
ar
X

iv
:1

40
1.

53
47

v1
 [

cs
.L

O
]

 2
1

Ja
n

20
14

Linear Ranking for Linear Lasso Programs⋆ ⋆⋆

Matthias Heizmann, Jochen Hoenicke, Jan Leike, and Andreas Podelski

University of Freiburg, Germany

Abstract. The general setting of this work is the constraint-based syn-
thesis of termination arguments. We consider a restricted class of pro-
grams called lasso programs. The termination argument for a lasso pro-
gram is a pair of a ranking function and an invariant. We present the—
to the best of our knowledge—first method to synthesize termination
arguments for lasso programs that uses linear arithmetic. We prove a
completeness theorem. The completeness theorem establishes that, even
though we use only linear (as opposed to non-linear) constraint solv-
ing, we are able to compute termination arguments in several interesting
cases. The key to our method lies in a constraint transformation that
replaces a disjunction by a sum.

1 Introduction

Termination is arguably the single most interesting correctness property of a
program. Research on proving termination can be divided according to three
(interrelated) topics, namely: practical tools [1,9,13,17,18,19,21,22], decidability
questions [4,8,25], and constraint-based synthesis of termination arguments
[2,3,5,6,7,10,12,14,20,23]. The work in this paper falls under the research on
the third topic. The general goal of this research is to investigate how one can
derive a constraint from the program text and compute a termination argument
(of a restricted form) through the solution of the constraint, i.e., via constraint
solving.

In this paper, we present a method for the synthesis of termination arguments
for a specific class of programs that we call lasso programs. As the name indicates,
the control flow graph of a lasso program is of a restricted shape: a stem followed
by a loop.

Lasso programs do not appear as stand-alone programs. Lasso programs ap-
pear in practice whenever one needs a finite representation of an infinite path
in a control flow graph, for example in (potentially spurious) counterexam-
ples in a termination analysis[13,17,18,19], non-termination analysis[16], stability
analysis[11,22], or cost analysis[1,15].

⋆ The final publication is available at link.springer.com.
⋆⋆ This work is supported by the German Research Council (DFG) as part of the

Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR14 AVACS)

http://arxiv.org/abs/1401.5347v1
http://link.springer.com/chapter/10.1007%2F978-3-319-02444-8_26

Importantly, the termination argument for a lasso program is a pair of a
ranking function and an invariant (the rank must decrease only for states that
satisfy the invariant). Figure 1 shows an example of a lasso program.

The class of lasso programs lies between two classes of programs for which
constraint-based methods have been studied extensively. For the first, more
specialized class, methods can be based on linear arithmetic constraint solv-
ing [2,3,10,12,20]. For the second, more general class, all known methods are
based on non-linear arithmetic constraint solving [5,7]. The contribution of our
method can be phrased, alternatively, as the generalization of the applicability of
the ‘linear methods’, or as the optimization of the ‘non-linear method’ to a ‘lin-
ear method’ for a subproblem. The step from ‘non-linear’ to ‘linear’ is interesting
for principled reasons (non-linear arithmetic constraint solving is undecidable in
the case of integers). As we will show the step is also practically interesting.

The reader may wonder how practical tools presently handle the situation
where one needs to compute termination arguments for lasso programs. One
possibility is to resort to heuristics. For example, instead of computing a ter-
mination argument for the lasso program in Figure 1, one would compute the
ranking function f(x) = x for the program while(x>=0){x:=x-23;}.

The key to our method is a constraint transformation that replaces a dis-
junction by a sum. We apply the ‘or-to-plus’ transformation in the context of
Farkas’ Lemma. Following [2,5,10,12,20], we apply Farkas’ Lemma in order to
eliminate the universal quantifiers in the arithmetic constraint whose solution
is the termination argument. If we apply Farkas’ Lemma to the constraint after
the ‘or-to-plus’ transformation, we obtain a linear arithmetic constraint.

The effect of the ‘or-to-plus’ transformation to the constraint is a restriction
of its solution space. The restriction seems strong; i.e., in some cases, the so-
lution space becomes empty. We can characterize those cases. In other words,
we can characterize when the ‘or-to-plus’ transformation leads to the loss of an
termination argument, and when it does not. The characterization is formulated
as a completeness theorem for which we will present the proof. This characteri-
zation allows us to establish that, even though we use only linear (as opposed to
non-linear) constraint solving, we are able to compute termination arguments in
several interesting cases. A possible explanation for this (perhaps initially sur-
prising) fact is that, for synthesis, we are interested in the mere existence of a
solution, and the loss of many solutions does not necessarily mean the loss of all
solutions of the constraint.

