
Pattern Graphs: Combining Multivariate Time

Series and Labelled Interval Sequences for

Classification

Sebastian Peter, Frank Höppner and Michael R. Berthold

Abstract Classifyingmultivariate time series is often dealt with by transforming the

numeric series into labelled intervals, because many pattern representations exist to

deal with labelled intervals. Finding the right preprocessing is not only time consum-

ing but also critical for the success of the learning algorithms. In this paper we show

how pattern graphs, a powerful pattern language for temporal classification rules, can

be extended in order to handle labelled intervals in combination with the raw time

series. We thereby reduce dependence on the quality of the preprocessing and at the

same time increase performance. These benefits are demonstrated experimentally on

10 different data sets.

1 Introduction

In recent years the development of cheaper sensors and bigger storage capacities

has led to an increase in the amount of data gathered periodically. Companies are

now able to use (mobile and/or wireless) sensor networks more efficiently in many

different domains (e.g. health care, climate, traffic, business processes to name a

few) to collect data with usually various dimensions. By analysing temporal data,

companies try to gather more insight into their processes and are thereby able to draw

S. Peter (B) · M. R. Berthold

Nycomed-Chair for Bioinformatics and Information Mining, University of Konstanz,

Box 712, D-78457 Konstanz, Germany

e-mail: sebastian.peter@uni-konstanz.de

M. R. Berthold

e-mail: michael.berthold@uni-konstanz.de

F. Höppner

Department of Computer Science, Ostfalia University of Applied Sciences,

D-38302 Wolfenbüttel, Germany

e-mail: f.hoeppner@ostfalia.de

5

http://nbn-resolving.de/urn:nbn:de:bsz:352-264892


6 

conclusions, enabling them for example, to predict the market for the next week or 
optimise the output by improving the production process. 

One important aspect during the analysis step is often finding typical or char­
acteristic situations. To grasp or encompass these situations, various notions of 
multivariate temporal patterns are described in literature. Example applications for 
multivariate temporal patterns include the discovery of dependencies in wireless 
sensor networks [1], the exploration of typical (business) work flows [3] or the clas­
sification of electronic health records [2]. Temporal patterns are often applied to 
labelled interval data, as the resulting patterns are easy to understand for the experts 
and also allow us to deal with multivariate data. To incorporate numerical time series 
in the patterns, they are discretized and their behaviour is described by a linguis­
tic term ('low revolutions', 'slowly accelerating') that holds over a given period of 
time, hence the term ' labelled (temporal) interval' . The effectiveness of such pat­
terns depend strongly on this discretization step. In this paper we extend the powerful 
concept of pattern graphs (see Fig. 1 as m~ example) enabling us to deal directly with 
time series data and overcome the sensitivity of the preprocessing phase. 

The paper is outlined as follows: The next section reviews related work and further 
motivations for our work. We then give an introduction to pattern graphs (Sect. 3) 
and the matching and learning algorithms (Sect. 4) [10, 11]. In Sect. 5, we contribute 
the necessary changes to incorporate numeric time series. Section 6 presents the 
experimental results, and we conclude the paper in Sect. 7 . 

2 Motivation and Related Work 

In this paper we concentrate on multivariate temporal patterns to characterise the 
evolution of multiple variables over time. These patterns are used in the antecedents 
of classification rules. The data consists of labelled temporal intervals; the labels 
may address categorical (e.g. 'gear-shift' in Fig.l) or numerical features (e.g. ' low 
revolutions' in Fig.l). These labelled intervals and their relationships are combined 
to form temporal patterns, for exan1ple by specifying the relationships between all 
observed intervals like 'A before B', 'A overlaps C and 'C overlaps B ' [2, 5]. 
Tl:lls notation is quite strict and somewhat ambiguous [7], because the qualitative 

I 
I 
: [1,*1 I 

: -~~~~~~~~~~~~}! 

Fig. 1 Example of a pattern graph describing a driving cycle (learned from data, see [10]) 



7 

relationship does not carry quantitative information about the degree of overlap or 
size of a gap. Other approaches contain such information [3], but consider only those 
events that do not include durations and thus offer no means to express concurrency 
as in 'A and B must co-occur for ~10 time units' . To be more robust against noise, 
some approaches aUow to address parts of the intervals only [4, 9]. The recently 
proposed pattern graphs [11] satisfy most of the shortcomings and will be used in 
this paper (and will be introduced below in more detail). 

