allow boolean symbolic expression to contain quantification of parameters. We
further naturally extend symbolic memories, call stacks and program states to
contain symbolic expressions with parameters. When we want to emphasise that
κ is a set of all parameters appearing in a symbolic expression ϕ, we denote it
as ϕJκK. And if we want to emphasise that a symbolic expression ϕ does not
contain any parameter, we denote it as ϕJK. We naturally extend the notations
above for symbolic memories, call stacks and program states.

We now describe substitution of parameters. Each function from a finite set
of parameters to non-negative integers is valuation. Let ϕJκK, θJκK, ΞJκK and
sJκK be a symbolic expression, a symbolic memory, a call stack and a program
state respectively, κ 6= ∅ and ν be a valuation defined for all parameters in κ.
Then we compute ϕJνK from ϕJκK such that we substitute all parameters in ϕ
by related integers in ν. We compute θJνK from θJκK such that we substitute all
parameters in all the expressions in θ by related integers in ν. Substitution of call
stack parameter is a bit more complicated, since we introduced the special form
(t, κ) of a stack record in the last example of Section 2. Therefore, to prepare
ground for stack equivalence, we compute ΞJνK from ΞJκK in the following two
steps: (1) We update each record (σ, l) of the call stack Ξ to (σJνK, l) (note
that σ is basically symbolic memory, only restricted to local variables). (2) Each
record of the special form (t, κ) in the call stack form the previous step is either

11

Algorithm 1: executeSymbolically

Input: P - program to be executed
d - set of template detectors (only in �-version)

Output: E - set of final program states
T - symbolic execution tree of P (only in ∗-version)

1� Let p be a set of all templates detected in P by detectors d
2 s0 := (Θ, true , [], entry location of the starting function)
3 Le Q be a queue of program states initially containing only s0
4∗ Create a root vertex of T labelled with s0
5 repeat

6 Extract the first program state s from Q

7 if s.l is the exit location of the starting function or an error location then

8 Insert s into E

9 else

10 S := ∅
11� if top(s.Ξ) = (t, κ) ∧ s.l = s.Ξ.t.l′ then /* returning from recursion */
12� t := s.Ξ.t

13� κ := s.Ξ.κ

14� Replace all occurrences of the former parameter in t by κ

15� s′ := (s.θ ◦ t.θJκK, s.ϕ, pop(s.Ξ), t.l′)
16� Insert s′ into S

17� else

18� p′ := getTemplatesAt(s.l, p)

19� if p′ 6= ∅ then

20� t := chooseTemplate(p′)

21� κ := getFreshParam()

22� Replace all occurrences of the former parameter in t by κ

23� if t is a recursion template then /* recursive calling */
24� foreach i = 1, . . . , t.n do

25� s′ := s ◦ (t.θi, t.ϕi, [(t, κ)] ◦ t.Ξi, t.li)JκK
26� Insert s′ into S

27� else /* t is a general template with one parameter */
28� foreach i = 1, . . . , t.n do

29� s′ := s ◦ (t.θi, t.ϕi, t.Ξi, t.li)JκK
30� Insert s′ into S

31� else /* applying classic symbolic execution step */
32 S := computeClassicSuccessors(P, s)

33∗ Let u be a leaf of T whose label is s
34 foreach program state s′ ∈ S such that s′.ϕ is satisfiable do

35 Insert s′ at the end of Q
36∗ Insert a new vertex v labeled with s′ into T

37∗ Insert an edge (u, v) into T

38 until Q becomes empty
39 return E

40∗ T

12

discarded, if ν(κ) = 0, or it is replaced by ν(κ) records (⊥,⊥), where symbol
⊥ represent any possible content. Therefore, the record (⊥,⊥) represents any
possible stack record (the first ⊥ in the record represents any possible content
of σ and the second ⊥ represents any possible program location).

We often use the following simplified notation. If an expression ϕ contains
exactly one parameter κ and a {(κ, ν)} is a valuation, then we write ϕJκK and
ϕJνK instead of ϕJ{κ}K and ϕJ{(κ, ν)}K respectively. The notation also applies
to symbolic memories, call stacks and program states.

Next we define composition of program states and equivalence between them.
We also express some basic equivalences for compositions.

Definition 2 (Composition) Let Ξ = [r0, . . . , rm] and Ξ ′ = [r′0, . . . , r
′
n] be

call stacks and s = (θ, ϕ,Ξ, l) and s′ = (θ′, ϕ′, Ξ ′, l′) be program states. Then
composite program state s ◦ s′ = (θ ◦ θ′, ϕ ∧ θ〈ϕ′〉, Ξ ◦ (θ ◦ Ξ ′), l′), where θ〈ϕ′〉
is a symbolic expression constructed from ϕ′ such that all symbols αi in ϕ′ are
simultaneously substituted by symbolic expressions θ(Θ−1(αi)), θ◦θ′ is a symbolic
memory such that for each variable a we have (θ ◦ θ′)(a) = θ〈θ′(a)〉, θ ◦ Ξ ′ =
[r̄′0, . . . , r̄

′
n], where each r̄′i is equal to ri except the first component being r̄′i.σ =

θ ◦ r′i.σ, and Ξ ◦ (θ ◦ Ξ ′) = [r0, . . . , rm, r̄
′
0, . . . , r̄

′
n], .