We have implemented our method and we have used our implementation to
illustrate the applicability and the efficiency of our method. Our implementation
is available through a web interface, together with a number of example programs
(including the ones used in this paper).1

1 http://ultimate.informatik.uni-freiburg.de/LassoRanker

http://ultimate.informatik.uni-freiburg.de/LassoRanker

1: y := 23;

2: while(x >= 0) {

3: x := x - y;

4: y := y + 1;

5: }

1 2

τstem :
y′ = 23

τloop :
x ≥ 0

∧ x′ = x− y

∧ y′ = y + 1

Fig. 1. Example of a lasso program and its formal representation PyPositive = (τstem, τloop).
The ranking function defined by f(x, y) = x decreases in transitions from states that
satisfy the invariant y ≥ 1 (the ranking function does not decrease when y ≤ 0).

2 Preliminaries: Linear Arithmetic

We use x to denote the vector with entries x1, . . . , xn, and x
⊺

to denote the
transposed vector of x. As usual, the expressionA·x ≤ b denotes the conjunction

of linear constraints
m∧

j=0

(
n∑

i=0

aij · xi) ≤ bj.

We call a relation τ(x,x′) a linear relation if τ is defined by a conjunction of
linear constraints over the variables x and x′, i.e., if there is a matrix A with m
rows and 2n columns and a vector b of size m such that the following equation
holds.

τ(x,x′) = {(x,x′) | A · (x
x

′) ≤ b}

We call a function f(x) an (affine) linear function, if f(x) is defined by an
affine linear term, i.e., there is a vector r

⊺

and a number r0 such that the following
equation holds.

f(x) = r
⊺

· x+ r0.

We call a predicate I(x) a linear predicate, if I(x) is defined by a linear in-
equality, i.e., there is a vector s

⊺

and a number s0 such that following equivalence
holds.

I(x) = {x | s
⊺

· x+ s0 ≥ 0}.

Farkas’ Lemma. We use the affine version of Farkas’ Lemma [24] which is also
used in [2,5,12,23,20] and states the following. Given

– a satisfiable conjunction of linear constraints A · x ≤ b

– and a linear constraint c
⊺

· x ≤ δ,

the following equivalence holds.

∀x (A · x ≤ b → c
⊺

· x ≤ δ) iff ∃λ (λ ≥ 0 ∧ λ
⊺

·A = c
⊺

∧ λ
⊺

· b ≤ δ)

3 Lasso Program

To abstract away from program syntax, we define a lasso program directly by
the two relations that generate its execution sequences.

Definition 1 (Lasso Program). Given a set of states Σ, a lasso program

P = (τstem, τloop)

is given by the two relations τstem ⊆ Σ ×Σ and τloop ⊆ Σ ×Σ. We call τstem the
stem of P and τloop the loop of P .

An execution of the lasso program P is a possibly infinite sequence of states
σ0, σ1, . . . such that

– the pair of the first two states is an element of the stem, i.e.,

(σ0, σ1) ∈ τstem

– and each other consecutive pair of states is an element of the loop, i.e.,

(σi, σi+1) ∈ τloop for i = 1, 2, . . .

We call the lasso program P terminating if P has no infinite execution.

We use constraints over primed and unprimed variables to denote a transition
relation (see Figure 1).

In order to avoid cumbersome technicalities, we consider only lasso programs
that have an execution that contains at least three states. This means we consider
only programs where the relational composition of τstem and τloop is non-empty,
i.e.,

τstem ◦ τloop 6= ∅.

Since Turing, a termination argument is based on an ordering which does
not allow infinite decreasing chains (such as ordering on the natural numbers).
Here, we use the ordering over the set of positive reals which is defined by some
value δ > 0, namely

a ≺δ b iff a ≥ 0 ∧ a− b ≥ δ a, b ∈ R.

Ranking Function. We call a function f from the states of the lasso program P

into the reals R a ranking function for P if there is a positive number δ > 0 such
that for each consecutive pair of states (xi,xi+1) of a loop transition (i ≥ 1) in
every execution of P

– the value of f is decreasing by at least δ, i.e.,

f(xi)− f(xi+1) ≥ δ,

– and the value of f is non-negative, i.e.,

f(xi) ≥ 0.

If there is a ranking function for the lasso program P , then P is terminating.

Inductive Invariant. We call a state predicate I(x) an inductive invariant of the
lasso program P if

– the predicate holds after executing the stem, i.e.,

∀x ∀x′ τstem(x,x
′) → I(x′), (ϕinvStem)

– and if the predicate holds before executing the loop, then the predicate holds
afterwards, i.e.,

∀x ∀x′ I(x) ∧ τloop(x,x
′) → I(x′). (ϕinvLoop)

Ranking Function with Supporting Invariant. We call a pair of a ranking function
f(x) and an inductive invariant I(x) of the lasso program P a ranking function
with supporting invariant if the following holds.

