
ABSTRACT 

RAIDER: RAPID AB INITIO DETECTION OF ELEMENTARY REPEATS 

 

by Nathaniel Figueroa 

 
De novo repeat discovery is increasingly important due to the growth rate 
of new genomic data. Library-based programs such as RepeatMasker [1] 
effectively expand known families of repeats, but discovering new 
families is difficult due to their inexact nature. Tools relying on self-
alignment (e.g RECON [2]), become prohibitively time-consuming with 
large sequences, while text-indexing methods, such as the Suffix Array or 
FM-Index, are poorly suited for the wildcard searches needed to account 
for single base mismatches. We present a tool, RAIDER, that uses spaced 
seeds in the spirit of PatternHunter [3] to identify inexact repeats with 
wildcard matching. RAIDER’s speed allows extensive parameter tuning, 
processing Human Chromosome 22 in approximately 1 minute (as 
compared to 39 minutes for RepeatScout or longer for RECON). RAIDER 
shows great promise in terms of both sensitivity and specificity, with 
results comparable to RepeatScout, and much potential for improvement 
with unexplored spaced-seed patterns. 
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1 Introduction 
Repeat regions of the genome are important for many reasons. They are a substantial  

portion of mammalian genomes, upwards of 45% in the human genome [4].  For example, 

ALU elements are a family of repeats where each instance is only about 300 bases long, but 

occurs so frequently in the human genome that they make up roughly 10% of the entire 

sequence [5]. Repeats are also suspected to play important roles in gene development. It is 

known that Transposable Elements (TEs), a special class of repeats, are capable of self-

replication: they carry instructions which allow them to copy, or simply transpose (move), 

themselves to another location in the genome. On occasion portions of neighboring genes 

are moved or copied along with TEs, allowing for large mutations with unpredictable 

consequences [6].  

The genome is traditionally modeled as a string over the alphabet {A,C,G,T}; repeats are 

(initially) identical substrings distributed throughout the larger genomic string.  However, 

genome sequences tend to be large –running into billions of base-pairs (characters). 

Finding repeats by comparing a sequence to itself requires quadratic time with respect to 

length when using standard string-matching algorithms. Repetitive structures themselves 

can be difficult to identify [6], given the inexact nature of the repeats.  Over time repeat 

sequences accumulate minor mutations (changes to the individual strings). These 

mutations may not affect the function of the sequence, but the sequence will be 

miscategorized by exact string-matching algorithms. Many repeats are inactive structures 

that have been heavily obfuscated by their mutations over millennia: they have not 

retained any function that would encourage conservation of the sequence pattern, yet their 

membership in a specific family remains scientifically significant. TEs introduce a third 

complication in that they can copy neighboring data: the challenge then becomes to discern 

where the repeat ends and the hitchhiking data begins [6].  

Repeat discovery is currently best accomplished through tools that rely on a database of 

already annotated repeats, which is the approach taken by popular tools such as 

RepeatMasker [1]. This approach allows the efficient identification of new family members, 

but when analyzing new sets of genomic data only known families of repeats will be 

identified; the need for an effective de novo search method remains [7]. 

Several proposed methods rely on the use of suffix trees [8, 7, 9], which are capable of 

grouping repetitive sequences into branches of a tree in O(n) time (where n is the length of 

the sequence) [10, 11]. Suffix trees, however, rely heavily on exact matching; allowing 

wildcard mismatches multiplies time and space requirements. Another potential drawback 
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is the shear sophistication of suffix tree algorithms, making them difficult to adapt to new 

approaches. Lastly, it is important that a de novo search be fast enough to allow for 

parameter tuning, as the size, count, and exactness of repeats being sought can vary widely 

between use cases. 

2 Background 
In this section we provide a cursory explanation of the molecular biology behind 

DNA sequences and repeat formation. We briefly describe other techniques for finding 

repeats, introduce the PatternHunter technique that will be important to our own method, 

and define terms necessary to understand its importance to our technique. 

2.1 Biological Background 

A deoxyribonucleic acid (DNA) sequence is a chain of nucleotides (or bases), each of 

which is one of four molecules: adenine, cytosine, guanine, and thymine.  In sequence 

analysis, where we are looking purely at the sequence pattern and are unconcerned with 

the chemical properties of these molecules, we traditionally model DNA as a string 

representing the order of the molecules, representing each nucleotide type as a single 

character derived from the first letter of its name.  Thus we represent a DNA sequence as a 

string over the alphabet {A,C,G,T}. A genome, the DNA sequence carried in each cell of a 

given organism, is then a very large string (of size ≈3.3x109 for humans).  Components of 

the genome (e.g. chromosomes, genes, repeats) are substrings of that genomic string that 

have specific biological associations.   

Two DNA sequences are homologous if they descend from a common ancestor.  Note 

that a DNA sequence is not static, but is subject to substitutions – changes to the sequence, 

and thus to the representative string.  The rate at which these changes occur depends on 

many factors, but given enough time almost any sequence will pick up some modifications.  

Thus, if we take one sequence, make two copies of it, and allow those copies to evolve 

independently, they will accrue differences over time. But the fact remains that they started 

in the same place (that is, both descend from the same original sequence), and hence 

remain homologous.  Much study has been given to the development of techniques that will 

identify homologous sequences that have incurred extensive modifications [3, 11, 12].  

A repeat is a sequence that is similar to another sequence within the same genome. 

There is no strict definition of similarity to qualify a repeat; RepeatMasker uses an 

alignment-based metric [1], and we subscribe to the elementary-repeat definition defined 
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in Section 3. Similar repeats are logically grouped into families; the aim of de novo repeat 

identification is to find candidate undiscovered families of repeats. 

Transposable elements (TEs) are a special class of repeats that are capable of self-

replication: a TE can copy itself to another part of the genome, or simply move (transpose) 

its sequence from one part of the genome to another.  Some retroviruses that have become 

part of the human genome also possess this ability to self-replicate and are considered TEs 

as well. Unsurprisingly, TEs are known to be responsible for a number of diseases [13]. 

Most TEs are, or eventually become, evolutionarily neutral, having no impact on the biology 

of its host organism. 

As TEs copy themselves, the host genome ends up with a family of homologous TE 

copies that begin to diverge over generations. Eventually mutations occur that disable 

these TEs’ abilities to self-replicate, but their sequences remain in the genome and those 

that are neutral continue to change over generations, without conservation pressure (since 

they do not affect the organism’s fitness). 

2.2 RepeatMasker 

Techniques for finding known repeats in a given sequence are well developed. 

RepeatMasker [1] is the de facto standard for library-based repeat searches: given a list of 

consensus sequences representing known families, RepeatMasker searches for new 

members of each family based on similarity to the consensus sequences. Because 

RepeatMasker matches are based on alignment similarity, RepeatMasker is able to account 

for the sequence variation between family members introduced by the effects of molecular 

evolution.  

 Of course, RepeatMasker is only useful given the existence of an initial library of 

known repeats. Without such a pre-compiled library, we must look at de novo search tools: 

tools attempting to find significant repeats based solely on the initial sequence 

composition. This result is then a library of repeats that can be used by tools such as 

RepeatMasker to find all further instances and fragments in the sequence. 