Definition 3 (Equivalence) Let ϕ, ϕ′ be symbolic expressions, θ, θ′ be sym-
bolic memories, Ξ = [r0, . . . , rm], Ξ ′ = [r′0, . . . , r

′
n] be call stacks and s, s′ be

program states. Then ϕ ≡ ϕ′, if ϕ and ϕ′ are either logically equivalent boolean
symbolic expressions or numeric symbolic expressions such that (ϕ = ϕ′) ≡ true.
θ ≡ θ′, if for each variable a we have θ(a) ≡ θ′(a). Ξ ≡ Ξ ′, if m = n and for
each i ∈ {0, . . . ,m} we have ri.σ and r′i.σ are defined for the same variables
with equivalent values and ri.l = r′i.l. And s ≡ s′, if both s and s′ have equal or
equivalent components.

When returning from a function call, values of local variables are discarded.
Therefore, if we have two program states at the same exit location of a function,
we may restrict equivalence between symbolic memories of these states only
to global variables. Therefore we define also the following equivalence between
program states.

Definition 4 (Equivalence on Global Variables) Let s and s′ be program

states. Then s is equivalent on global variables with s′, written by s
g
≡ s′, if they

have equal or equivalent components except one with symbolic memories, where
for each global variable a we require s.θ(a) ≡ s′.θ(a).

We summarise basic equivalences between composed program states in the
following lemma. We do not provide proof since the equivalences is mostly ob-
vious or easy to check.

Lemma 1 (Equivalent Compositions) Let s, s′ and s′′ be program states, ν
and ν

′ be valuations of all parameters in s and s′ respectively such that ν ∪ν
′ is

also a valuation, θ, θ′ and θ′′ be symbolic memories and ϕ and ψ∧ψ′ be symbolic

13

expressions. Then s ◦ (s′ ◦ s′′) ≡ (s ◦ s′) ◦ s′′, sJνK ◦ s′Jν ′K ≡ (s ◦ s′)Jν ∪ ν
′K,

θ ◦ (θ′ ◦ θ′′) ≡ (θ ◦ θ′) ◦ θ′′, (θ ◦ θ′)〈ϕ〉 ≡ θ〈θ′〈ϕ〉〉 and θ〈ψ〉 ∧ θ〈ψ′〉 ≡ θ〈ψ ∧ ψ′〉.

Before we formulate a definition of templates with one parameter we give
its intuition. Let us consider a part of the program P with an entry location e
and n distinct exit locations x1, . . . , xn. We saw in Section 2, that key properties
for building a template of the part are program states s1JκK, . . . , snJκK at exit
locations x1, . . . , xn. We need to ensure that states siJκK correctly represent
behaviour of the analysed part. King proved [8] that path conditions at leaf
vertices of symbolic execution tree T of P are satisfiable. Therefore, if si.ϕ is
not satisfiable, then there cannot be a path in T traversing the part form e to xi.
The exit xi is thus useless for the construction of the template and we omit it.
King further showed [8] that for two different leaf vertices u and v of T we have
u.ϕ∧ v.ϕ ≡ false. This statement is also valid for program parts. So, we require
(si.ϕ ∧ sj .ϕ) ≡ false for all different i and j. We summarise these requirements
in the following definition.

Definition 5 (Templates with one parameter) Let T be symbolic execution
tree of P computed by ∗-version of Algorithm 1, n > 0 be an integer, l, l′, l1, . . . , ln
be locations in P , κ be a parameter, θJκK, θ1JκK, . . . , θnJκK be symbolic memories
ϕ1JκK, . . . , ϕnJκK be satisfiable boolean symbolic expressions such that for each
i, j ∈ {1, . . . , n}, i 6= j we have (ϕi ∧ϕj) ≡ false and let Ξ1JκK, . . . , ΞnJκK be call
stacks.

A tuple t = (l, n, {(θ1, ϕ1, Ξ1, l1), . . . , (θn, ϕn, Ξn, ln)}) is a template with
one parameter κ in P , if

(L1) All the locations l, l1, . . . , ln in t are neither entry nor exit ones.

(L2) For each path π = uω in T from any vertex u satisfying u.l = t.l to a leaf,
there is a vertex w ∈ ω, an index i ∈ {1, . . . , n} and an integer ν ≥ 0, such
that w.s ≡ u.s ◦ (t.θi, t.ϕi, t.Ξi, t.li)JνK.

(L3) For each vertex u of T , an index i ∈ {1, . . . , n} and non-negative integer ν
such that u.l = t.l and (u.ϕ∧ u.θ〈t.ϕiJνK〉) is satisfiable, there is a successor
w of u in T such that w.s ≡ u.s ◦ (t.θi, t.ϕi, t.Ξi, t.li)JνK.

A tuple t = (l, n, {(θ1, ϕ1, Ξ1, l1), . . . , (θn, ϕn, Ξn, ln)}, θ, l′) is a recursion
template with one parameter κ in P , if

(R1) t.l and t.l′ are entry and exit locations of the same function respectively and
t.l′ is the target vertex of an edge with a call action of that function. All the
locations l1, . . . , ln in t are neither entry nor exit ones.

(R2) For each path π = uω in T from any vertex u satisfying u.l = t.l to a leaf,
there is a non-leaf vertex w ∈ ω, an index i ∈ {1, . . . , n} and an integer
ν ≥ 0, such that w.s ≡ u.s ◦ (t.θi, t.ϕi, [(t, κ)] ◦ t.Ξi, t.li)JνK.

Further, if there is the first successor w̄ of w in π such that w̄.l = t.l′ and
w̄.Ξ = w.Ξ, then there is a non-leaf vertex ū in a suffix of π starting with

w̄ such that ū.s
g
≡ (w̄.θ ◦ t.θJνK, w̄.ϕ, u.Ξ, t.l′).