Regardless of the pattern language, when the recorded data is numeric in nature, 
this leads to the problem of having to convert the numeric data into labelled intervals. 
This is usually done by applying thresholds, clustering methods or methods dedicated 
to finding stable intervals (e.g. 'Persist' [8]). This step is time consuming: multiple 
iterations and manual inspections are needed for a suitable discretization as a bad 
discretization can render all efforts to retrieve good patterns useless. An example is 
shown in Fig. 2, where the values of two time series (a) and (b) are discretized using 
the threshold 5, leading to the same sequence of labelled intervals (with labels [low: 
y :::: 5] and [high: y > 5]) in Fig. 2c. In this case the sequences are not distinguishable 
anymore, which is undesired if both series belong to different classes and we look for 
a temporal pattern that distinguishes both classes from each other. Furthermore the 
one perfect discretization may not exist in a situation where in class (a) the threshold 
needs to be 5 whereas for class (b) 6 and for class (c) the threshold of 7 would 
be perfect. To overcome this problem, the selection of optimal thresholds may be 
postponed in the learning algorithm itself instead of leaving it as a preprocessing 
step. 

3 Pattern Graphs 

This section reviews pattern graphs, which were first introduced in [11]. We consider 
m (categorical or numeric) attributes with value rangeD i, composed of multivariate 
observations x E D with D = (Dr x · · · x Dm). 

0 3 10 13 0 3 10 13 

t 

(c) 

y:high 

y:low 

0 3 10 13 

Fig. 2 Two time series: positive class (a) and negativie class (b) discretized to the interval sequence 
(c) by using the threshold 5 (thJtted line), thereby loosing information to distinguish them from each 
other 



8

Definition 1 ((sub)sequence). A sequence S consists of an arbitrary number of

observations (x1, . . . , xn) ∈ S with S =
⋃∞

i=1 Di . Let |S| = n denote the length

of the sequence S. A subsequence from index a to b of S is denoted by S|[a,b].

To describe those parts of the series that are relevant for the classification task,

we apply (local) constraints to subsequences:

Definition 2 (set of constraints for (sub)sequences). Let C = {C | C : S →

B} denote the set of all (possible) constraints on (sub)sequences. We distinguish

between value-constraints, restricting the acceptable values of the (sub)sequence, and

temporal constraints, which limit their duration. For a sequence S = (s1, . . . , sk),

examples of value-constraints are:

• C(S) = true (“don’t care”: is always satisfied)

• C(S) = true ⇔ ∀i : 1 ≤ i ≤ k : si, j ∈ C j with C j ⊆ D j for all 1 ≤ j ≤ m.

This constraint limits the range of accepted values for the sequence.

In this paper we consider only one type of temporal constraint:

• Given t ∈ T , T = {(a, b)|1 ≤ a ≤ b} ⊆ N
2, a temporal constraint is defined as

C(S) = true ⇔ a ≤ |S| ≤ b. Therefore a temporal constraint is represented by

an interval [a, b] and restricts the duration of the (sub)sequence S to liewithin these

bounds. Here a is considered the minimal and b the maximal temporal constraint.

Up to now, pattern graphs have only been used for interval sequences, that is, a

condition (described by the interval label) either holds or not (D j = {0, 1}). We thus

have three different value-constraints: C j ⊆ {0} (absent), C j ⊆ {1} (present) and

C j ⊆ {0, 1} (don’t care). A pattern graph defines a partial order of constraints:

Definition 3 (pattern graph). A tuple M = (V, E,Cval ,Ctemp) is a pattern graph,

iff (V, E) is an acyclic directed graph with exactly one source (⊤), one sink (⊥),

a finite node set V ⊆ N ∪ {⊤,⊥} and an edge set E ⊆ (V × V ), for which the

following properties hold with V ′ = V \{⊤,⊥}:

• ∀(v1, v2) ∈ E : v2 
= ⊤ (no incoming edge to ⊤)

• ∀(v1, v2) ∈ E : v1 
= ⊥ (no outgoing edge from ⊥)

• ∀v ∈ V ′ : (∃w ∈ V : (v,w) ∈ E) ∧ (∃w ∈ V : (w, v) ∈ E)

(all nodes v ∈ V ′ have at least one incoming and outgoing edge)

Finally,Cval : V ′ → C is a function,mapping each node v ∈ V ′ to a value-constraint

C ∈ C , whereas Ctemp : V ′ → C maps each node v ∈ V ′ to a temporal constraint

C ∈ C . By C v
val we abbreviate Cval(v), i.e., the value constraint assigned to v. We

define C v
temp := Ctemp(v) analogously.