2.3 Suffix tree techniques 

Suffix trees and suffix arrays are data structures that can be built from a text S of 

length n in O(n) time and then used to search S for any substring s of S in O(|s|) time. Once 

the tree has been built, the search time is linearly bound in the length of the query [11] 

[14].  
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In Huo et al. the authors introduce a repeat finding technique that employs suffix trees, 

but takes a mixed approach that leaves room for expansion [8]. Each Lmer (a string of size 

L) contained within the sequence is identified and put into a table, allowing the tabulation 

of the number of times each Lmer occurs in the entire sequence [8] using an O(n) hash-

table based approach. After creating the table and counting the frequencies of all Lmers, 

those which occur in tandem and with equal frequency are grouped together, and a suffix 

tree is used to see if the frequency of the combined Lmers equals the frequency of the 

individual Lmers. If so, and if that frequency is sufficiently high, a significant repeat has 

been found.  Later the repeat is checked to see if it is elementary, a concept discussed in 

Section 3. 

We wished to expand on this approach by incorporating the PatternHunter technique 

(described in the next section) to allow more flexibility in identifying inexact matches. In 

the process we found that we could use hash table to store more than just counts, 

ultimately eliminating the need for a suffix tree altogether. 

2.4 Pattern Hunter 

Techniques for efficiently querying large sequences of data for string matches have 

become critical to bioinformatics due to the dramatic growth of available data. One 

particularly successful technique, PatternHunter [3], has shown remarkable sensitivity 

despite the simplicity of the approach: as a substitute for searching for exact substring 

matches, we search for portions of a longer string. We call this a spaced-seed pattern: 

essentially a search string with portions of it replaced with wild card characters (the 

“spaces”), leaving multiple spaced segments to be searched for (the “seeds”). The spacing 

allows for mismatches and thereby increases sensitivity, but has been shown not to 

significantly increase false positive matches [3].  

 

Figure 1: Huo, et. al. method of tabulating Lmer frequencies. Frequencies 
occurring in tandem reveal possible repeats to be confirmed by the suffix tree. 
E.g. The consecutive frequency 2 for ABX and BXB reveals the repeat ABXB. 
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Following the convention of Ma et al. [3],  we represent a spaced with a binary string: a 

1 characters require a match and the 0 characters represents a one-character wild card. For 

example, the spaced seed pattern 10101 would require matches in the first, third and fifth 

character of any substring being evaluated, as illustrated in Figure 5.  For example, given a 

spaced seed s of length L and two genomic strings q and t, also of length L, we say that q 

hits t with respect to s if qi = ti for all i such that si = 1. For example, for s = 10011, q = AACAA 

hits t = AAAAA (with respect to s) because they match at all positions where s is 1; q = 

AACAA does not hit t = TACAA.  

3 Definitions and Established Relationships 
 In this section we lay out several concepts that are crucial to understanding the 

RAIDER algorithm. In Section 3.1 we give formal definitions for elementary repeat and 

elementary repeat families, as the goal of RAIDER is to identify elementary repeats and 

group them into families. In 3.2 we address the significance of Lmers in searching for 

elementary repeats, and pose several lemmas to establish relationships that are significant 

to RAIDER. Finally in Section 3.3 we give a formal criteria for accepting inexact repeats. 

3.1 Repeat definitions 

We will be formulating the problem computationally in the framework of string 

matching, and we will follow the notation and definitions proposed by Zheng and Lonardi 

for working with repeats [9]. 

A family of transposable elements is a set of copies of a substring occurring in 

multiple locations across the genome.  To make the problem amenable to computation we 

would like a clean mathematical definition of a repeat, but the nature of biological systems 

makes this difficult [2].  For example, we would like to define a family as a set of similar 

substrings that are maximal in length. However, because transposable elements can 

occasionally (accidently) carry neighboring sequences in their transition [6], the emphasis 

on maximality can diminish the quality of repeat identification when a few repeats that 

happen to carry neighboring data lead to the exclusion of shorter but equally significant 

repeats of the same family. Zheng and Lonardi [9] attempt to deal with this by considering 

both maximality and frequency: the number repeat instances in a sequence. Instead of 

trying to initially deal with entire repeats, Zheng and Lonardi propose to define 

elementary repeats as the basis for defining repeat families. Elementary repeats are the 

basic building blocks of full repeats, meeting minimum criteria for length and frequency, 
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and must be elementary in the sense that they themselves cannot be composed of other 

elementary repeats [9].  

 

Definition 1 Elementary Repeat  

 A repeat family is considered elementary if there are a significant number of repeats, 

the repeats are maximally identical and significant in length, and no significant substring of 

the repeat occurs more times than the family has repeats. That is, P is an elementary repeat 

if: 

1. P has a length of at least some fixed threshold value L. 

2. P occurs at least f times, where f is a specified minimum frequency for elementary 

repeats. 

3. Every substring of P that meets condition (1) must have the same number of 

occurrences as does P (i.e. does not occur apart from P). 

4. There is no string P’ that properly contains all occurrences of P in the query sequence. 

In other words, P must be long enough, must appear with sufficient frequency, cannot 

have significantly long substrings appearing independently of P, and cannot be a part of a 

sequence that could itself be regarded as an elementary repeat.  We say an algorithm finds 

an elementary repeat instance if it properly identifies the start and end coordinates of the 

repeat, and an algorithm groups a repeat if it assigns all instances to one family of repeats.  

Defining elementary repeats is useful in biological scenarios because it is both precise 

and flexible. The advantages are illustrated in Figure 2: focusing on maximality would have 

absorbed family C into families A and B. C’s reuse in multiple families might make it an 

important component worth identifying. 

Alternatively, a biologist less interested in these basic elements could focus instead on 

composite repeats. We define and discuss our work with composite repeats in Appendix A. 

 

Figure 2: Three elementary repeat families. Note that although C only occurs after an 
instance of A or B, neither A or B can exclusively claim C as a subrepeat, thus C becomes its own 
element family. However, AC and BC both form composite repeat families. 
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3.2 Lmer relationship to elementary repeats 

The approach we will be taking towards elementary repeat identification involves 

finding repeated Lmers and expending them to find covering repeat elements.  To do this, 

we first must establish a few relationships between Lmers and elementary repeats, starting 

with two basic observations: 

 

Observation 1: Any Lmer occurring f or more times must be either an elementary repeat 

or part of a longer elementary repeat.  

 

When an Lmer occurs at least f times, conditions (1) and (3) of the Definition 1 clearly hold, 

and (4) must hold trivially (since the Lmer has no substrings of length L).  Thus the only 

way such an Lmer can fail to be an elementary repeat is if it is not maximal – if it is properly 

contained with an elementary repeat. 

 

Observation 2 Any given base will belong to L different Lmers. 

 

Notice a specific Lmer occurring at a specific index i will overlap another Lmer occurring at 

index i+1. They will overlap by L-1 bases, and thus a specific (L-1)mer can belong to 2 

Lmer. Likewise a specific (L-2)-mer can be overlapped by 3 Lmers, and so forth until we 

have a 1-mer, which can be overlapped by L Lmers. This is illustrated in Figure 3, and tells 

us that distinct elementary repeats will frequently have overlapping ends (of length no 

greater than L-1). 

 

Now: given that an Lmer occurring at least f times is either an elementary repeat or 

contained in one, the question is how to find the boundaries of the containing elementary 

C T G A C C G T A  

C T G A C C G T A  

C T G A C C G T A  

C T G A C C G T A  

C T G A C C G T A  

 

 

 

 

Figure 3: When L = 5, a given base 
belongs to 5 Lmers 
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repeat.  In order to do this we will exploit a few properties of Lmers and elementary 

repeats, proved to be true in the following. 

 

Lemma 1 Every Lmer belongs to at most one elementary repeat family. 