14

(R3) For each vertex u of T , an index i ∈ {1, . . . , n} and non-negative integer ν
such that u.l = t.l and (u.ϕ∧ u.θ〈t.ϕiJνK〉) is satisfiable, there is a successor
w of u in T such that w.s ≡ u.s ◦ (t.θi, t.ϕi, [(t, κ)] ◦ t.Ξi, t.li)JνK.

Note that requirements (L2) and (R2) guarantees that no path in T with
vertices u and v such that u.l = l and v.l = li is suppressed by the state
(t.θi, t.ϕi, t.Ξi, t.li)JκK. And requirement (L3) and (R3) guarantees that pro-
gram state (t.θi, t.ϕi, t.Ξi, t.li)JκK does not produce unreal paths. Also note
that in requirement (R2) there we use restriction of equivalence to global vari-
ables for the phase of returning from recursive calls. Since values of local variables
are not important when returning from a function call, the restriction may help
to simplify detection of a recursion template.

We are ready to describe �-version at Algorithm 1. At line 1 there we detect
templates with one parameter in the passed program P . That is a task for so
called template detectors. We discuss a possible construction of such a detector
in Section 5. The only purpose of lines 11–31 is to compute successor states of
a currently processed program state s. Let us first assume the test at line 11 is
false . So, we get to line 18. There we call a system function getTemplatesAt,
which selects those templates, whose entry locations matches the actual program
location s.l. If the selection is not empty we may instantiate one of the selected
templates. A system function chooseTemplate is supposed to choose exactly one
template t to be instantiated. We may for example choose randomly. We do not
put any constraints to the selection strategy. To prevent parameter collisions
we first get a fresh one at line 21 and then we replace the parameter used
in t by default by the fresh one. Now we have two possibilities. Either t is a
recursion template or not. In the first case we get to a loop at line 24. There
we create t.n successors of the program state s (see line 25). Note that call
stack of i-th successor state is of the form s.Ξ ◦ [(t, κ)] ◦ t.Ξi. It means that
the special record is at the position in the stack, when we entered the recursive
function. The only special record (t, κ) in the call stack represents any possible
number of subsequent recursive calls in classic symbolic execution. The record
also saves reference to the template t and the parameter κ for the later phase
of returning from the recursive calls. If t is not a recursion template, then it
must be our general purpose template with one parameter (since we do not
consider any other kinds of templates in this paper). So we get to line 28 in the
algorithm. There we also create successors of the program state s (see line 29). It
remains to discuss the computation of successors, when the condition at line 11
is true. The condition says that the location s.l references exit location of a
function and that there is the special record (t, κ) at the top of the call stack
s.Ξ. In other words, we reached the moment, when we have to return from
recursive calls. We first retrieve the recursive template and the parameter used
in the instantiation of t (see lines 12 and 13). After substitution of the default
parameter by the retrieved one, we finish the instantiation of t by computing
the only successor of the actual state. The successor state represents the effect
of all the returns from recursive calls done previously. This is ensured by using
of the same parameter form both phases of the instantiation of the template t.

15

A number of recursive calls therefore matches the number of returns form them.
Also note that call stack of the successor does not contain the special record.
We finish the description of the algorithm by the following observation. The
expressions computing successor states at lines 15, 25 and 29 precisely match
corresponding expressions in Definition 5. Note that at line 15 there the call stack
pop(s.Ξ) must be equal to one of a program state, for which we previously get
to line 25. And this program state had to be related to the entry location of a
function causing the recursive calls.

4 Soundness and Completeness

In this section we formulate and prove soundness and completeness theorems
for compact symbolic execution using recursive and general templates with one
parameter. The theorems say that both classic and compact symbolic execution
explore the same set of real paths of P . To avoid repetitions we assume for the
remainder of this section that P is a program, and T and T ′ are symbolic exe-
cution trees of the program P computed by ∗- and �, ∗-versions of Algorithm 1
respectively.

Lemma 2 Call stack records pushed at line 25 of Algorithm 1 cannot be adjacent
in call stacks of vertices of T ′.

Proof. Follows immediately from requirement for locations of templates in Defi-
nition 5 and from the fact, that reaching line 25 requires a processed state must
reference a function entry location.

Lemma 3 Let u ∈ T , u′ ∈ T ′, u′.Ξ 6= [], top(u′.Ξ) = (t, κ), u′.l is an exit

location and u.s
g
≡ u′.sJνK for some valuation ν. Then there are the only direct

successors w ∈ T and w′ ∈ T ′ of u and u′ respectively and they satisfy w.s ≡
w′.sJνK.

Proof. Follows directly from Lemma 2 and from the fact that successors of u′

are computed at line 32 of Algorithm 1.

Theorem 1 (Soundness) For each leaf vertex e ∈ T there is a leaf vertex
e′ ∈ T ′ and a valuation ν of all parameters in e′.s such that e.s ≡ e′.sJνK.

Proof. Let π be the path in T from the root to the leaf vertex e. We prove the
theorem by the following induction:

Basic case: The root vertices r and r′ of T and T ′ respectively are labelled
by the same program state s0 (see lines 2 and 4). So, r.s ≡ r′.sJνK, for ν = ∅.