Definition 4 (mapping). A mapping B for a sequence S and a pattern graph

M = (V, E,Cval ,Ctemp) assigns each node v ∈ V \{⊤,⊥} a continuous subse-

quence S|[a,b].⊤ is assigned the fictitious subsequence S|[0,0] and⊥ the subsequence

S|[|S|+1,|S|+1]. B(v) = [a, b] denotes the start and end index of the subsequence of

S assigned to node v.



9 

(a) (b) 

~ L_I_.L_~ L_: _ ___,_1 _ _l._, -

2 3 4 5 0 5 7 13 20 

Fig. 3 Example for multiple mapping candidates on a given graph (a) and sequence (b) 

Definition 5 (match, valid m apping). A valid mapping B for pattern graph M = 
(V, E , 'ifua/, 'ifremp) and a sequenceS of length n is a mapping with the following 
additional properties: with V' = V\{T , _l} 

V(vt, v2) E E : B(vt ) = [a, b] /1. B(v2 ) = [c, d] ~ b + l = c (no gaps) (1) 

Vi : l ~ i ~ n : 3v E V' : i E B(v) (each index is assigned at least once) (2) 

Yv E V' : 'if~at<Sln(v) ) = true (value-constraintholds) (3) 

Vv E V' : 'if,~mp (SIB(u)) = true (temporal constraint holds) (4) 

Having defined the pattern graph in detail we will now give an example to illustrate 
the semantics of the pattern graph. Figure 3a shows an example of a pattern graph 
with one path, which is read as follows: The temporal constraint of a node is depicted 
above the node. A star represents an unlimited duration. The value-constraint of a 
node is shown inside the node. We have two kinds of value-constraints for attribute 
A: A means that the attribute is active ( D A = { l}) and ..., A requires its absence 
(DA = {0}). A node labelled ' ?' (don ' t care)is unconstrained. Please note that if the 
node states A the behaviour of the other attributes is unconstrained. 

Figure 3b shows a sequence where the vertical axis reveals two attributes A and 
B, which hold over certain. periods of time (black bars, time on horizontal axis). We 
now discuss whether these sequence match the pattern graph in F ig. 3a. As this is 
a simple graph, it contains only one path from source to sink. For this graph the 
sequence has to be div ided into four contiguous parts, so that the first part satisfies 
the 'don't care' constraint; during the second part the property A has to hold; the 
property B must hold in the third part and both A and B have to hold during the last 
part. All of these four parts require a duration of at least one time unit (but have no 
upper bound on the duration) except the A node with. a minimum duration of 3. The 
sequence shown in Fig. 3a can be mapped to the graph, because we can clearly see 
that A is active until B begins and is active until the end and during the last part A 
becomes active again through to the end of the sequence. Actually the pattern graph 
has more than one valid mapping (discussed later in Sect. 4). A more complex and 
expressive pattern graph is found in Fig. I , which describes a driving cycle derived 
from real data [ lO]. 



10

4 Matching and Learning Pattern Graphs

Matching a pattern graph to a sequence is essentially a combinatorial problem, an

efficientmatching algorithmcanbe found in [11].Oftenmultiplematches are possible

and for each edge e = (u, v) ∈ E the algorithm provides a set of valid edge positions

p(e), i.e., a set of positions t that satisfy all value-constraints of node u for t ′ < t and

all value-constraints of node v for t ′ ≥ t . For the graph in Fig. 3a and the sequence

in Fig. 3b we have a set of valid locations p(e) = {0} for the edge e from node ⊤ to

⊥, but for the edge e′ from B to AB we have p(e′) = {13, 14, . . . , 19}. These edge

positions are organized in so called mapping candidates, which map each edge of

the graph to one contiguous interval of valid edge positions. So amapping candidate

C may be considered as a precursor of a valid mapping B in the following sense (by

(·, v) we denote any edge leading to v):

∀v ∈ V : B(v) = [s, e] ⇒ s ∈ C(·, v) ∧ e ∈ C(v, ·)

Multiple mapping candidates exist, from which one or more valid mappings may

be derived. Consider the graph in Fig.3. The ‘?’ node is valid during [0,20], the ‘A’

node is satisfied during [0,7] and [13,20], ‘B’ during [5,20] and finally ‘AB’ during

[5,7] and [13,20]. Out of these sets of valid positions the matching algorithm derives

two mapping candidates C1 and C2, assigning each edge its admissible positions.