– There exists a positive real number δ > 0 such that, if the inductive invari-
ant holds then an execution of the loop decreases the value of the ranking
function by at least δ, i.e.,

∃δ > 0∀x ∀x′ I(x) ∧ τloop(x,x
′) → f(x)− f(x′) ≥ δ. (ϕrkDecr)

– In states in which the inductive invariant holds and the loop can be executed,
the value of the ranking function is non-negative, i.e.,

∀x ∀x′ I(x) ∧ τloop(x,x
′) → f(x) ≥ 0. (ϕrkBound)

For example, the lasso program depicted in Figure 1 has the ranking function
f(x, y) = x with supporting invariant y ≥ 1.

Linear lasso programs. Linear lasso programs. For the remainder of this paper we
consider only linear lasso programs, linear ranking functions, and linear inductive
invariants which we will define next. The variables of the programs will range
over the reals until we come to Section 9 where we turn to programs over integers.

Definition 2 (Linear Lasso Program). A linear lasso program

P = (τstem, τloop)

is a lasso program whose states are vectors over the reals, i.e. Σ = R
n, and

whose relations τstem and τloop are linear relations.

We use the expression Astem · (x
x

′) ≤ bstem to denote the relation τstem of P . We
use the expression Aloop · (xx′) ≤ bloop to denote the relation τloop of P .

Linear Ranking Function. If a ranking function f : Rn → R is an (affine) linear
function, we call f a linear ranking function. We use r1, . . . , rn as coefficients of
a linear ranking function, r as their vector,

f : Rn → R f(x) = r
⊺

· x+ r0.

Linear Invariant. If an inductive invariant I(x) is a linear predicate, we call I
a linear inductive invariant. We use s1, . . . , sn as coefficients of the term that
defines the linear predicate, s as their vector,

I(x) ≡ s
⊺

· x+ s0 ≥ 0.

4 The Or-to-Plus Method

Our constraint-based method for the synthesis of linear ranking functions for
linear lasso programs consists of three main steps:

Step 1. Set up four (universally quantified) constraints whose free variables are
the coefficients of a linear ranking function with linear supporting invariant.

Step 2. Apply Farkas’ Lemma to the four constraints to obtain equivalent con-
straints without universal quantification.

Step 3. Obtain solutions for the free variables by linear constraint solving.

The particularity of our four constraints in Step 1 is that the application of
Farkas’ Lemma in Step 2 yields constraints that are linear.

Instead of presenting our constraints immediately, we derive them in three
successive transformations of constraints. We start with the four constraints
(ϕinvStem), (ϕinvLoop), (ϕrkDecr), and (ϕrkBound). Below, we have rephrased the four
constraints for the setting where the ranking function is linear and the support-
ing invariant is linear. We marked them (ϕBMS

1), (ϕBMS

2), (ϕBMS

3), and (ϕBMS

4) in
reference to Bradley, Manna and Sipma [5] who were the first to use them in the
corresponding step of their method.

The Bradley–Manna–Sipma constraints
for the special case of lasso programs and one linear supporting invariant

2

∀x ∀x′ τstem(x,x
′) → s

⊺

· x′ + s0 ≥ 0 (ϕBMS

1)

∀x ∀x′ s
⊺

· x+ s0 ≥ 0 ∧ τloop(x,x
′) → s

⊺

· x′ + s0 ≥ 0 (ϕBMS

2)

∃δ > 0 ∀x ∀x′ s
⊺

· x+ s0 ≥ 0 ∧ τloop(x,x
′) → r

⊺

· x− r
⊺

· x′ ≥ δ (ϕBMS

3)

∀x ∀x′ s
⊺

· x+ s0 ≥ 0 ∧ τloop(x,x
′) → r

⊺

· x+ r0 ≥ 0 (ϕBMS

4)

The free variables of ϕBMS

1 ∧ ϕBMS

2 ∧ ϕBMS

3 ∧ ϕBMS

4 are r, r0, s, and s0.

Transformation 1: Move supporting invariant to right-hand side. We
bring the conjunct s

⊺

· x+ s0 ≥ 0 in three of the four constraints (ϕBMS

1), (ϕBMS

2),
(ϕBMS

3), and (ϕBMS

4) to the right-hand side of the implication, according to the
following scheme.

φ1 ∧ φ2 → ψ ≡ φ2 → ψ ∨ ¬φ1
2 In [5] the authors use more general general constraints that can be used to syn-
thesize lexicographic linear ranking functions together with a conjunction of linear
supporting invariants for programs that can also contains disjunctions.

We obtain the following constraints.

∀x ∀x′ τstem(x,x
′) → s

⊺

· x′ + s0 ≥ 0 (ψ1)

∀x ∀x′ τloop(x,x
′) → s

⊺

· x′ + s0 ≥ 0 ∨ −s
⊺

· x− s0 > 0 (ψ2)

∃δ > 0 ∀x ∀x′ τloop(x,x
′) → r

⊺

· x− r
⊺

· x′ ≥ δ ∨ −s
⊺

· x− s0 > 0 (ψ3)

∀x ∀x′ τloop(x,x
′) → r

⊺

· x+ r0 ≥ 0 ∨ −s
⊺

· x− s0 > 0 (ψ4)

Transformation 2: Drop supporting invariant in fourth constraint. We
strengthen the fourth constraint (ψ4) by removing the disjunct −s

⊺

· x− s0 > 0.
A solution for the strengthened constraint defines a ranking function whose
value is bounded from below for all states (and not just those that satisfy the
supporting invariant).