Inductive step: Let u ∈ π, u 6= e, u′ be a vertex of T ′ and ν be a valuation
such that u.s ≡ u′.sJνK. We show, there is a successor w of u in π, a successor
vertex w′ of u′ in T ′ and a valuation ν

′ such that w.s ≡ w′.sJν ′K. And we
further show there is no vertex v′ in the path between u′ and w′ in T ′ such
that successors of v′.s are computed at line 25. There are four possible cases in
Algorithm 1 for u′.s:

16

(1) We reach line 28: According to Definition 5 (L2), there is a successor
vertex w of u in π, an index i and a non-negative integer ν for κ such that

w.s ≡ u.s ◦ (t.θiJκK, t.ϕiJκK, t.ΞiJκK, t.li)J{(κ, ν)}K

≡ u′.sJνK ◦ (t.θiJκK, t.ϕiJκK, t.ΞiJκK, t.li)J{(κ, ν)}K

≡ (u′.s ◦ (t.θiJκK, t.ϕiJκK, t.ΞiJκK, t.li))Jν ∪ {(κ, ν)}K

≡ s′Jν ′K,

where s′ is the i-th direct successor of u′.s computed at line 29. And since w ∈ T ,
we have w′.ϕ is satisfiable. Therefore, there is be a direct successor w′ of u′ in
T ′ with w.s = s′.

(2) We reach line 24: According to Definition 5 (R2), there is a successor
vertex w of u in π, an index i and a non-negative integer ν for κ such that

w.s ≡ u.s ◦ (t.θiJκK, t.ϕiJκK, [(t, κ)] ◦ t.ΞiJκK, t.li)J{(κ, ν)}K

≡ u′.sJνK ◦ (t.θiJκK, t.ϕiJκK, [(t, κ)] ◦ t.ΞiJκK, t.li)J{(κ, ν)}K

≡ (u′.s ◦ (t.θiJκK, t.ϕiJκK, [(t, κ)] ◦ t.ΞiJκK, t.li))Jν ∪ {(κ, ν)}K,

≡ s′Jν ′K,

where s′ is the i-th direct successor of u′.s computed at line 25. And since w ∈ T ,
we have w′.ϕ is satisfiable. Therefore, there is a direct successor w′ of u′ in T ′

with w.s = s′.
(3) We reach line 12: Let π′ be a path in T ′ from the root to the vertex u′.

According to connections between vertices u′ constructed for vertices u along π,
there is a predecessor x′ of u′ in π′, which pushed (at line 25) the record being at
the top of u′.Ξ. Obviously, successors of x′.s are computed at line 25. Therefore,
there is x ∈ π such that x.s ≡ x′.sJνK. According to case (2) there is a successor
y of x in π and a direct successor y′ of x′ in π′ such that y.s ≡ y′.sJνK. Note
that y′.s uses the parameter κ retrieved from stack u′.Ξ at line 13. Therefore,
valuation ν defines an integer ν = ν(κ). Also note that u is the first successor of
y in π with u.l being an exit location and u.Ξ = y.Ξ. Otherwise we would apply
this case (3) for some other vertex lying between y′ and u′ in π′. Therefore, from
Definition 5 (R2) there is a non-leaf vertex v in a suffix of π starting with u such
that

v.s
g
≡ (u.θ ◦ t.θJκK, u.ϕ, x.Ξ, t.l′)J{(κ, ν)}K
g
≡ (u′.θJνK ◦ t.θJκK, u′.ϕJνK, pop(u′.Ξ)JνK, t.l′)J{(κ, ν)}K
g
≡ (u′.θ ◦ t.θJκK, u′.ϕ, pop(u′.Ξ), t.l′)JνK
g
≡ s′JνK,

where s′ is the only successor state of u′.s computed at line 15. Since v ∈ T ,
then s′.ϕ is satisfiable and there is a direct successor v′ of u′ in T ′ with v′.s = s′.
And finally Lemma 3 ensures there are the only direct successors w and w′ of v
and v′ respectively, such that w.s ≡ w′.sJνK.

17

(4) Otherwise, we reach line 32: Since u.s ≡ u′.sJνK and we apply classic
symbolic execution step for u′.s, there must be a direct successor w of u and a
direct successor w′ of u′ such that w.s ≡ w′.sJνK.

Theorem 2 (Completeness) For each leaf vertex e′ ∈ T ′ there is a leaf vertex
e ∈ T and a valuation ν of all parameters in e′.s such that e.s = e′.sJνK.

Proof. Let π′ be the path in T ′ from the root to the leaf vertex e′. We prove the
theorem by the following induction:

Basic case: The root vertices r and r′ of T and T ′ respectively are labelled
by the same program state s0 (see lines 2 and 4). Let us construct a non-empty
set U of vertices of T such that for each valuation ν of all parameters in r′.s

such that r′.ϕJνK is satisfiable, there is u ∈ U such that u.s ≡ r′.sJνK. Obviously
U = {r}, because r′.ϕ contains no parameter (so r.s ≡ r′.sJνK, for each ν).