Proof: Assume an Lmer x belongs to two families, F1 and F2. This makes x a substring of F1 

that is significant in length but must occur more times in the query sequence than does F1 

(as x also occurs in F2) – thus violating condition (4) of the Definition 1.  □ 

 

Lemma 1 reduces the complexity of searching for the boundaries of a containing 

repeat, as it ensures us that there is a unique set of boundaries.  It is perhaps the most 

important point when trying to understand our final algorithm (RAIDER). In the course of 

the algorithm, we will say an Lmer x is assigned to a family F – meaning that all instances of 

x belong to F. If we re-assign x to distinct family G, it means all instances of x now belong to 

family G, and F must no longer contain x (as the lemma tells us x can only be in one family). 

 

 To continue discussion it will now help to have an operator used to denote the 

merging of strings based on the largest string that is both a suffix of one and a prefix of the 

other.  For example, given the strings AACC and CCGG, we would like to indicate that we 

will merge then over the common CC substring, resulting in AACCGG. 

 

Definition 2 Given strings x and y, we define x∘y as the string abc, where: x=ab, y=bc, and b 

is the longest substring that is both a suffix of x and a prefix of y.  

 

Note the distinction between ∘ and ⋅, the standard symbol used for string concatenation in 

the literature. 

 

Having defined this, we can now define the concept of an Lmer series: 

 

Definition 3 An Lmer series is sequence of Lmers x0, x1, …, xk-1 in the query sequence such 

that the start coordinate of xi is one greater than the start coordinate of xi-1.  We say a 

sequence F is composed from an Lmer series if F = x0∘x1∘…∘xk-1. 

 

Note that for any Lmer series x0, x1, …, xk-1: 

 We refer to the length of the series S, ||S||, as the number of Lmers in the series. 

 We denote the ith Lmer in series S as S[i]. 
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 For 0 ≤ i < k-1: |xi ∘xi+1| = L+1 (or: xi =a∘ x and xi+1=x∘b, where |a| = |b| = 1 and |x| = L-1). 

 If a sequence F = x0∘x1∘…∘xk-1, then |F| = L+k-1. 

Definition 4 Given a subsequence F of the query sequence, the Lmer decomposition of F 

is the Lmer series x0, x1, …, xk such that F is composed of the series. 

 

It should be obvious to the reader that any subsequence F has a unique Lmer 

decomposition of length |F|+1-L. We can think of an elementary repeat either as a sequence 

repeated many times, or an Lmer series (the sequence decomposition) repeated many 

times.  For convenience, we will start to use the two interchangeably (referring to an Lmer 

as either a substring of the repeat or an element of the repeat – meaning an Lmer of its 

decomposition) as context demands. 

As we are discussing RAIDER, we will consider a potential elementary sequence in 

terms of its Lmer decomposition and working bottom up – identifying Lmers that are 

substrings of elementary repeats and merging them into Lmer series. 

Finally, we wish to present an alternative definition of an elementary repeat.  While 

Definition 1 is more intuitive, the following will be more useful in our future discussions. 

 

Definition 5 Let F be a subsequence of the query sequence with an Lmer decomposition of 

x1, x2, …, xk (where k = |F| + L – 1).  F is an elementary repeat if:  

1. k ≥ 0 

2. freq(F) ≥ f 

3. freq(xi)=freq(F) for all Lmers xi in the decomposition. 

 

 
Figure 4: A family and its Lmer decomposition 
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4. k is maximal: there is no Lmer y such that the sequence y∘F, or F∘y, meets conditions 1-

3. (That is, the length of the defining sequence of F is maximal with respect to 

conditions 1-3.) 

Here freq(s) denotes the number of occurrences of substring s in the query sequence. 

 

Theorem: Definitions 1 and 5 are equivalent. 

Proof: For brevity, we will refer to condition (x) of Definition 1 as condition 1.x, and 

condition 5.y will refer to condition (y) of Definition 5.  Then we have: 

 Conditions 5.1 and 1.1 are equivalent. F has at least k elements in its decomposition if 

and only if |F| ≥ L + 0, which is condition 1.1.   

 Conditions 5.2 and 5.2 are equivalent.  Proof is trivial. 

 Conditions 5.3 and 1.3 are equivalent: 

o (⇐) If a sequence F conforms to condition 1.3, then every substring of length at 

least L has a frequency equal to that F.  Hence all Lmers have a frequency equal 

to that of F, satisfying 5.3 

o (⇒) Let Fu,v (u ≤ v) be the subsequence F composed from the Lmer series xu, xu+1, 

…, xv.  Note that since all xi have the same frequency, it follows that freq(Fu,v) = 

freq(xi) = freq(F) for any u,v.  Thus all substrings of F have the same frequency of 

F, hence conforms to condition 1.3. 

Finally we show the definitions are equivalent: 

 

 (⇒) Assume a sequence F conforms to Definition 5 (and thus, we now know, to conditions 

1.1, 1.2, and 1.3. If F did not conform to 1.4, then there is a substring F’ containing all 

occurrences of F.  We can write F’ = x ∘  F ∘ y (where ⋅ is the string concatenation operator) 

and |x|+|y| ≥ 1.  Assume without loss of generality that |y| ≥ 1, and notice that there would 

now be Lmer that could be added to the Lmer series for all occurrences of F – contradicting 

our assumption that 5.4 holds. 

(⇐) Assume a sequence F conforms to Definition 1 (and thus, we now know, to conditions 

5.1, 5.2, and 5.3).  If F did not conform to 5.4, then there is an Lmer y that either 

immediately precedes F0 or immediately follows Fk at all instances of F.  Assume the latter 

without loss of generality.  Then set F’ = F∘x, and we have the F’ contradiction 3.4.  □  

 From now on we will use Definition 5 by default, explicitly invoking Definition 1 

when needed.  
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Lemma 2 If a substring s with length k ≥ L appears in two locations such that the two 

occurrences are maximally identical, s cannot be a proper substring of any elementary 

repeat. 

Proof: Suppose the contrary: there is an elementary repeat r such that s is a proper 

substring. Let x0, x1, …, xk-1 be the series decomposition of r, and notice that the series 

decomposition of s must be xa, …, xb where either 0 < a or b < k-1 (since s is shorter than r). 

Let s’ = xa-1 if a > 0, or s’ = xb+1 otherwise. s' is then a substring of r, but renders s no longer 

maximal.  Thus if r exists, s cannot be a maximal string. □  

 

In short: given two maximally identically substrings, we have an immediate bound on 

the length of any elementary repeat.  It may be that this substring is the consensus 

sequence for an elementary repeat, or it may be that this substring contains the consensus 

sequence for an elementary repeat – but Lemma 2 tells us that the substring cannot be 

contained within an elementary repeat, a result that will be crucial to our RAIDER 

algorithm in Section 5. 

3.3 Inexact matches 

 To this point, our definitions of elementary repeats have required exact matches.  

That is, an Lmer series F is an elementary repeat if, by condition 1 of Definition 5, it occurs 

at least f or more times exactly.  Each of these instance by be the same Lmer series, and thus 

represents a set of identical sequences.  Our goal now is to generalize this definition to 

incorporate the earlier discussed spaced seed matching from PatternHunter [3].   

 

Definition 6. Let s be a seed of width L and q be a sequence of length n ≥ L. We say that 

sequence t matches q with respect to s if: (1) |t| = n; (2) for each i, 0 ≤ i < n, there exists a 

value j, 0 ≤ j < n-l such that j ≤ i < j+L and the substring q[j : j+L] hits t[j : j+L] with respect to 

seed s. 