Transformation 3: Replace disjunction by sum. We replace the disjunction
on the right-hand side of the implication in constraints (ψ2) and (ψ3) by a single
inequality, according to the scheme below. (It is the disjunction which prevents
us from applying Farkas’ Lemma to the constraints (ψ2) and (ψ3).)

m ≥ 0 ∨ n > 0 m+ n ≥ 0

In the second constraint (ψ2), we replace the disjunction

−s
⊺

· x− s0 > 0 ∨ s
⊺

· x′ + s0 ≥ 0

by the inequality

s
⊺

· x′ + s0 − s
⊺

· x− s0 ≥ 0.

In the third constraint (ψ3), we replace the disjunction

−s
⊺

· x− s0 > 0 ∨ r
⊺

· x− r
⊺

· x′ ≥ δ

by the inequality

r
⊺

· x− r
⊺

· x′−s
⊺

· x− s0 ≥ δ.

We obtain the following four constraints.

The Or-to-Plus constraints

∀x ∀x′ τstem(x,x
′) → s

⊺

· x′ + s0 ≥ 0 (ϕ1)

∀x ∀x′ τloop(x,x
′) → s

⊺

· x′ + s0 − s
⊺

· x− s0 ≥ 0 (ϕ2)

∃δ > 0 ∀x ∀x′ τloop(x,x
′) → r

⊺

· x− r
⊺

· x′−s
⊺

· x− s0 ≥ δ (ϕ3)

∀x ∀x′ τloop(x,x
′) → r

⊺

· x+ r0 ≥ 0 (ϕ4)

The free variables of the conjunction ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 are r, r0, s, and s0.

Since we consider linear lasso programs, the relations τstem and τloop are given
as conjunctions of linear constraints.

τstem(x,x
′) ≡ Astem · (x

x
′) ≤ bstem

τloop(x,x
′) ≡ Aloop · (

x

x
′) ≤ bloop

We have now finished the description for the three transformation steps that
lead us to the the or-to-plus constraints. We are now ready to introduce our
method.

The Or-to-Plus Method

Input: linear lasso program P .
Output: coefficients r, r0, s, and s0 of a linear ranking function with

linear supporting invariant

1. Set up the or-to-Plus constraints ϕ1, ϕ2, ϕ3, and ϕ4 for P .
2. Apply Farkas’ Lemma to each constraint.
3. Obtain r, r0, s, and s0, by linear constraint solving.

After setting up the four or-to-plus constraints ϕ1, ϕ2, ϕ3, ϕ4 in Step 1, we
apply Farkas’ Lemma to each of the four constraints in Step 2. We obtain four
linear constraints. E.g., by applying Farkas’ Lemma to the constraint (ϕ3) we
obtain the following linear constraint.

∃δ > 0 ∃λ λ ≥ 0 ∧ λ
⊺

· Aloop = (s−r

r
)
⊺

∧ λ
⊺

· bloop ≤ −δ − s0

We apply linear constraint solving in Step 3. We obtain a satisfying assign-
ment for the free variables in the resulting constraints. The values obtained for
r, r0, s and s0 are the coefficients of a linear ranking function f(x) with linear
supporting invariant I(x).

The or-to-plus method inherits its soundness from method of Bradley–
Manna–Sipma. Step 1 is an equivalence transformation on the Bradley–Manna–
Sipma constraints, Step 2 and Step 3 strengthen the constraints, and the ap-
plication of Farkas’ Lemma is an equivalence transformation. Thus, a satisfying
assignment of the or-to-plus constraints obtained after the application of Farkas’
Lemma is also a satisfying assignment of the Bradley–Manna–Sipma constraints.

5 Completeness of the Or-to-Plus Method

In the tradition of constraint-based synthesis for verification, we will formulate
completeness according to the following scheme: the method X applied to a pro-
gram P in the class Y computes (the coefficients of) a correctness argument of
the form Z whenever one exists (i.e., whenever a correctness argument of the
form Z exists for the program P). Here, X is the or-to-plus method, Y is the class
of lasso programs, and Z is a termination argument consisting of a linear ranking
function and an invariant of a form that we we define next.

x := y + 42;

while(x >= 0) {

y := 2*y - x;

x := (y + x) / 2;

}

τstem : x′ = y + 42 ∧ y′ = y

τloop : x ≥ 0 ∧ x′ = y ∧ y′ = 2y − x

Fig. 2. Linear lasso program Pdiff42 = (τstem, τloop) that has the linear ranking function
f(x, y) = x with linear supporting invariant x− y ≥ 42.