Inductive step: Let u′ ∈ π′, u′ 6= e′ and U be a non-empty set of vertices of
T such that for each valuation ν of all parameters in u′.s such that u′.ϕJνK is
satisfiable, there is u ∈ U such that u.s ≡ u′.sJνK. We show, there is a successor
w′ of u′ in π′ and a non-empty setW of vertices of T such that for each valuation
ν
′ of all parameters in w′.s such that w′.ϕJν ′K is satisfiable, there is w ∈W such

that w.s ≡ w′.sJν ′K. And we further show that each w ∈ W is a successor of
some u ∈ U and there is no vertex v′ between u′ and w′ in π′ such that successors
of v′.s are computed at line 25. There are four possible cases in Algorithm 1 for
u′.s:

(1) We reach line 28: Let w′ be a direct successor of u′ in π′. Obviously, w′.s

is one of the states s′ computed at line 29. Let i be the index, for which w′.s = s′.
The formula w′.ϕ is satisfiable, since w′ is in T ′ (see condition at line 34). Let ν
be a valuation for which w′.ϕ is satisfiable. And let ν′ = ν r {(κ, ν)}, where ν
is an integer assigned in ν to the fresh parameter κ introduced at line 21. From
line 29 we see that u′.ϕJν ′K is satisfiable. Therefore, there is a vertex u ∈ U such
that u.s ≡ u′.sJν ′K. According to Definition 5 (L3) there is a successor w of u in
T such that

w.s ≡ u.s ◦ (t.θiJκK, t.ϕiJκK, t.ΞiJκK, t.li)J{(κ, ν)}K

≡ u′.sJν ′K ◦ (t.θiJκK, t.ϕiJκK, t.ΞiJκK, t.li)J{(κ, ν)}K

≡ (u′.s ◦ (t.θiJκK, t.ϕiJκK, t.ΞiJκK, t.li))JνK

≡ w′.sJνK.

Therefore, w ∈ W .

(2) We reach line 24: Let w′ be a direct successor of u′ in π′. Obviously, w′.s

is one of the states s′ computed at line 25. Let i be the index, for which w′.s = s′.
The formula w′.ϕ is satisfiable, since w′ is in T ′ (see condition at line 34). Let ν
be a valuation for which w′.ϕ is satisfiable. And let ν′ = ν r {(κ, ν)}, where ν
is an integer assigned in ν to the fresh parameter κ introduced at line 21. From
line 25 we see that u′.ϕJν ′K is satisfiable. Therefore, there is a vertex u ∈ U such
that u.s ≡ u′.sJν ′K. According to Definition 5 (R3) there is a successor w of u

18

in T such that

w.s ≡ u.s ◦ (t.θiJκK, t.ϕiJκK, [(t, κ)] ◦ t.ΞiJκK, t.li)J{(κ, ν)}K

≡ u′.sJν ′K ◦ (t.θiJκK, t.ϕiJκK, [(t, κ)] ◦ t.ΞiJκK, t.li)J{(κ, ν)}K

≡ (u′.s ◦ (t.θiJκK, t.ϕiJκK, [(t, κ)] ◦ t.ΞiJκK, t.li))JνK

≡ w′.sJνK.

Therefore, w ∈ W .
(3) We reach line 12: Let x′ be a predecessor of u′ in π′, which pushed (at

line 25) the record being at the top of u′.Ξ. Obviously, successors of x′.s are
computed at line 25. Further, let y′ and v′ be direct successors of x′ and u′ in
π′ respectively. The formula v′.ϕ is satisfiable, since v′ is in T ′ (see condition
at line 34). Note that v′ is the only successor of u′ in T ′. Let ν be a valuation
for which v′.ϕ is satisfiable. Note that ν defines an integer ν = ν(κ) for the
parameter κ retrieved from stack u′.Ξ at line 13, since y′.s must have already
used it. From line 15 we see that u′.ϕJνK is satisfiable. Therefore, there is a vertex
u ∈ U such that u.s ≡ u′.sJνK. Let π be a path in T from the root to a leaf
vertex and going through u. According to connections between vertices of sets U
constructed for vertices u′ along π′, there is a predecessor x of u in π, such that
x.s ≡ x′.sJνK. Since y′ is the direct successor of x in π (i.e. there was computed
a set W for y′), there must also exist a vertex y ∈ π lying between x and u and
y.s ≡ y′.sJνK. Note that u is the first successor of y in π with u.l being an exit
location and u.Ξ = y.Ξ. Otherwise we would apply this case (3) for some other
vertex lying between y′ and u′ in π′. Therefore, from Definition 5 (R2) there is
a non-leaf vertex v in a suffix of π starting with u such that

v.s
g
≡ (u.θ ◦ t.θJκK, u.ϕ, x.Ξ, t.l′)J{(κ, ν)}K
g
≡ (u′.θJνK ◦ t.θJκK, u′.ϕJνK, pop(u′.Ξ)JνK, t.l′)J{(κ, ν)}K
g
≡ (u′.θ ◦ t.θJκK, u′.ϕ, pop(u′.Ξ), t.l′)JνK
g
≡ v′.sJνK.

And finally Lemma 3 ensures there are the only direct successors w and w′ of v
and v′ respectively, such that w.s ≡ w′.sJνK. Therefore, w ∈ W .

(4) Otherwise, we reach line 32: Let u be any vertex in U . Since u.s ≡ u′.sJνK
for some valuation ν for which u′.ϕJνK is satisfiable and since all direct successors
of both u and u′ are computed by classic symbolic execution step, there must
be a direct successor w of u in T and a direct successor w′ of u′ in T ′ such that
w.s ≡ w′.sJνK. Note that both u′.s and w′.s have exactly the same parameters.
Therefore, w ∈ W .

5 Computation of Templates

In this section we show one possible approach to computation of templates with
one parameter. We provide detailed description of an algorithm computing a

19

template for a program part with specified cyclic path, entry location, and several
exit ones. Then we extend concept of the algorithm to computation of recursion
templates for program parts.