Three valid mappings B1-B3, obtained from C1 and C2, are shown below (many

more are possible).

C1 1:[0,0], 2:[1,4], 3:[5,7], 4:[13,19], 5:[20,20] B1 [0,1] - [1,4] - [4,13] - [13,20]

B2 [0,2] - [2,7] - [7,16] - [16,20]

C2 1:[0,0], 2:[13,15], 3:[16,18] 4:[17,19] 5:[20,20] B3 [0,13] - [13,17] - [17,18] - [18,20]

While all edge positions from the mapping candidates ensure that the value con-

straints hold, the positions must also fulfil the temporal constraint of the node. For

instance, if the temporal constraint for the node labelled ‘AB’ was [5,*], the mapping

B2 and B3 would no longer be valid (because the sequence assigned to this node has

only a length of ≤ 4).

A two-phased learning algorithm for pattern graphs has been introduced in [10],

where a general pattern, matching all instances of a class, is learned in the first

phase. The second phase implements a beam-search, where in each iteration, the

k-best pattern graphs are refined further by special refinement operators, which add

new nodes or edges to the graph, modify temporal constraints or add value con-

straints to nodes in order to improve some measure of interestingness (we apply the

J-measure [12]).



11 

Fig. 4 Two pattern graphs with a new constraint to distinguish the positive between the negative 
sequences from Fig. 2 

5 Extending Pattern Graphs to Time Series 

ln order to enable pattern graphs to deal with a numeric range Dj S JR (cf. Def. 1) 
we introduce new value constraints called series constraints, where Cj = {xlx ~ 
a) S Dj or Cj = {xlx ~ a) S Dj for some threshold a (cf.Def. 2). With these 
adclitional constraints we enable pattern graphs to overcome the obstacle of finding 
the best cliscretization to convert time series to labelled intervals, as every node may 
now use its own threshold a instead of relying on the predefined intervals alone. This 
enables us to use different thresholds for different classes and it also allows us to use 
different series constraints for the same series within the same class (local constraints 
in different nodes). For example we can create the pattern graphs shown in Fig.4a 
and b which are able to separate the sequences shown in Fig. 2a and b nevertheless 
they have the same interval representation as shown in Fig. 2. 

To learn such constraints automatically from data, we have to extend the beam 
search operators. While it is quite easy to check whether a given assignment of 
subsequences to graph nodes represents a valid mapping, it is much more complicated 
to derive new conclitions that are in some way 'optimal' for the set of all possible 
mappings. This is due to the fact that a graph node with constraint 'y:low' may 
match an interval [s, e] with this label in many different ways: any sub-interval 
[s', e'] S [s, e] satisfies the node constraints; such a constraint still leaves many 
possibilities for valid mappings. In order to refine (or introduce new) node constraints, 
we have to consider all of these potential mappings at the same time, in order to 
calculate what would be the best adclitional constraint to distinguish good from 
bad cases. Enumeration of all possible mappings is not feasible because of their 
large number. Thus we operate directly on the mapping candidates of the matching 
algorithm. 

Without loss of generality we will consider only the x ~ a constraint in the 
following. The new operator is instantiated for each inclividual graph node v E V. 
As with all the other operators, it receives all mapping canclidates (that already reflect 
the value constraints of that node), the temporal constraint and the data sequence. 
The objective is to derive a threshold a on one (numeric) variable x of the sequence, 
such that the adclitional node constraint x ~ a improves the discriminative power of 
the pattern. Expressed more formally: if Pis a pattern graph, let mp(s) = 1 denote 
that P has a valid mapping to s E S (0, else). Let G' denote the resulting pattern 
if P is extended by the constraint x ~ a in node v. Then a confusion matrix from 
mc, (S) E {0, 1} and a class kj-.k is created for G' to evaluate its utility. 