In other words, two repeats are a match (hence in the same family) if every base in each 

string is covered by a substring that will hit a substring in the opposing sequence with 

respect to a seed (as visualized in Figure 5). We can further expand this definition to allow 

for the use of multiple seeds, though we leave that to a future study.  
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Given this definition, it is a short step to relax the substring quality condition in our 

algorithm to that of a seed-based match. In relaxing the assumption of sequence identity we 

lose our algorithmic guarantee of finding all repeats: as with BLAST HSP searches [12], or 

general sequence alignment, badly placed mutations will defeat the seed and result in false 

negatives. But use of these seeds does allow for many errors, and PatternHunter has 

demonstrated that the appropriate seed combination can achieve very high sensitivity.  

4 First Approach: SCANER 
Our first elementary repeat identification algorithm is SCANER, which identifies 

elementary repeats via a novel chaining algorithm, and is accordingly names the Sequential 

Chaining and Analysis of New Elementary Repeats. Our work developing SCANER served as 

inspiration for our more sophisticated RAIDER algorithm, and so we shall briefly describe 

the SCANER technique.  

SCANER is comprised of two algorithms. The first algorithm, Seed-Pair, expands on 

the Huo method of using a tabulation of Lmers (see Section 2.3) to find pairs of maximal 

repeats in O(n) time. Pair-Chain, the second algorithm, takes the output of Seed-Pair and 

chains similar pairs into repeat families, splicing apart repeats that are non-elemental. Pair-

Chain runs in O(k log k) time, where k is the number of elementary repeats.  

4.1 Seed-Pair 

Seed-Pair finds all maximal pairs of repeats longer than L. The algorithm scans the 

sequence from start to finish, pairing all successive instances of any reoccurring substring 

of length greater than L. We track necessary information through a hash-table recording 

G * A  

 T * A  

  A * G  

G T A A G C A G A A T G  

 Initial string 

composed of 

these 3 Lmers 

Missing center Lmer, but 

still fully covered instance 

G * A  

 

  A * G  

Figure 5: Given a mask of 101, we still consider these two strings a match since all bases in each are 
covered by hits occurring in both strings. 
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the last occurrence of each Lmer as we scan the query sequence. When an Lmer is 

encountered more than once, we look up its previous instance and create a new ordered 

pair. We then maximize both instances using another hash-table, as described below. Note 

that an instance of a repeat can, and is expected, to appear in two pairs: three instances of a 

repeat occurring in the order r1, r2, and r3, should produce the ordered pairs (r1, r2) and 

(r2, r3).  

 
Algorithm 1 – Seed-Pair 

Input: Text T of length n, minimum length L 
Output: List of pairs of maximal repeats 
1. M ← Hash table    # maps Lmer (string) to position index (integer) 
2. D ← Hash table     #maps distance (integer) to a pair object {index1, index2, repeat length} stack 
3. for i ← 0 to n – L - 1 do 
4.  p ← T[i:(i + L)]                          # Get the Lmer at position i of T 
5.  if M[p] is not null:                    # Has the Lmer occurred before? 
6.   previous ← M[p]  
7.   distance ← i – previous 
9.   pair ← D[distance].top # Get top of stack; the last pair found at this distance 
8.   if pair.index2 + pair.length is i + L – 1 then 
9.    pair.length ← pair.length + 1 
10.   else 
11.    push new pair (previous, i, L) onto D[distance] 
12.  M[p] ← i 

 

Take note of how pairs are maximized on lines 8 and 9: if a pair spanning the exact 

same distance occurred immediately before the current pair, we are dealing with a 

continuous pair, and so we increment the length of the prior pair to cover both. Figure 6 

further illustrates this point. 

The “seed” in “Seed-Pair” comes from the fact that instead of using Lmers, we can 

use the PatternHunter spaced-seed patterns discussed in Section 2.4. That is, given an 

Lmer, we apply a spaced-seed to allow for wildcard values. For example, given a spaced-

seed pattern 10101, the Lmer TCGAC would become T*G*C, where * represents a wildcard. 

 
Figure 6: Seed-Pair maximizes consecutive pairs found over the same distance. 

 



 

 14 

The user specified seed allows for varying degrees of inexact matching when finding 

maximal pairs. 

4.2 Pair-Chain 

Taking the output from Seed-Pair, Pair-Chain finds pairs with overlapping members 

and merges them into chains. If three instances of a repeat appear in the order r1, r2, and r3, 

resulting in the creation of ordered pairs (r1, r2) and (r2, r3) by Seed-Pair, Pair-Chain would 

merge these pairs at their intersecting member, resulting in the chain (r1, r2, r3). Chains will 

merge together in this fashion to form longer chains, ultimately placing all similar repeats 

in the same family chains. 

Recall that Seed-Pair simply found maximal pairs of repeats: it had no mechanism 

for knowing when to break a repeat into two or more elementary repeats. Instead, Pair-

Chain provides an efficient method for doing this as chains are merged together. 

 

Algorithm 2 – Pair-Chain 

Input: List of pairs P, minimum repeat length L 
Output: Set of linked-lists of elementary repeats 
1. C ← Set of linked lists made from P.  Each list has a repeat length, each node an index 
2. H ← Min-Heap of nodes. Insert all nodes from C, sorting by index 
3. while H is not empty do 
4.  first ← H.pop 
5.  second←H.peek 
6.  if overlap(first, second) > L then 
7.   mergeAndSpliceChains(first, second, H) 

 
Figure 7: Pair-Chain splits repeats into elements by merging on their intersecting regions. 
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After grouping repeats into chains we sort all chain nodes by index and check successive 

nodes for overlap. mergeAndSpliceChains() represents the logic used for deciding where to 

splice chains together. Overlapping repeat chains are merged into longer chains, and chains’ 

nodes are  spliced into two chains when overlap is incomplete. For example, if there exist 

chains c1 = (r1, r2) and c2 = (r3, r4) such that a strict suffix of r2 overlaps a strict prefix of r3, we 

splice the chains on the intersection of their overlap and merge the intersecting regions 

together.  We end up with three chains of resulting fragments: c1= (r1,prefix, r2,prefix), c2= 

(r1,ntersection, r2,intersection, r3,intersection) and c3= (r2,suffix, r3,suffix) (Figure 7). Note that c1 could have 

ended up covering the suffixes instead of the prefixes if instead the suffix of r3 overlapped 

the prefix of r2. 

This is a simplification of the full algorithm, but illustrates the concept: after 

grouping repeats into family chains we combine their nodes into a min-heap, check for 

overlap between pairs, and merge overlapping repeat chains. 

4.3 Discussion 

We compared SCANER to RepeatScout [15], a leading de novo search tool [16], using 

the same benchmarking techniques for RAIDER described in Section 7. Those results can be 

obtained in appendix A. SCANER is competitive and very fast, but it served primarily as 

inspiration for the faster and simpler RAIDER. Despite its fast runtime, SCANER is 

essentially an O(n log n) search tool, as the instances of repeats have to be sorted (via the 

heap) to find overlap in the Pair-Chain algorithm. Since the number of repeats may be 

proportional to n, SCANER takes O(n log n) operations; though in practice, the ratio of 

repeats to n is so low that the n log n runtime remains remarkably fast. 