5.1 Template for Program Part with Cyclic Path

Let P be a program and let us suppose we have a program part of P with a
cyclic path, an entry location e and some exit location x (but there can be other
exits from the part). We show how to compute a symbolic memory θxJκK, a path
condition ϕxJκK and a call stack ΞxJκK at the exit location x. The computation
of remaining parts of resulting template are then straightforward.

The algorithm proceeds in two steps. First, we compute a program state
(θ, ϕ, [], e) resulting from classic symbolic execution of the cyclic path of the

part exactly once, and a program state (θ̂, ϕ̂, Ξ̂, x) resulting from classic symbolic
execution of a path from e to x. The second step is to express θxJκK, ϕxJκK and
ΞxJκK in terms of the program states computed in the first step.

The computation of program states (θ, ϕ, [], e) and (θ̂, ϕ̂, Ξ̂, x) requites to
run classic symbolic execution on the analysed program part. But Algorithm 1
can only execute programs satisfying Definition 1. Therefore, we create a new
program, say P ′, representing the analysed part.

We start with a program P ′ consisting of all variables of P and of all those
functions of P having at least one location of the cycle. Note that the cyclic path
of the part may traverse several functions through call sites. We now remove all
the locations and edges in P ′, which do not belong to the cycle nor to the path
from e to x. We assume that x does not belong to the cyclic path, since otherwise
we can always create its copy outside the cycle. Next we mark the function in P ′

containing the entry location e as the starting function of P ′ and we set e to be
the entry location of the function. Then we create a new location e′ representing
the exit location from the starting function. Now we break the cyclic path in the
entry e such that we redirect the only in-edge of e (belonging to the cycle) to
e′. And finally we transform x to error location by adding loop edge with skip

action.

P ′ is now a program according to Definition 1. So, we can run unmarked
version of Algorithm 1. Note that the algorithm must always terminate for P ′.
Let E be a set of resulting program states. Then |E| ≤ 2. If there is no s ∈ E such
that s.l = e, then we do not create the template for the part, since there is no
real path around the cycle. If there is no state s ∈ E such that s.l = x, then we
discard the exit x from the consideration for the template, since it is impossible
to leave the loop through x. Otherwise, E contains exactly two program states,
which are the states we are looking for.

Now we show how to express θxJκK, ϕxJκK and ΞxJκK in terms of the program
states computed above. Let T be a symbolic execution tree of P , computed by
∗-version of Algorithm 1. Further, let u be a vertex of T such that u.l = e and
π = u . . . u1 . . . u2 . . . uν . . . w be a path in T starting at u, iterating the cycle of
the part exactly ν ≥ 0 times, i.e. all the vertices ui have ui.l = e, and then π

20

leaves the cycle into the vertex w with w.l = x. We use memory composition to
express memories of vertices along π as follows.

u1.θ = u.θ ◦ θ

u2.θ = u1.θ ◦ θ = u.θ ◦ (θ ◦ θ)

· · ·

uν .θ = uν−1.θ ◦ θ = u.θ ◦ (θ ◦ · · · ◦ θ
︸ ︷︷ ︸

ν

).

If we denote the composition of i symbolic memories θ by θi, where θ0 = Θ and
θ1 = θ, then we have ui.θ = u.θ ◦ θi and we get

w.θ = u.θ ◦ (θν ◦ θ̂).

We proceed similarly to express path conditions of vertices along π.

u1.ϕ ≡ u.ϕ ∧ u.θ〈ϕ〉 ≡ u.ϕ ∧ (u.θ ◦ θ0)〈ϕ〉 ≡ u.ϕ ∧ u.θ〈θ0〈ϕ〉〉

u2.ϕ ≡ u1.ϕ ∧ u1.θ〈ϕ〉 ≡ u.ϕ ∧ u.θ〈θ0〈ϕ〉〉 ∧ (u.θ ◦ θ1)〈ϕ〉 ≡ u.ϕ ∧ u.θ〈θ0〈ϕ〉 ∧ θ1〈ϕ〉〉

· · ·

uν .ϕ ≡ uν−1.ϕ ∧ uν−1.θ〈ϕ〉 ≡ u.ϕ ∧ u.θ〈θ0〈ϕ〉 ∧ . . . ∧ θν−1〈ϕ〉
︸ ︷︷ ︸

ν

〉

Using the following equivalence

θ0〈ϕ〉 ∧ . . . ∧ θν−1〈ϕ〉 ≡ 0 ≤ ν ∧ ∀τ (0 ≤ τ < ν → θτ 〈ϕ〉),

we can write

w.ϕ ≡ uν .ϕ ∧ uν .θ〈ϕ̂〉 ≡ u.ϕ ∧ u.θ〈θ0〈ϕ〉 ∧ . . . ∧ θν−1〈ϕ〉 ∧ θν〈ϕ̂〉〉

≡ u.ϕ ∧ u.θ〈0 ≤ ν ∧ ∀τ (0 ≤ τ < ν → θτ 〈ϕ〉) ∧ θν〈ϕ̂〉〉.

SMT solvers do not support memory composition operation appearing in the
formula w.ϕ. Therefore, we need an equivalent declarative description of the
operation. Such a description is a parametrised symbolic memory θJκK, where
we require θJκK ≡ θκ, for any κ ≥ 0. For a given symbolic memory θ we compute
content of θJκK per variable by applying the following two rules

θ(a) = Θ(a) + c, a is of a numeric type, c is a numeric constant of a’s type

θJκK(a) = Θ(a) + c · typeOf<a>(κ)
,

θ(A) = Θ(A), A is of a an array type

θJκK(A) = Θ(A)
,

where expression typeOf<a>(κ) represent casting operation of κ to a type of
variable a. If there is a variable, which does not match any of the rules, then
we fail to compute θJκK. And we thus fail to compute the template. Obviously,

21

one can provide more rules for more complex symbolic memories. The presented
rules are only supposed to illustrate the process.