12

The naive approach to find the best refinement is to extend P with every possible

series constraint for x and then match all of the resulting graphs to all sequences. It

is sufficient to examine only those thresholds σ that change the matching result of

some s ∈ S, that is, for σ we obtain mG ′(s) = 1 but for σ − ε we have mG ′(s) = 0,

because it is only at these thresholds that the confusion matrices of the rule change.

Thus, we need to determine only as many confusion matrices as we have sequences.

How do we find the threshold σ for a given sequence s? If a subsequence, mapped

to node v, shall satisfy the constraint, we have to choose σ as the maximum of

all x . However we do not know this subsequence in advance, but have to consider all

possible subsequences that may be obtained from the mapping candidates. To let

all subsequences satisfy the constraint, we have to pick the smallest of all maximum

values of all possible subsequences. If this value were reduced only slightly (−ǫ),

there would be at least one subsequence for node v that would not match anymore

with the result that no valid mapping exists anymore. Lemma 1 shows that it is

sufficient to inspect only the shortest possible subsequences rather than all possible

subsequences.

Lemma 1. By max S we denote the maximum of the x-values in a (sub) sequence

S. Let Q be the set of all subsequences (that may occur in a valid mapping to node

v) and Q′ the set of shortest subsequences.1 Then minmaxS∈Q S = minmaxS∈Q′ S

holds.

Proof. Let S ∈ Q. Without loss of generality let us assume that S 
∈ Q′. Thus, S

is not among the shortest subsequences and therefore we find a T ∈ Q′ ⊆ Q such

that T is a subsequence of S. All values of T are contained in S, but S contains

additional entries, therefore we have s := max S ≥ max T =: t . Thus, we know that

minmaxS∈Q′ S ≤ t ≤ s. This means, that s = max S can be ignored safely in the

calculation of minmaxS∈Q S.

Algorithm 1 findBestSeriesSmallerThanThresholdConstraint

Require: S: all sequences

Require: v: node to refine

Require: vmin : minimal length of the node

Ensure: best refinement

1: for s ∈ S do

2: find mapping candidates CM

3: values ←
⋃

c∈Cm
get MinMaxV alueFor MappingCandidate(s, c, vmin, v)

4: σ ← minvalues

5: collect all thresholds σ in set �

6: end for

7: sort all thresholds in � in ascending order

8: create and evaluate confusion matrices for all found thresholds.

9: add the threshold σ with highest measure to the node v as the series constraint

10: return refined pattern graph.

1 shortest in the following sense: ∀s′ ∈ Q′ : ¬∃s ∈ Q : s ⊂ s′.



13

Algorithm 2 getMinMaxValueForMappingCandidate

Require: s: sequence

Require: c: mapping candidate

Require: vmin : minimal length of the node

Require: v: node to refine

Ensure: smallest maximum value of the subsequences contained in c

1: pl ← latest start position ∈ c((·, v))

2: pe ← earliest end position ∈ c((v, ·))

3: Sm ← ∅

4: begin ← pe - vmin .

5: if begin > pl then

6: return maximum value contained in s|[pl,pe]

7: else

8: while begin ≤ pl do

9: Sm ← Sm ∪ s|[begin,begin+vmin ]

10: begin ← begin + 1

11: end while

12: end if

13: return smallest value out of the maximum values from the subsequences ∈ Sm

The outline of the refinement operator to find the best x ≤ σ is shown in

Algorithm1. In the lines 1–6 the algorithm computes the threshold as defined by

the Lemma1. It utilises Algorithm2 to find the maximum value of all shortest sub-

sequences for a givenmapping candidate. vmin denotes either the minimal temporal

constraint of node v, or is a greater value if the graph structure requires longer

sequences in order to satisfy the temporal constraints of other nodes (for example

due to parallel paths).

We find the best refinement by evaluating all possible confusion matrices and

picking the onewith the highest interestingnessmeasure. In order to avoid overfitting,

the series constraint with the best measure will be relaxed similarly to the binary split

operator in decision tree learning: We search for the next greater value and use the

mean of both. This doesn’t change the prediction of the new pattern on the training

set, but is less restrictive for new instances. The refinement is completed in line 9 by

adding the series constraint with the computed value to the node.