5 RAIDER: A Refined Approach 

5.1 Overview 

 In Section 4 we looked at SCANER, which found elementary repeats by finding 

maximal pairs, splitting on their intersections, and chaining like regions together. While 

efficient, it suffered two drawbacks: it had to maintain an object for every repeat instance, 

and it was a difficult algorithm to implement and describe. Here we improve upon SCANER 

and present the simpler and faster RAIDER, which requires only a single pass over the 

query sequence, and can reduce space usage by a constant factor if multiple passes are 

allowed (described in Section 6.4).  
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As with SCANER, we scan the sequence and look at the Lmers in the order they occur, 

and initialize maximal pairs as potential elementary repeats. We use a hash table to track 

the positions of Lmers, initialize a new series of Lmers whenever we find the second 

occurrence of an Lmer x, and add subsequent Lmers until we encounter an Lmer y such 

that y has not occurred exactly once previously. That is, if we find the second occurrence of 

Lmer u occurring as position j, with the first having occurred at i (i  < j), we add it to a new 

table as the first of its Lmer series, and check to see if the Lmer at position j+1 is the second 

occurrence of the Lmer that occurred at i+1; if so that Lmer is added to the series as well. 

We continue adding until we find a position j+k such that the Lmer is not the second 

occurrence of the Lmer starting at j+k and terminate the series.  By Lemma 2 we know now 

that either this series is either an elementary repeat or contains one.  Note that we track all 

pairs regardless of our threshold minimum f, which will be invoked at the end of the 

algorithm to remove identified elements with insufficient frequency. (In essence: we set f=2 

until the end of the algorithm, then invoke the filter.) 

 Continuing with the algorithm: let F be repeat element defined by a series of ||F|| 

Lmers (recalling that ||F|| indicates the number of Lmers in thee Lmer decomposition of F), 

which presently has its first two instances in S (counting from the left end). Let F[i] denote 

the ith Lmer in the F’s Lmer decomposition. Note that F is elementary (for f=2) with respect 

to the portion of the sequence scanned so far, since no Lmer in F has yet been seen outside 

of F. As we continue scanning S, we may find another instance of F[0] at some position k, 

which marks the beginning of a third instance of F. We check to see that the Lmer at k+i is 

identical to F[i], for i  < ||F|| (that is, verify that the sequence of Lmers making up the new 

sequence match those making up F). If we find that some I < ||F|| violating this condition, 

we need to split the series into F (the Lmer series consisting of Lmers 0 through i-1), and G, 

(the Lmer series consisting of Lmers i to then end of what was F).  Thus we have effectively 

spliced the Lmers of F into two families, so that the new repeat, starting at the ith Lmer of F, 

forms a complete repeat in its newly defined family. 

A series F will be split if and only if an incomplete copy of the repeat is found in the 

sequence after F was defined through the identification of an initial repeat pair. Given that 

the algorithm scans from beginning to end, this manifests in two scenarios: discovery of an 

independent prefix, or discovery of an independent suffix. Discovery of a prefix takes place 

as described above (an illustrated in Figure 8), with the encounter of an independent repeat 

instance not containing the needed tail Lmers. A suffix of a repeat instance is discovered 

when an Lmer F[i], i > 0, is encountered apart from its position in an instance of F. The 



 

 17 

series is immediately split, with Lmers F[0] through F[i-1] kept in the original series and 

the remaining Lmers assigned to a new series starting with F[i]. 

Note that it is also possible to encounter an infix, but this will actually appear to the 

algorithm as a suffix followed by a prefix. For example, let F be a family with the Lmer 

decomposition u∘v∘x. If the Lmer v is encountered alone, apart from its position in F, the 

family’s series will immediately be spliced, F now comprising only Lmer u, and a new 

family G with the decomposition v∘x. (Noting that elementary repeats can overlap by L-1 or 

less bases without violation of the conditions).  Next, x is expected to follow v, but since v is 

encountered alone, x is missing and v is now a prefix of its family G. Thus G is now spliced 

into two families, composed of Lmers v and x respectively. 

5.2 Pseudocode 

 It must be emphasized that Lmer refers to a string, not to a specific location. If an 

Lmer p is assigned from family F to family G, all instances of p now belong to family G 

(Lemma 1). To say two Lmers belong to the same family is to say all instances of those two 

strings belong to the same family. 

 

LmerSeries – An ordered list of Lmers 

count(x) – returns the number of instances of Lmer x found so far 

series(x) – returns the LmerSeries to which Lmer x belongs, 

previous(x) – returns last index of Lmer x prior to i 

SpliceSeries (LmerSeries T, Lmer x) 
# Input: LmerSeries T, Lmer x belonging to T 

 
Figure 8: A family is spliced into two families when an incomplete instance of the original family is found. 
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# Output: Modified LmerSeries T, new LmerSeries Tnew 

1. Tnew ← LmerSeries created from x and all subsequent Lmers in T 
2. T ← truncate T to only contain Lmers preceding x 
3. return Tnew 

 
RAIDER (sequence S, integer L, integer f): 
# Input: Genomic sequence S, minimum length L, minimum family size f 
# Output: Elementary repeat families with frequency f or greater as a set of Lmer series 
1. expectedSeries ← NULL, expectedRank ← 0 
2. for i ← 0 to |S|-L:  # Scan the Lmers of S in sequence 
3.  x ← S[i:i+L]      # x is the ith Lmer of S 
4.  if expectedSeries ≠ NULL:  # If we are in a repeat of a known family 
5.   expected ← expectedSeries[expectedRank] # Get expected Lmer 
6.  if x does not hit expected:  # Repeat incomplete; series is non-elementary 
7.    SpliceSeries(expectedSeries, expected) 
8.    expectedSeries ← NULL 
9.  else: expectedRank ← expectedRank + 1 
10.  if count(x) = 2: # New family is being discovered 
11.   y ← S[i-1:i+L-1] # Preceding Lmer 
12.   if count(y) = 2 and previous(y) = previous(x)-1: 
13.   assign x to series(y) 
14.   else: create new LmerSeries, initialized with Lmer x 
15.  else if count(x) > 2:   # x must already belong to a series 
16.   if series(x)[0]=x:  # x is first Lmer in series(x) 
17.    expectedSeries ← series(x) 
18.   expectedRank ← 1 
19.   else if expectedSeries = NULL: # then series(x) is non-elementary 
20.   expectedSeries ←SpliceSeries(series(x), x) 
21.   expectedRank ← 1 
22.  if expectedSeries ≠ NULL and x is last Lmer in expectedSeries: 
23.   expectedSeries ← NULL 
24. return all created Lmer series containing at least f elements 

In our implementation we use a hashmap to map Lmers to Lmer objects which list Lmer 

occurrences. An LmerSeries is simply an ordered list of pointers to the Lmer objects of the 

Lmers it contains. When a family is spliced, the pointers are simply split between the two 

resulting LmerSeries. Thus, in a single operation, all instances of an Lmer are moved from 

one family to another by moving a pointer from one LmerSeries object to another. 

5.3 Inexact Matching 

 What we have introduced so far still suffers from a problem common to repeat 

finding algorithms: the inability to cope with inexact repeats. Two homologous repeats 

with minor differences will be placed in separate categories by an exact string-matching 
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algorithm. Many repeats are inactive structures that have been heavily obfuscated over 

millennia and have not retained any function that would encourage conservation of the 

sequence pattern, yet their identification remains scientifically significant. 

 This is perhaps the most important reason why we have forsaken string indexing 

algorithms (e.g. Suffix Tree, FM Index), as they cannot account for inexact matches without 

multiplying storage or processing needs. By tailoring our algorithm to hunt for families of 

Lmers, we gain flexibility to define what constitutes an Lmer and what conditions are 

necessary to maintain a family. 

As with SCANER, we utilize the PatternHunter method (Section 3.3). Instead of 

defining an Lmer to be an exact string of length L, we define a spaced seed pattern of length 

L. 