Definition 3 (Non-decreasing linear inductive invariant). We call a lin-
ear inductive invariant s

⊺

· x+ s0 ≥ 0 of the lasso program P non-decreasing if

the loop implies that the value of the term s
⊺

· x+ s0 does not decrease when
executing the loop, i.e.,

τloop → s
⊺

· x′ ≥ s
⊺

· x.

In Section 6 we give examples which may help to convey some intuition about
the meaning of ‘non-decreasing’, examples of those terminating programs that do
have a linear ranking function with a non-decreasing linear supporting invariant,
and examples of those that don’t.

Theorem 1 (Completeness). The or-to-plus method applied to the linear
lasso program P succeeds and computes the coefficients of a linear ranking func-
tion with non-decreasing linear supporting invariant whenever one exists.

To prove this theorem we use the following lemma.

Lemma 1. Given are

(1) satisfiable linear inequalities A · x ≤ b,
(2) an inequality g

⊺

· x+ g0 ≥ 0, and

(3) a strict inequality h
⊺

· x+ h0 > 0.

If A · x ≤ b does not imply the strict inequality (3), but the disjunction of (2)
and (3), i.e.

∀x A · x ≤ b → g
⊺

· x+ g0 ≥ 0 ∨ h
⊺

· x+ h0 > 0,

then there exists a constant µ ≥ 0 such that

∀x A · x ≤ b → (g
⊺

· x+ g0) + µ · (h
⊺

· x+ h0) ≥ 0.

Proof (of Lemma 1).

∀x A · x ≤ b → (g
⊺

· x+ g0 ≥ 0 ∨ h
⊺

· x+ h0 > 0)

is equivalent to

∀x (A · x ≤ b ∧ h
⊺

· x+ h0 ≤ 0) → g
⊺

· x+ g0 ≥ 0.

g
⊺

· x+ g0 ≥ 0

h
⊺

· x+ h0 > 0

Z

A · x ≤ b

Let H = {x | g
⊺

· x + g0 ≥ 0}, and

H ′ = {x |h
⊺

· x + h0 > 0} be half-
spaces defined by linear inequali-
ties. A half-space Hµ = {x | (g

⊺

·x+

g0) + µ · (h
⊺

· x + h0) ≥ 0} defined
by a weighted sum is a rotation of
H around the intersection Z of the
boundary of H and the boundary of
H ′.
If a polyhedron X is contained in
the union H ∪ H ′, then there is a
half-space Hµ defined by a weighted
sum that contains X.

Fig. 3. A geometrical interpretation of Lemma 1.

By assumption, (1) does not imply (3), so A·x ≤ b ∧ h
⊺

·x+h0 ≤ 0 is satisfiable,
and by Farkas’ Lemma this formula is equivalent to

∃µ ≥ 0 ∃λ ≥ 0 µ · h
⊺

+ λ
⊺

· A = −g
⊺

∧ λ
⊺

· b+ µ · (−h0) ≤ g0,

and thus

∃µ ≥ 0 ∃λ ≥ 0 λ
⊺

·A = −(µ · h
⊺

+ g
⊺

) ∧ λ
⊺

· b ≤ µ · h0 + g0.

Because A · x ≤ b is satisfiable by assumption, Farkas’ Lemma can be applied
again to yield

∃µ ≥ 0 ∀x A · x ≤ b → −(µ · h
⊺

+ g
⊺

)x ≤ µ · h0 + g0. ⊓⊔

Proof (of Theorem 1). Let f(x) = r̊
⊺

· x + r̊0 be a ranking function with non-

decreasing supporting invariant I(x) ≡ s̊
⊺

· x+ s̊0 ≥ 0 for the lasso program P .
Since executions of our lasso programs comprise at least three states, there can
be no supporting invariant that contradicts the loop, i.e.

Aloop · (
x

x
′) ≤ bloop → −s̊

⊺

· x− s̊0 > 0 (1)

is not valid. From (ϕrkBound) it follows that

s̊
⊺

· x+ s̊0 ≥ 0 ∧ Aloop · (
x

x
′) ≤ bloop → r̊

⊺

· x+ r̊0 ≥ 0,

and hence the implication

Aloop · (
x

x
′) ≤ bloop → r̊

⊺

· x+ r̊0 ≥ 0 ∨ −s̊
⊺

· x− s̊0 > 0

is valid. By (1) and Lemma 1 there is a µ1 ≥ 0 such that

Aloop · (
x

x
′) ≤ bloop → (̊r

⊺

· x+ r̊0) + µ1 · (−s̊
⊺

· x− s̊0) ≥ 0

is valid. If we assign r 7→ r̊ − µ1 · s̊, r0 7→ r̊0 − µ1 · s̊0, then (ϕ4) is satisfied.