From Algorithm2 we can see that the shortest subsequences for a single map-

ping candidate are always subsequences with the same length, shifted by one time

unit. This allows us to use a priority queue, in order to extract the constraint value

efficiently.

Overfitting. An important step to avoid overfitting is to prevent nodes with the

minimum temporal constraints 1 to be refined with a series constraint. This would

allow the pattern graph to focus on one single time point and would thus stimulate

overfitting. We therefore enforce a minimal length of a node to be refined with

the new series constraint. If a node has a minimal duration of 1 during refinement, the

minimal length will be set to this minimal length (lower bound of vmin). This has the

consequence for step 1 that only subsequences with the minimal length, which are

mappable to the node have do be analysed. Additionally we have added a likelihood



14

ratio [6] test after every refinement and keep only those graphs with statistically

significant improvements to avoid overfitting (which is a problem common to all

rule learners).

6 Experimental Evaluation

The experimental evaluation is divided into two different experimental setups. In

the first experiment we show that the series constraints help to overcome the pre-

processing problem discussed earlier. Whereas in the second experiment we show

that the new approach is able to perform better, even if a good discretization is applied

beforehand.

6.1 Robustness Against Preprocessing Errors

To show that series constraints could help dealing with sub-optimal preprocessing of

the data we took nine data sets from the UCR time series repository.2 This repository

already supplies training and tests partitions for each data set in a common format.

All of these data sets consist of a raw univariate time series which requires some

preprocessing: a moving average smoothing was applied to the series and we also

extracted an additional slope series. Thereby we artificially converted the data into

a multivariate time series (original and slope time series). In the second step this

preprocessed time series had to be converted into a labelled interval series by applying

3-quantile discretization. To achieve different discretization the quantile boundaries

are selected randomly for each iteration. We are aware of the fact that for the given

data sets algorithms exists that perform better, but most of these approaches could

not deal with multivariate data. These approaches often utilize 1-nearest neighbor

classification (1NN) with Euclidean distance or dynamic time warping, whereas

the pattern graphs rely on simple elements only (like intervals with a value ≥ σ)

and thus highlight structural differences. These simple elements keep pattern graphs

interpretable even in the case of complex multivariate data (see Sect. 6.2). Therefore

1NN-approaches are not the real competitors. To show the improvement of the learned

graphs with series constraints and allow future comparison for follow up work we

decided to use these data sets. Table1 displays the results obtained by applying the

beam with and without the series constraints for 30 iterations per class and dataset.

The parameter for theminimumsequence lengthwas set to 10, but the results obtained

by using additional operators with 5, 15 and 20 as minimal length led to nearly the

same results. The first row names the dataset, the second row displays the class (for

which the pattern graphs was learned for). The left side represents the search without

2 Keogh, E., Zhu, Q., Hu, B., Hao. Y., Xi, X., Wei, L. & Ratanamahatana, C. A. (2011). The UCR

Time Series Classification/Clustering Homepage: www.cs.ucr.edu/~eamonn/time_series_data/.



Tab le 1 Results on the data when the thresholds vary 

Data set 
Class 

Accuracy 
Std. dev. 

GunPoint 
1 2 

67,5 179 61,3175,1 
12,315,7 14,214,8 

Lightning 2 
-1 1 

Waver 
-1 1 

16.4191 58,6177.5 
21,312,7 10,6 1 0 

1 2 

15 

Yoga Coffee 
1 2 1 2 

48,2156,7 51.4152,7 55,8160.6 59,5171 
4,1 12,7 4,5 13,2 13, '1 1,1 10,311,8 

Synthetic Control 
3 4 5 6 

Data set 
Class 

Accuracy 
Std. dev. 

53,5154,1 51,6156,1 62,5189,3 88 190,1 93,3187,7 92,2193,2 91,2192,2 87.4194,1 
8,1 1 o 8,2 15,3 34 12 .1 19,91 5,6 3 15,6 2,9 13,6 3,1 13.3 15 11.4 

Data set 
Class 

Accuracy 
Std. dev. 

Data set 
Class 

Accuracy 
Std. dev. 