 One further algorithm enhancement is necessary to accommodate inexact 

matching: we have to allow for missing Lmers in repeat instances. A single base at position 

i in the sequence will belong to up to L Lmers (see Observation 2 and Figure 3 in Section 

3.2), thus a family F with a defining sequence p may have an instance with a substituted 

base, call it p’. Even though p’ may have only one substitution, this can cause up to L Lmers 

in p to no longer hit their counterparts in p’. A spaced seed will increase the number of hits 

since some Lmers will ignore the substitution when it is masked by a space, but there will 

still be some missed hits which we must allow for if we do not wish to splice the family.  

To allow for missing Lmers, we relax the definition of elementary repeat from 

Section 3, such that constraint 2 now becomes: for an Lmer xi in a family F, Freq(xi) ≤ 

Freq(F). That is, Lmers in a family may occur less frequently than instances of the family 

itself, which means there are instances with missing Lmers.  
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Our modification leaves us with an important question: how many missing can be 

tolerated before the family is spliced? Let b be the length of F, i.e. the total number of bases 

in an instance of F, and let s be a string of length b and a potential instance of F. Our 

strategy is defined by Definition 6 in Section 3.3: a string s an instance of F so long as every 

base in s is hit by at least one Lmer in F. Remember that any given base is hit by up to L 

Lmers in F (Observation 2), thus we could be missing up to L-1 Lmers from an instance of F 

and still have every base hit by at least one Lmer. The very first character of x0 and the very 

last character of xk are the only characters hit by only one Lmer in F, thus a substitution of 

either must result in the removal of the respective Lmer, making F one base shorter.  

6 RAIDER Complexity Analysis 
The following analyses are conducted with respect to the optimized RAIDER of Section 

5. Let n be the number of nucleotides in the given input sequence, L be the minimum length 

for a significant repeat, and f be the minimum frequency needed for a family to be 

significant. 

6.1 Space 

The space components for RAIDER are as follows, 

1. One Map - a map data structure, maps Lmer strings to Locations.  

2. A Locations array for each Lmer – records integer locations of a given Lmer. 

3. An Lmers array for each family – records which Lmer belongs to which family 

 
Figure 9: Spaced seeds allow a degree of error by treating spaced regions as wildcards. 
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Map will require, at a minimum, space for every unique Lmer and a pointer to the 

associated Locations. The size of a key is w ≤ L, where w is the weight of the seed being 

used (the number of ones contained in the PatternHunter pattern). In our implementation 

we only consider the 4 nucleotides, regardless of case, and do not map any Lmers 

containing ambiguity codes. Thus there are at most 4L possible Lmers to be mapped, a 

theoretical upper-bound to space usage for our map if 4L < n. This is unlikely to serve as a 

useful bound, however, since 4L is much greater than the size of the human genome when L 

≥ 16, and our best seeds so far have tended to be in the range 24 ≤ L ≤ 160. Thus in the 

theoretical worst case, we may have O(n) unique Lmers. In practice we will never 

encounter n unique Lmers in a genome, as genomic data is highly repetitive; nonetheless 

our map will take O(n) space to map every possible Lmer to a list of occurrences. 

Unlike Map, the Locations lists will require Θ(n) space, as each position in the 

genome must initially be recorded by a list. (Technically Θ(n-(L-1)) space since the tail of 

the sequence will be too short to contain an Lmer, but we assume L will always be 

negligibly small; for example, L = 212 would be ineffectively huge and still negligible 

compared to n). No amount of redundancy can reduce the amount of space needed to 

record every position in the genome, unless we allow runtime to be increased by a constant 

factor: every Lmer points to at most one family, and not every Lmer has to belong to a 

family; only those with f or more occurrences need be retained. Using the space 

optimization described in Section 6.3 below, the total number of families created can be 

reduced to Θ(n/f).  

Since each Lmer belongs to at most one family, the sum of the sizes of all Lmers 

arrays must be less than or equal to the total number of unique Lmers. Thus all Lmers 

arrays combined use O(n) space.  

In summary: O(n) Map + Θ(n) Locations arrays + O(n) Lmers arrays = O(n) space 

usage. 

6.2 Runtime 

The algorithm’s main loop (line 2) will run O(n) iterations (n-L iterations, to be 

exact). Re-assigning all occurrences of an Lmer from family A to family B is simply a matter 

of moving a pointer to a list of occurrences from family A to family B.  

Splicing a family involves splitting the list of contained Lmers at some pivot Lmer 

sequence, moving the pivot and all subsequent Lmers to the new family. Thus if family F is 

being spliced, and family F contains an array of k Lmers, then it will take at most k-1 

operations to splice that family. But we can reduce this to at most k/2 operations if we 

allow the algorithm to choose which Lmers are moved. That is, if the pivot Lmer is i, then 
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we have two options: move all Lmers at i and greater to a new array, or move all Lmers at 

less than i to a new array: then assign the arrays to the appropriate families. We simply 

evaluate whether k-i < i, and move the corresponding number of Lmers.  

Though RAIDER excels in terms of runtime (see Table 1), there is a worst-case 

scenario which prevents us from achieving linear runtime. Let T be an Lmer series where 

||T||=k, and T has been found twice – thus is a potential elementary repeat. A scenario 

could arise where we encounter the center Lmer of T, T[k/2], which would trigger a splice 

of the T requiring k/2 operations to move half the Lmers of T into a new LmerSeries. This 

could be followed by the Lmers T[k/4] and T[k/4+k/2], each requiring k/4 operations to 

splice their respective halves of T into quarters of T, for another k/2 total operations. And 

so forth, splicing T until only single-Lmer families remain. T can be halved log2k times, and 

each halving requires a total of k/2 operations to move Lmers to new LmerSeries. Thus O(k 

log k) operations are required, and since k can be a factor of n, RAIDER runs in O(n log n) 

time.  

The final step of filtering out the families with fewer than f members (line 23) would 

require at most O(n) operations should there somehow be O(n) families. Thus RAIDER 

remains O(n log n) time.  

6.3 Space optimization via Prescan 

Any families with fewer than f instances will ultimately be filtered out (line 23), 

hence are not worth tracking.  We can eliminate the space overhead by pre-scanning the 

genome before running RAIDER: we count the number of times each Lmer occurs, and then 

initialize our Lmer map to only consider Lmers with counts ≥ f. This prevents the 

unnecessary initialization of families that will end up having too few instances, prevents 

 
Figure 10: Worst-case Lmer sequence requiring the original repeat be spliced in half logk times. 
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MultiplyFamily() being called to account for Lmers with too few occurrences, and saves the 

associated space. Prescanning requires one pass over the genome, preserving the Θ(n) 

runtime, while reducing the amount of space used by families and Lmers to Θ(n/f).  

However, counting Lmer occurrences during prescanning will still require a map 

holding each Lmer as a key, keeping the space requirement at Θ(n). But even if there has 

been no asymptotic space gain, our experiments have shown the gains to be significant, 

reducing the space required for human chromosome 1 from 24 GB to 10 GB while 

increasing runtime from 10 minutes to 18 minutes (Table 4). 