Having θJκK we define

θxJκK = θJκK ◦ θ̂

ϕxJκK = 0 ≤ κ ∧ ∀τ (0 ≤ τ < κ→ θJτK〈ϕ〉) ∧ θJκK〈ϕ̂〉

ΞxJκK = θJκK ◦ Ξ̂,

and we get w.θ ≡ u.θ ◦ θxJνK, w.ϕ ≡ u.ϕ ∧ u.θ〈ϕxJνK〉 and w.Ξ ≡ u.Ξ ◦ (u.θ ◦
ΞxJνK). Using these equivalences we write w.s ≡ u.s ◦ (θx, ϕx, Ξx, x)JνK, which
is exactly the equivalence used in Definition 5 (L2) and (L3).

5.2 Template for Program Parts Representing Recursion

Let P be a program, f be a recursive function of P , e and x be entry and
exit locations of f respectively and let h = (u, v) be an edge of f with an
action representing recursive call of f . We transform computation of recursion
template for recursive calling of f into analysis of two program parts P1 and
P2 with cyclic paths. The cycle of P1 starts at location e and leads to u. We
then enclose the cycle by an artificial edge whose action simulate an effect of any
call of f . Let e be entry location of P1 and let x1, . . . , xn be its exit locations.
We compute a template t1 = (e, n, {(θ1, ϕ1, Ξ1, x1)JκK, . . . , (θn, ϕn, Ξn, xn)JκK})
for P1 according to algorithm from Section 5.1. Having t1 we can express the
resulting recursive template t as follows.

t = (e, n, {(θ1, ϕ1, Ξ1, x1)JκK, . . . , (θn, ϕn, Ξn, xn)JκK}, θJκK, x),

where θJκK is the only unknown component in t. We compute the symbolic
memory θ from analysis of the second program part P2. The cycle of P2 starts
at x. There we add an artificial edge, whose action simulate an effect of return
from any call of f . The artificial edge gets us to location v. Then we enclose the
cycle by following a path from v to x. We set x to be the entry location of P2 and
we further set x to also be the only exit location from P2. As you can see, here we
have introduced an assumption that there is no branching along the path from
v to x, i.e. we cannot escape from the path. We discuss the case, when there
is some branching (escape edges) along the path later. Since we have defined
the program part P2, we compute its template t2 = (x, 1, {(θJκK, true, [], x)})
according to algorithm from Section 5.1. Then we take the symbolic memory
θJκK and we complete the recursion template t.

Note that we can simplify computation of θJκK of the template t2 such that
we only express a return value of f . We do not need to express local variables of

f , since requirement (R2) of Definition 5 uses the equivalence
g
≡. We further note,

that the algorithm above also works for indirect recursion. It immediately follows
from the algorithm in Section 5.1, where cyclic path of an analysed program part
may traverse several functions.

22

a

b

i<n

c

t:=countIf(

A,i+1,n,x)

d

A[i]!=x

e

A[i]=x

g

i>=n

h
ret t

ret t+1

ret 0

a

b

i<n

d

A[i]!=x

c

t:=countIf(

A,i+1,n,x)

e

A[i]=x

c′

t:=countIf(

A,i+1,n,x)

g

i>=n

h
ret t

ret t+1
ret 0

(a) (b)

Fig. 4. Two equivalent recursive implementations of the function countIf(A,i,n,x).

We finish the section by discussion of the assumption we gave to the cyclic
path of P2. We assumed there is no branching along the path from v to x. The
algorithm presented above can compute templates for tail recursions and for
many non-tail ones, while keeping the computation simple (we only need θJκK
expressed just for return value). Therefore, we believe the assumption has only
small impact to applicability of the algorithm. Besides, it is always possible to
move edges with recursive calls below branchings not depending on return values
form the calls. We demonstrate this process at Figures 4 (a) and (b), where we
depict two equivalent recursive implementations of the function countIf. We
can easily check that in program at Figures 4 (b) there are two program parts
(one per recursive call), for which we can compute templates according to the
algorithm described above.

6 Discussion

We presented compact symbolic execution using only templates with a single
parameter. We further restrict ourselves to computation of templates only for
program parts consisting of cyclic paths of representing recursion. We can get
even better reduction of size of symbolic execution tree, if we create templates
for more complex program parts, and when we use more parameters. Let us
consider the function countIf at Figure 2. The program loop in the function
consists of two cyclic paths around it. We have already discussed templates for
both cycles in Section 2. But if we built a single template using two parameters
(one parameter per cyclic path), then resulting compact symbolic execution tree
would be finite. We see, there is a space for extensions of the basic concepts we
presented here.

Let us consider well known algorithm binarySearch. Template detection for
this program (even with a single parameter) may infer geometric progressions

23

as values of some variables. They may later cause serious performance issues for
SMT solver, when they get into a path condition.

Compact symbolic execution commonly has higher performance requirements
to SMT solvers then classic one. Path conditions may contain template param-
eters besides symbols. And parameters are quantified. This is the price of the
ability to reason about multiple program paths at once.