Two Patterns 
I 2 3 

34,8196,8 27,79191,1 27,4193,2 
20,6 1 0 13,5 1 2,9 13,61 1.7 

1 2 3 
33,9185,7 37,1189,7 42,5191,8 
31,11 1,1 34,810,1 36,q2,1 

CBF 
4 I 2 3 

29,8197,5 76,3195,9 76,1 195,8 67 177,2 
18, 11 0,4 13,51 0 11.41 0,2 15,11 8,5 

Fish 
4 5 6 7 

33,7 124,9 71.4191 ,4 28,2186,3 64,7 190,4 
28,6122,1 34.41 3.3 26,3 1 1,2 30,21 1.2 

series constraint the right side represents the search with series constraints. The third 
row indicates accuracy and the fourth contains standard deviation. 

For most of the classes the learned pattern graphs with the series constraints are 
able to perform significantly better in terms of accuracy. We can also see that in most 
cases standard deviation has decreased, showing that the suboptimal discretization 
has been compensated. For four classes only sma11 improvements in terms of accu­
racy and standard deviation occurred. For two classes the performance with series 
constraints deteriorates: for the class# 3 from the Synthetic Control data set, standard 
deviation increases while accuracy drops. In these cases the series constraint led the 
beam search into a local maximum (the interestingness measure is also lower on the 
training set). This leaves room for further improvements of this approach, because 
without the limitations of the beam we should obtain at least the same performance 
as before. 

6.2 Improved Accuracy on Data with Good Discretization 

We obtained a data set from a German company producing, amongst others, power 
tools. This data set consists of 8 different classes, where each class describes a 
different screwing process: screwing in and out using different gears of the power 
tool and different screws. Each of these 564 instances are described by five time 
series, e.g. voltage/current at the battery or engine etc. In a first step we manually 
discretized each of this series to labelled intervals in an interactive manner until we 



16 

Table 2 Results on the power tool data set 

Power tools 

Class 2 3 4 5 
Approach a b a b a b a b a b 
Accuracy 98.7 98.9 98.1 99.5 98.8 98.9 98.7 98.2 97.4 99.1 

Std. Dev 0.7 0.9 0.9 0.6 0.9 0.9 0.9 1.3 1.4 1.1 
Avglmp. 0.3 1.4 0.01 -0.5 1.7 

M46 

0.916 ~0.92 
I 

> 0.896 
u 
"' 0,876 I 

5 

Ef" u 
~ 0.856 

0.85 
0.836 

I 0 ,82 
0,816 I 

I 

0.796 __._ 0.8 

old 
Approach 

6 

a b a 

96.8 97.3 98.4 

J.4 1.4 1.1 
0.6 

---r-- 0.95 . . 
u0.92 

• 0.88 

--'-- 0.85 

new 

7 8 

b a b 

98.4 95.9 99.0 

1.6 2.3 2.7 
0 3.1 

Fig. 5 Box plots showing the .results of the complete classifier on the power lool data set 

were satisfied with the results. Therefore we may safely assume that discretization is 
good and it would be hard to achieve better discretization. We applied the beam search 
(minimal length: 10) to this data set 30 times with and without the series constraint. 
In each iteration we randomly partitioned the data set into 80% training and 20% 
test As a result of the good discretization we assume that the accuracy results would 
be nearLy the same, but may be improved by applying different thresholds to one 
class or in between classes. 

TabLe2 shows the result. If we sum up the average improvements for all the 
individuaL classes, the new graphs performed 6.6% better. Most of the pattern graphs 
learned with series constraints perform better (up to 3%) and are only slightly worse 
for one class #4 ( - 0 .5 %). However improvements 'per-class' are not significant. So 
far, each rule has predicted just one class. Next we combine the individual rules to a 
single, multi-class classifier: we only classify an instance if and only if one pattern 
graph has a valid mapping on the instance. In case none or more than one pattern 
graph matches we predict "unknown". The box plot in Fig. 5 and TabLe3 shows the 
result of this classifier, where we use the same pattern graphs as in TabLe 2, thus the 
results origin from the same 30 runs with random training and test sets. 

We can see that by using series constraints the overall accuracy has improved by 
an average of 5.8%. It is also interesting to note that in all30 iterations, the lowest 
accuracy of the new approach is at least as good as the average result without the series 



17

Table 3 Mean accuracy and

standard deviation of the

complete classifier for the

powertool dataset

Approach Old New

Accuracy 84.7 90.5

Std. Dev 3.2 2.8

constraints. Additionally the mean accuracy using the new approach is nearly equal

to the best result obtained without the series constraints (−1.5%). By inspecting

the learned pattern graphs, we observed that one or two additional series constraints

were derived per class. Depending on the class, the thresholds were slightly different,

which explains the improved accuracy as the number of false positives was able to

be reduced, without increasing the number of false negatives.