Because I(x) ≡ s̊ · x+ s̊0 ≥ 0 is a non-decreasing invariant,

Aloop · (
x

x
′) ≤ bloop → s̊

⊺

· x′ − s̊
⊺

· x ≥ 0,

and hence, since µ1 ≥ 0,

Aloop · (
x

x
′) ≤ bloop → −µ1 · s̊

⊺

· (x− x′) ≥ 0. (2)

From (ϕrkDecr) we know that

s̊
⊺

· x+ s̊0 ≥ 0 ∧ Aloop · (
x

x
′) ≤ bloop → r̊

⊺

· x− r̊
⊺

· x′ ≥ δ,

and hence equivalently

Aloop · (
x

x
′) ≤ bloop → r̊

⊺

· x− r̊
⊺

· x′ ≥ δ ∨ −s̊
⊺

· x− s̊0 > 0.

With (2) we obtain validity of the following formula.

Aloop · (
x

x
′) ≤ bloop → (̊r

⊺

− µ1 · s̊
⊺

) · (x− x′) ≥ δ ∨ −s̊
⊺

· x− s̊0 > 0

By (1) and Lemma 1 there exists a µ2 ≥ 0 such that

Aloop · (
x

x
′) ≤ bloop → (̊r

⊺

− µ1 · s̊
⊺

) · (x− x′) + µ2 · (−s̊
⊺

· x− s̊0) > δ.

We pick the assignment r 7→ r̊− µ1 · s̊, r0 7→ r̊0 − µ1 · s̊0, s 7→ µ2 · s̊, s0 7→ µ2 · s̊0,
which hence satisfies (ϕ3). We already argued that it satisfies (ϕ4), and from
µ2 ≥ 0 and the fact that I(x) is a non-decreasing inductive invariant it follows
that the assignment also satisfies (ϕ1) and (ϕ2). Hence, the ranking function
(̊r − µ1 · s̊)

⊺

· x+ r̊0 − µ1 · s̊0 with supporting invariant (µ2 · s̊)
⊺

· x+ µ2 · s̊0 ≥ 0
can be found by the or-to-plus method. ⊓⊔

6 Examples

y := 23;

while(x >= y) {

x := x - 1;

}

Fig. 4. Lasso program Pbound

Our three transformations strengthened the
Bradley–Manna–Sipma constraints, hence the
solution space of the or-to-plus constraints
is smaller than the solution space of the
Bradley–Manna–Sipma constraints. This can
be seen e.g., in the example depicted in
Figure 4. The program Pbound has the linear
ranking function f(x, y) = x with linear supporting invariant y ≥ 23, but the
coefficients of this ranking function and supporting invariant are no solution of
the or-to-plus constraints; the constraint ϕ4 is violated. Does this mean that our
method will not succeed? No, it does not. By Theorem 1, in fact, we do know
that the method will succeed. I.e., since we know of some linear ranking function
with non-decreasing supporting invariant (in this case, f(x, y) = x and y ≥ 23),
even if it is not a solution, we know that there exists one which is a solution
(here, for example, f(x, y) = x− y with the (trivial) supporting invariant 0 ≥ 0).

y := 2;

while(x >= 0) {

x := x - y;

y := (y + 1) / 2;

}

Fig. 5. Lasso program Pzeno

The prerequisite of Theorem 1 is the existence
of a non-decreasing supporting invariant. There
are linear lasso programs that have a linear rank-
ing function with linear supporting invariant, but
do not have a linear ranking function with a
non-decreasing linear supporting invariant. E.g.,
for the lasso programs depicted in Figure 5 and
Figure 6 our or-to-plus method is not able to syn-

thesize a ranking function for these programs.
The linear lasso program Pzeno depicted in Figure 5 has the linear ranking

function f(x, y) = x with the linear supporting invariant y ≥ 1. However this
inductive invariant is not non-decreasing; while executing the loop the value of
the variable y converges to 1 in the following sequence. 2, 1+ 1

2
, 1+ 1

4
, 1+ 1

8
,

assume y >= 1;

while(x >=0) {

x := x - y;

havoc y;

assume (y >= 1);

}

Fig. 6. Lasso program Pwild

The statement havoc y; in the lasso program
Pwild is a nondeterministic assignment to the vari-
able y. The relations τstem and τloop of this lasso
program are given by the constraints y′ ≥ 1 and
x ≥ 0 ∧ x′ = x − y ∧ y′ ≥ 1. Pwild has the
ranking function f(x, y) = x with the supporting
invariant y ≥ 1, however this inductive invariant
is not non-decreasing in each execution of the loop
the variable y can get any value greater than or
equal to one.