6.4 Multi-Prescan 

We can reduce space by a factor p if are willing to increase runtime by a factor of 

(p+1)/2. We simply map only (1/p)th of the sequence at a time, scanning the rest of the 

sequence for Lmers occurring in that 1/p region. After considering the first length n/p 

partition of the sequence, we need not scan it again (since we already scanned the rest of 

the genome for Lmers contained in that segment), and repeat the process with the next 

segment of size n/p. Thus we scan the entire sequence once, scan ((p-1)/p)n of the 

sequence the second time, then ((p-2)/p)n, and so forth. Thus the number of operations 

required is: 
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As an example, let p = 3. We begin by scanning the first hird  of the sequence, counting 

all occurrences of the Lmers found there. We proceed to scan the last o thirds of the 

sequence, but do not count any Lmers we did not find in the first third of the genome. Thus 

we only need O(n/3) space to map the Lmers found in the first third of the sequence, and 

simply increment the counters associated with those Lmers as we scan the remainder of 

the sequence. This requires O(n) operations. We mark any Lmers which occur f or more 

times and delete the rest. We repeat the process, this time only counting Lmers occurring 

in the middle third of the sequence, again only needing O(n/3) space, and this time not 

needing to consider the first third of the sequence at all, having already counted all Lmers 

occurring there. This requires at most 2n/3 operations. This process is repeated for the last 

thrid of the sequence, requiring only n/3 operations, for a total of 2n operations.  

7 Results 

Here we assess the quality of RAIDER results as compared to the RepeatScout tool [17], 

using genome-derived RepeatMasker-annotated benchmarks for comprehensive testing 

and synthetic data to test special cases. We initially attempted to include the tool RECON 

[14] in our benchmarks, but its runtime became prohibitive even when applied to small 

chromosome sequences (e.g. human chromosome 22 or mouse chromosome 19). 

 
Figure 12: By only scanning for Lmers found in one region at a time, we eliminate the need to 

simultaneously store all Lmers in the hash table. 
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7.1 Testing: Tool Parameters and Benchmark Sets 

Testing was primarily on modified genomic sequences using human chromosome 22, 

mouse chromosome 19, and c. elegans chromosomes I and X, rating success by the tool’s 

ability to find significant portions of known ancestral repeats.  However, in order to 

prevent unannotated repeats from confounding results by manifesting as false positives, 

we selected a set of target families (listed in Table 1) from each genome and “removed” all 

other repeat elements by randomly block-shuffling the intervening genomic sequence, thus 

preserving repeat characteristics and genomic base distribution while creating a sequence 

easier to analyze. Purely artificial genomic sequence were also created to test boundary 

cases, generating background sequences using a uniform base distribution and creating 

artificial repeat sequences of length 50 to 1000 base pairs (bp). These sequences served 

well for sanity testing during development, but as a result make poor benchmark data since 

these sequences purposely contain scenarios RAIDER is designed to handle; therefore we 

focus on performance with respect to biological data. 

All tests were conducted using the default parameters for both the RAIDER and 

RepeatScout tools [17]. RAIDER default parameters were chosen to optimize overall 

performance, but were not tailored to individual benchmarks. Understanding how the 

spaced seed affects performance is also a goal of these benchmarks, so we test RAIDER 

using four different seeds with progressively increased spacing, as listed in Table 2. 

7.2 Metrics 

Given a query sequence S containing the set of families R = {r1, r2 .. r|R|}, let P = {p1,p2 .. 

Name Seed 

S1 111111111111111111111111 

S2 1111101111111001111111011111 

S3 000001100011100001111000001111100000011111100000001111111 

S4 00001111...08...11111...017...111111...032...1111111...064...11111111 

Table 2: Spaced seeds used for RAIDER benchmark. 

 

Sequence Base-Pairs Families Preserved 

C. Elegans chrX 17,718,866 HAT1_CE PALTTTAAA2 CELE14B LINE2C_CE 

C. Elegans chrI 15,072,423 SINE1_CE CELE45 LINE2B_CE LINE2G_CE 

Human chr22 49,691,432 AluSx MIRb L1MB5 L1MC1 

Mouse chr19 61,431,566 B1F1 PB1 L1_Mm L1_Mus3 

Table 1: List of sequences analyzed and respective families preserved for identification 
benchmarking. 
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p|P|} be a set of predicted repeat families (where pi is the set of repeat elements embedded 

in the genome corresponding to the ith predicted family). Let ||p|| denote the sum of all 

base-pairs covered by a family p, and ||P|| be the total number of base-pairs covered by all 

families in P. 

7.3 Runtime 

We use an emperical measure of runtime based on the Linux time utility to precisely 

measure real (user) time elapsed to complete execution of the process being measured.  All 

tests were run on Redhat Linux using a dual quad-core 2.4 GHz Intel Xeon E5620 CPU and 

24 GB RAM. 

7.4 False Negatives 

Here we borrow from Bao and Eddy’s assessment of their de novo tool RECON [14,15], 

focusing on errors at the base-level. For every family of repeats ri ∈ R we find the best 

matching family of repeats pj ∈ P, and normalize the difference in coverage by the repeat 

length: 

 

 (||ri|| - ||pj||) / ||ri|| 

 

This error is averaged over all families assessed (notated as ErrMissed). 

7.5 False Positives 

Again borrowing from Bao and Eddy [15], we test for false positives by noting which 

families pbest in P are considered best matches for families in R. That is, each ri ∈ R is best 

covered by at most one pbest ∈ P. For every pbest, we subtract ||pbest|| from the total count of 

base pairs covered by P. We divide this by the total number of base pairs to get a 

percentage of false positives. This is averaged for all families assessed and reported as 

ErrFalse.  

 

 (||P|| - Σ||pbest||) / ||P||  

7.6 Redundancy 

Another metric used for RECON, this is meant to assess how many predicted repeats 

cover the same segment in S. Let v be the set of all regions overlapped by both P and R, 

without double-counting the same base-pairs. Let w be the same, only re-counting each 
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base-pair for every repeat in P that covers it. Redundancy is then (||w|| - ||v||) / ||w||.  That 

is, the fraction of base-pairs shared between R and P that P covers multiple times. The 

definition of elementary repeat anticipates a given base being covered by up to L Lmers 

and therefore could theoretically be covered by up to L elementary repeats. Nonetheless, 

redundancy remains an important metric that may testify to the usefulness of the 

elementary repeat definition. Redundancy is averaged for all families assessed and 

reported as ErrRedun.  

7.7 Comparison Summary 

As can be seen in Table 3, RAIDER significantly outperforms RepeatScout in runtime, 

anywhere from 13x to 57x faster, depending on dataset and seed choice; 32x faster on 

average.  

ErrMissed tends to be high, but this is likely a result of bias from the use of 

RepeatMasker-derived benchmarks: RepeatScout uses RepeatMasker to find all instances 

based on a given seed, whereas RAIDER simply returns what instances it was able to find 

without the aid of RepeatMasker. RepeatMasker marks recognizable fragments of a family’s 

ancestor, and most of these fragments will not repeat with enough instances or length to 

form a RAIDER recognizable pattern. Note also that ErrMissed tends to decrease as spacing 

is added to the search seed, indicating sensitivity could be increased with a better search 

seed – requiring a more formal study of optimal seed structure. 

 C. Elegans chrI  Human chr22 

Method Time (s) Anc% ErrFalse ErrMissed  Time (s) Anc% ErrFalse ErrMissed 

S1 23.08 0.622 0.010 0.909  53.88 0.326 0.004 0.990 

S2 25.50 0.811 0.005 0.911  61.81 0.315 0.003 0.990 

S3 38.51 0.582 0.005 0.854  93.94 0.689 0.008 0.986 

S4 81.65 0.794 0.003 0.697  190.35 0.84 0.003 0.987 

RepeatScout 1329.18 0.944 0.010 0.758  2343.53 0.777 0.258 0.759 

 Mouse chr19 C. Elegans chrX 

Method Time (s) Anc% ErrFalse ErrMissed  Time (s) Anc% ErrFalse ErrMissed 

S1 91.24 0.131 0.103 0.993  29.19 0.485 0.008 0.965 

S2 102.13 0.218 0.088 0.992  35.09 0.393 0.005 0.963 

S3 154.94 0.21 0.093 0.989  45.93 0.587 0.007 0.959 

S4 281.37 0.307 0.113 0.985  87.35 0.558 0.002 0.958 

RepeatScout 3877.21 0.539 0.442 0.846  1183.70 0.604 0.337 0.674 

Table 3: Real data test results. Notice that RAIDER is an order of magnitude faster while still covering nearly 
as much of the ancestor as does RepeatScout. False positive error is also generally lower. ErrMissed is high for 
RAIDER, but this is to be expected given that RAIDER only returns locations of whole elementary repeat 
instances, whereas RepeatScout uses RepeatMasker, which will identify all fragments of a given seed. Note also 
that this error generally decreases as spacing is added to the search seed. 
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False positive error is also generally lower (with the exception of the mouse data), 

indicating RAIDER has a tendency towards precision, which is again unsurprising given 

that RAIDER does not perform alignment as is done in RepeatScout via RepeatMasker.  