King showed effectiveness of symbolic execution for automated testing gen-
eration [8]. Producing a good test typically means to reach some interesting
(e.g. bug suspicious) program location. Compact symbolic execution can be very
helpful in this task. Let us consider a situation, when reachability of such a tar-
get location is dependant on an exact number of iterations of a particular cycle.
Providing a template for a program part with the cycle, we can simultaneously
reason about all the paths exiting from the cycle. Therefore, instead of explo-
ration of paths space by classic symbolic execution, we can just send a query to
SMT solver to check satisfiability of parametrised path condition.

King also showed in his paper [8], how symbolic execution can be used in
proving program correctness according to Floyd’s method [3]. Using templates
we can decrease or in some cases even eliminate the need of loop invariants.
For programs, where compact symbolic execution is finite in contrast to classic
one, there we do not need loop invariants at all. And for other programs, loop
templates describe behaviour of some paths through loop, and we may therefore
provide simpler invariants for the remaining behaviour of the loop.

7 Related Work

Compact symbolic execution is tightly related to the work of King in 1976 [8],
where the author introduced the general concept of classic symbolic execution.
Besides the description of symbolic execution King discussed its applicabil-
ity to program testing and formal proving of correctness according to Floyd’s
method [3]. Nevertheless, issues like the path explosion problem were not tackled.

In [6] authors propose a program instrumentation by a code providing lazy
initialisation of dynamically allocated data structures like lists or trees and they
enable symbolic execution of the instrumented program by a standard model
checker without building a dedicated tool. The lazy initialisation algorithm is
further improved and formally defined as an operational semantics of a core
subset of the Java Virtual Machine in [2].

A scalability of symbolic execution to real world programs can be improved by
exploring only client’s code [7]. A library code (like string manipulation, standard
containers like sets or maps) can be assumed as well defined and properly tested.

There are several symbolic execution based techniques constructing loop sum-
maries or simply counting loop iterations [5,11,12]. The introduction of counters
usually provides a possibility to speak about multiple paths through loop at once.
A technique presented in [5] analyses loops on-the-fly, i.e. during simultaneous
concrete and symbolic execution of a program for a concrete input. The loop
analysis infers inductive variables, i.e. variables that are modified by a constant

24

value in each loop iteration. These variables are used to build loop summaries
expressed in a form of pre and postconditions. The LESE technique presented
in [11] introduces symbolic variables for the number of times each loop was ex-
ecuted. LESE links the symbolic variables with features of a known grammar
generating inputs. Using these links, the grammar can control the numbers of
loop iterations performed on a generated input. A symbolic-execution-based al-
gorithm in [12] produces a nontrivial necessary condition on input values to drive
the program execution to the given location. The key part of the technique is
computation of loop summaries in form of symbolic program states and path
conditions both parametrised by so called path counters. Each path counter is
assigned to individual path through the analysed loop.

There are also approaches computing function summaries [4,1]. Reusing sum-
maries at call sites typically leads to an interesting performance improvement.
Moreover, summaries may insert additional symbolic values into a path condition
which often leads to another performance improvement.

Finally, there are also techniques partitioning program paths into separate
classes according to impact of the paths to a given set of program variables [9,10].
Values of output variables are typically considered as a partitioning criteria.

8 Conclusion

We introduced a generalisation of classic symbolic execution called compact sym-
bolic execution. We generalised notion of symbols of classic symbolic execution
such that symbols can be related to different program locations now. This al-
lows us to analyse individual parts of a given program separately from the rest of
the program. We further introduced concept of templates representing declara-
tive parametric descriptions of behaviour of separately analysed program parts.
We gave precise definition of templates with one parameter and we provided
algorithm of compact symbolic execution using these templates.

References

1. S. Anand, P. Godefroid, and N. Tillmann. Demand-driven compositional symbolic
execution. In TACAS’08, pages 367–381. Springer, 2008.

2. X. Deng, J. Lee, and Robby. Efficient and formal generalized symbolic execution.
Automated Software Engineering, pages 1–69, 2011.

3. R. W. Floyd. Assigning meanings to programs. In Proceedings of a Symposium on
Applied Mathematics, pages 19–31, 1967.

4. P. Godefroid. Compositional dynamic test generation. In POPL ’07, pages 47–54.
ACM, 2007.

5. P. Godefroid and D. Luchaup. Automatic partial loop summarization in dynamic
test generation. In ISSTA ’11, pages 23–33. ACM, 2011.

6. S. Khurshid, C. S. Păsăreanu, and W. Visser. Generalized symbolic execution for
model checking and testing. In TACAS’03, pages 553–568. Springer-Verlag, 2003.

7. S. Khurshid and Y. L. Suen. Generalizing symbolic execution to library classes.
In PASTE ’05, pages 103–110. ACM, 2005.

25

8. J. C. King. Symbolic execution and program testing. Commun. ACM, pages
385–394, 1976.

9. D. Qi, H. D. T. Nguyen, and A. Roychoudhury. Path exploration based on symbolic
output. In ESEC/FSE ’11, pages 278–288. ACM, 2011.

10. R. A. Santelices and M. J. Harrold. Exploiting program dependencies for scalable
multiple-path symbolic execution. In ISSTA 2010, pages 195–206. ACM, 2010.

11. P. Saxena, P. Poosankam, S. McCamant, and D. Song. Loop-extended symbolic
execution on binary programs. In ISSTA ’09, pages 225–236. ACM, 2009.

12. J. Strejček and M. Trt́ık. Abstracting path conditions. arXiv.org, 2011.
http://arxiv.org/abs/1112.5671.

26

	Compact Symbolic Execution