The next example shows that nondeterministic updates are no general ob-
stacle for our or-to-plus method. In the linear lasso program Parray the loop
iterates over an array of positive integers. The index accessed in the next

offset := 1;

i := 0;

while(i<=a.length) {

assume a[i]>=0;

i := i + offset + a[i];

}

Fig. 7. Lasso program Parray

iteration is the sum of the current index,
the current entry of the array, and an off-
set. The relations τstem and τloop of this
lasso program are given by the constraints
offset ′ = 1 ∧ i′ = 0 and i ≤ a.length ∧
curVal ′ ≥ 0 ∧ i′ = i + offset + curVal ′.
The variable curVal which represents the
current entry of the array a[i] can get any
value greater than or equal to one in each
loop iteration. The or-to-plus method finds

the linear ranking function f(i, offset) = i − a.length with the linear supporting
invariant offset ≥ 1.

7 Lasso Programs over the Integers

In the preceding sections we considered lasso programs over the reals. In this
section we discuss the applicability of the or-to-plus method to linear lasso pro-
grams over the integers, i.e., programs where the set of states Σ is a subset of Zn.
We still use real-valued ranking functions. We obtain the constraints for coeffi-

cients of a linear ranking function with linear supporting invariant by restricting
the range of the universal quantification in the constraints ϕ1, ϕ2, ϕ3, and ϕ4 to
the integers. E.g., the constraint ϕ3 for linear lasso programs over the integers
is

∃δ > 0 ∀x ∈ Z
n ∀x′ ∈ Z

n τloop(x,x
′) → r

⊺

· x− r
⊺

· x′−s
⊺

· x− s0 ≥ δ

where the domain of the coefficients r, r0, s, and s0 and the quantified variable
δ are the reals. Now, Farkas’ lemma is not an equivalence transformation, its
application results in weaker formulas. This means the or-to-plus method is still
sound, but we loose the completeness result of Theorem 1. An example for this is

assume 2*y >= 1;

while(x >= 0) {

x := x - 2*y + 1;

}

Fig. 8. Lasso program PnonIntegral1

the program PnonIntegral, depicted in Figure 8
that has the following transition relations.

τstem : 2y′ ≥ 1 ∧ x′ = x

τloop : x ≥ 0 ∧ x′ = x− 2y + 1 ∧ y′ = y;

Over integer variables, PnonIntegral1 has the lin-
ear ranking function f(x, y) = x with the lin-

ear supporting invariant y ≥ 1. Over real-valued variables, PnonIntegral1 does not
terminate. If we add the additional constraint y′ ≥ 1 to τstem, the programs’
semantics over the integers is not changed, but we are able to synthesize a lin-
ear ranking function with a linear supporting invariant. Adding this additional
constraint gives the constraints a property that we formally define as follows.

Integral constraints. A conjunction of linear constraints A·x ≤ b is called integral
if the set of satisfying assignments over the reals S := {r ∈ R

n | A · r ≤ b}
coincides with the integer hull of S (the convex hull of all integer vectors in S).

For each conjunction of m linear constraints there is an equivalent conjunc-
tion of at most 2m linear constraints that is integral [24]. We add an additional
step to the or-to-plus method in which we make the constraints in the stem
transition τstem and loop transition τloop integral.

The Or-to-Plus Method (Int)

Input: linear lasso program P with integer variables
Output: coefficients r, r0, s, and s0 of linear ranking function with

linear supporting invariant

1. Replace τstem and τloop by equivalent integral linear constraints.
2. Set up constraints ϕ1, ϕ2, ϕ3, and ϕ4 for P .
3. Apply Farkas’ Lemma to each constraint.
4. Obtain r, r0, s, and s0, by linear constraint solving.

That we find more solutions after making the linear constraints τstem and
τloop integral is due to the following lemma which was stated in [12]. We present
our proof for the purpose of self-containment.

Lemma 2 (Integral version of Farkas’ Lemma). Given a conjunction of
linear constraints A · x ≤ b which is satisfiable and integral, and a linear con-
straint c

⊺

· x ≤ δ,

∀x ∈ Z
n (A · x ≤ b → c

⊺

· x ≤ δ) iff ∃λ (λ ≥ 0 ∧ λ
⊺

· A = c
⊺

∧ λ
⊺

· b ≤ δ)

Proof. We write this statement as a linear programming problem.

(P) max{c
⊺

· x | A · x ≤ b} ≤ δ

Because the constraints A ·x ≤ b are integral, there is an integral vector x ∈ Z
n

such that c
⊺

·x is the optimum solution to (P). Thus the optimum over integers
is ≤ δ if and only if the optimum of the reals is. The statement now follows from
the real version of Farkas’ Lemma. ⊓⊔

assume 2*y >= z;

while(x >= 0 && z == 1) {

x := x - 2*y + 1;

}

Fig. 9. Lasso program PnonIntegral2

However, even if τstem and τloop are in-
tegral, our method is not complete over
the integers. In the completeness proof for
the reals we applied Farkas’ Lemma to
conjunctions of a polyhedron A · x ≤ b

and an inequality h
⊺

· x + h0 ≤ 0. This
inequality contains free variables, namely
the coefficients of the supporting invariant s

⊺

· x+ s0 ≥ 0. Even if τstem and τloop
are integral, this conjunction might not be integral and we cannot apply the
integer version of Farkas’ lemma in this case.