7 Conclusion

In this paperwehave shown, that the results of pattern learning algorithms for labelled

sequences rely heavily on discretization of the source time series. The quality of the

learned patterns varies considerably when the discretization changes. In order to

overcome the problem of finding good discretization, which is time consuming and

not always possible, we introduced an algorithm capable of mining labelled intervals

together with the corresponding time series. The first experiment has shown that, in

comparison to the approach without the series constraint, the quality of the patterns

is higher resulting in and allowing for a more robust approach compared to a priori

discretization. Furthermore we have shown that even in situations, where discretiza-

tion already performs well, the quality of the patterns may be increased, because

different levels of discretization for different classes and even different thresholds

within one class may be utilized.

For future work the synergies of labelled intervals and numeric time series may

be improved further as, so far, we have only used simple constraints (≤, ≥). But it is

possible to use more sophisticated constraints on mean values or standard deviation.

This kind of constraint may provide further insight into the patterns.

Acknowledgments Wewould like to thank Stefan Mock from the Robert Bosch GmbH for kindly

providing the data.

References

1. Basile, T.M.A., Mauro, N.D., Ferilli, S., Esposito, F.: Relational temporal data mining for

wireless sensor networks (2009).

2. Batal, I., Valizadegan, H., Cooper, G.F., Hauskrecht, M.: A pattern mining approach for clas-

sifying multivariate temporal data. In: Bioinformatics and Biomedicine (BIBM), 2011 IEEE

International Conference on, pp. 358–365. IEEE (2011).



18

3. Berlingerio, M., Pinelli, F., Nanni, M., Giannotti, F.: Temporal mining for interactive work-

flow data analysis. In: Proceedings of the 15th ACM SIGKDD international conference on

Knowledge discovery and data mining, KDD ’09, pp. 109–118. ACM, New York, NY, USA

(2009).

4. Chen, Y.C., Jiang, J.C., Peng, W.C., Lee, S.Y.: An efficient algorithm for mining time interval-

based patterns in large database. In: Proc. Int. Conf. Inf. Knowl. Mngmt., pp. 49–58. ACM

(2010).

5. Höppner, F.: Discovery of temporal patterns - learning rules about the qualitative behaviour of

time series. 2168, pp. 192–203. Freiburg, Germany (2001).

6. Kalbfleisch, J.G.: Probability and statistical inference: probability, vol. 2. Springer-Verlag

(1985).

7. Mörchen, F.: Unsupervised pattern mining from symbolic temporal data. SIGKDD Explor.

Newsl.9(1), 41–55 (2007).

8. Mörchen, F., Ultsch, A.: Optimizing time series discretization for knowledge discovery. In:

Proc. Int. Conf. Knowl. Disc. and Data Mining, pp. 660–665. ACM (2005).

9. Mörchen, F., Ultsch, A.: Efficient mining of understandable patterns from multivariate interval

time series. pp. 181–215. Springer (2007).

10. Peter, S., Höppner, F., Berthold,M.R.: Learning pattern graphs formultivariate temporal pattern

retrieval. In: Proc Int Symp Intel. Data, Analysis (2012).

11. Peter, S., Höppner, F., Berthold, M.R.: Pattern graphs: A knowledge-based tool for multivariate

temporal pattern retrieval. In: 6th IEEE International Conference on Intelligent Systems (IS’12)

(2012).

12. Smyth, P.,Goodman,R.M.:An information theoretic approach to rule induction fromdatabases.

IEEE Trans. Knowledge Discovery and Engineering 4(4), 301–316 (1992).


	Text1: Erschienen in: Research and Development in Intelligent Systems XXX : Incorporating Applications and Innovations in Intelligent Systems XXI Proceedings of AI-2013 ; The Thirty-third SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence / edited by Max Bramer, Miltos Petridis. - Cham : Springer International Publishing, 2013. - S. 5-18. - ISBN 978-3-319-02620-6
	Text2: Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-264892