A counterexample to completeness of our integer version of the or-to-plus
method is the linear lasso program PnonIntegral2 depicted in Figure 9.

8 Conclusion

We have presented a constraint-based synthesis method for a class of programs
that was not investigated before for the synthesis problem. The class is restricted
(though less restricted than the widely studied class of simple while programs)
but still requires the combined synthesis of not only a ranking function but also
an invariant. We have formulated and proven a completeness theorem that gives
us an indication on the extent of power of a method that does without nonlinear
constraint solving.

We implemented the or-to-plus method as plugin of the Ultimate software
analysis framework. A version that allows one to ‘play around’ with lasso pro-
grams is available via a web interface at the following URL.

http://ultimate.informatik.uni-freiburg.de/LassoRanker

As mentioned in the introduction, the class of lasso programs is motivated
by the fact that they are a natural way (and, it seems, the only way) to rep-
resent an (infinite) counterexample path in a control flow graph. It is a topic
of future research to explore the different scenarios in practical tools that use

http://ultimate.informatik.uni-freiburg.de/LassoRanker

a module to find a ranking function and a supporting invariant for a lasso pro-
gram (e.g., in [1,13,15,16,17,21,22]) and to compare the performance of our—
theoretically motivated—synthesis method in comparison with the existing—
heuristically motivated—approach used presently in the module.

References

1. E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-form upper bounds in
static cost analysis. J. Autom. Reasoning, 46(2):161–203, 2011.

2. R. Bagnara, F. Mesnard, A. Pescetti, and E. Zaffanella. A new look at the auto-
matic synthesis of linear ranking functions. Inf. Comput., 215:47–67, 2012.

3. A. M. Ben-Amram and S. Genaim. On the linear ranking problem for integer
linear-constraint loops. In POPL, 2013.

4. A. M. Ben-Amram, S. Genaim, and A. N. Masud. On the termination of integer
loops. In VMCAI, pages 72–87, 2012.

5. A. R. Bradley, Z. Manna, and H. B. Sipma. Linear ranking with reachability. In
CAV, pages 491–504, 2005.

6. A. R. Bradley, Z. Manna, and H. B. Sipma. The polyranking principle. In ICALP,
pages 1349–1361, 2005.

7. A. R. Bradley, Z. Manna, and H. B. Sipma. Termination analysis of integer linear
loops. In CONCUR, pages 488–502, 2005.

8. M. Braverman. Termination of integer linear programs. In CAV, pages 372–385,
2006.

9. M. Brockschmidt, R. Musiol, C. Otto, and J. Giesl. Automated termination proofs
for Java programs with cyclic data. In CAV, pages 105–122, 2012.

10. M. Colón and H. Sipma. Synthesis of linear ranking functions. In TACAS, pages
67–81, 2001.

11. B. Cook, J. Fisher, E. Krepska, and N. Piterman. Proving stabilization of biological
systems. In VMCAI, pages 134–149, 2011.

12. B. Cook, D. Kroening, P. Rümmer, and C. M. Wintersteiger. Ranking function
synthesis for bit-vector relations. Formal Methods in System Design, 2013.

13. B. Cook, A. Podelski, and A. Rybalchenko. Terminator: Beyond safety. In CAV,
pages 415–418, 2006.

14. P. Cousot. Proving program invariance and termination by parametric abstraction,
lagrangian relaxation and semidefinite programming. In VMCAI, pages 1–24, 2005.

15. S. Gulwani and F. Zuleger. The reachability-bound problem. In B. G. Zorn and
A. Aiken, editors, PLDI, pages 292–304. ACM, 2010.

16. A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G. Xu. Proving
non-termination. In POPL, pages 147–158, 2008.

17. W. R. Harris, A. Lal, A. V. Nori, and S. K. Rajamani. Alternation for termination.
In SAS, pages 304–319, 2010.

18. D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich, and C. M. Wintersteiger.
Loop summarization using abstract transformers. In ATVA, pages 111–125, 2008.

19. D. Kroening, N. Sharygina, A. Tsitovich, and C. M. Wintersteiger. Termination
analysis with compositional transition invariants. In CAV, pages 89–103, 2010.

20. A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear
ranking functions. In VMCAI, pages 239–251, 2004.

21. A. Podelski and A. Rybalchenko. Transition invariants. In LICS, pages 32–41,
2004.

22. A. Podelski and S. Wagner. A sound and complete proof rule for region stability
of hybrid systems. In HSCC, pages 750–753, 2007.

23. A. Rybalchenko. Constraint solving for program verification: Theory and practice
by example. In CAV, pages 57–71, 2010.

24. A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, Inc.,
New York, NY, USA, 1986.

25. A. Tiwari. Termination of linear programs. In CAV, pages 70–82, 2004.

	Linear Ranking for Linear Lasso Programs