Ancestor coverage tends to favor RepeatScout, though RAIDER remains competitive, 

especially with the longer, more spaced seeds. In some cases RAIDER approaches 80% 

coverage, which is promising performance when there remains so much room for 

parameter tuning and seed selection. 

7.8 Chromosome 1 and Whole-Genome Tests 

For the sake of understanding memory and time requirements, we ran RAIDER against 

two very large sequences: human chromosome 1 and human chromosomes 1 through 22 

combined (entire human genome except for chromosomes y, x and m). We were unable to 

run RepeatScout against the human genome as the software crashed immediately, most 

likely due to internal size constraints. We tested RAIDER with and without the single-

prescan for reducing memory usage. We were only able to perform a whole genome run 

using the prescan method due to memory constraints. See results in Table 4. 

8 Linear-time RAIDER  

8.1 Overview 

Towards the end of our research we realized RAIDER could be made even more efficient 

by exploiting the order in which Lmers appear, and in doing so achieve a linear time 

algorithm with respect to query sequence length. The algorithm is divided into two steps, 

each requiring one pass over the entire sequence. In the first pass, all Lmers are placed in a 

single array, ordered such that Lmers belonging to the same elementary repeat family will 

appear in consecutive positions and in the order dictated by the family’s Lmer series. Once 

this array is created, the second task is to mark the boundaries between Lmer series on the 

array. 

Sequence BPs  Method  Memory (GB) Time (h:mm:ss) 

Human genome 2.9x109  RAIDER (prescan)  96.09 4:26:34 

Human chr1 2.5x108  RAIDER  24.19 0:10:03 

Human chr1 2.5x108  RAIDER (prescan)  10.21 0:17:48 

Human chr1 2.5x108  RepeatScout  4.24 1:30:40 

Table 4: Memory footprint and runtime for large sequences 
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8.2 Step One: Count Lmers 

The first step is to create the array of Lmers, which we call LmerTable. To populate 

LmerTable we must identify all significant Lmers, i.e. Lmers occurring f or more times. Such 

Lmers are guaranteed by Observation 1 to appear as members of the Lmer decomposition 

of some elementary repeat. The method for identifying these is simple: simply scan over 

the sequence from start to finish, recording the number of occurrences of each Lmer in a 

hash table. When we see the fth occurrence of an Lmer, append that Lmer to LmerTable. 

Appending Lmers in this fashion guarantees they are ordered as they appear in their 

respective series (a claim proved in the next section).  

Figure 13: Step one of RAIDER: counting Lmers to create an ordered array of all significant Lmers. 
Assume L=3 and f=8. 
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 We will want to look up Lmers’ positions in LmerTable, so we set up LmerMap be a 

mapping of Lmers to their positions in LmerTable, populating it as we append Lmers to 

LmerTable. With the first step finished, LmerTable and LmerMap will be fully populated. 

Let the position of an Lmer in LmerTable be known as its rank. Thus LmerMap can be 

described as mapping each Lmer to its corresponding rank.  

8.3 Step Two: Mark Families 

The second step is to mark boundaries in LmerTable to define which Lmers belong 

Figure 14: Step two of RAIDER: Marking the boundaries of each family’s Lmer 
series in LmerTable. Assume L=3 and f=8. 

Figure 15: When both steps of RAIDER are complete, LmerTable will 
contain all elementary families, demarcated by start flags. 
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to the same series decomposition. If all the Lmers in LmerTable belonged to the same 

repeat decomposition, then the instances of these Lmers would all appear as one 

continuous group in the query sequence. We would find every instance of an Lmer with 

rank Rank occurring immediately after an instance of the Lmer at Rank-1 and immediately 

before an instance of the Lmer at Rank+1. If an instance were found where this was not the 

case, that Lmer would be considered out of rank. Our goal is to find every place in the 

sequence where Lmers appear out of rank, as these mark the boundaries of family series. 

8.4 Pseudocode 

Lmer object { Locations : vector of integers, isStart : Boolean flag } 

LmerTable – vector of Lmer objects 

LmerMap – Map of Lmer keys to integer rank (index of Lmer in LmerTable) 

CountLmers (Sequence S, integer L, integer f): 
# Input: Sequence S, minimum length L, minimum family size f 
1.     counts ← Map of Lmer keys to integer values 
2.     for i=0 to (|S| - L): 
3.         x ← S[i:i+L] 
4.         counts[x] += 1 
5.         if counts[x] = f: 
6.             LmerMap[x] ← |LmerTable| 
7.             LmerTable.append(Lmer object) 

 
markStart(rank) – Sets the isStart flag to true for the Lmer at rank 

getLastLocation(rank) – Returns last value appended to LmerTable[rank].Locations 

MarkFamilies (sequence S, integer L, integer f): 

# Input: Sequence S, minimum length L, minimum family size f 
1.     expectedRank ← NULL 
2.     markStart(0)  
3.     for i=1 to (|S| - L): 
4.           x ← S[i:i+L]  
5.           if x in LmerMap: 
6.                 rank ← LmerMap[x] 
7.                 if getLastLocation(rank-1) ≠ i-1: 
8.                       markStart(rank) 
9.                 if rank ≠ expectedRank: 
10.                       markStart(expectedRank) 
11.                 LmerTable[rank].Locations ← append i 
12.                 expectedRank ← rank + 1 
13.           else if expectedRank: 
14.                 markStart(expectedRank) 
15.                 expectedRank ← NULL 
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When CountLmers() followed by MarkFamilies() have completed, LmerTable will 

contain a set of Lmer series demarcated by start flags (seeFigure 15). The locations the 

instances of a series F can then be obtained by taking all locations of the first Lmer in F, 

which will be the Lmer with the start flag set to true. It is evident from a simple 

examination of the pseudocode that RAIDER is linear with respect to input size, finishing in 

O(|S|) operations: two passes over S are necessary, but no inner-loop, recursion, or ω(1) 

function call is required. 

8.5 Proof of Correctness 

Lemma 3: When CountLmers(S, L, f) completes: every Lmer in LmerTable belongs to the 

decomposition of an elementary repeat, and every elementary repeat F in S will be 

contained in LmerTable as an ordered Lmer series. 

Proof: Every Lmer in LmerTable has a frequency of at least f, hence by Observation 1 is 

either an elementary repeat or a member of an elementary repeat.  Let F be an elementary 

repeat with decomposition x0 ∘ x1 ∘ … ∘ xk-1, each of which only appear in instances of F 

(Lemma 1). Recall from Definition 5 that all Lmers in the decomposition must have the 

same frequency. Since instances of F always begin with x0, the jth instance of xi must appear 

immediately prior to the jth instance of xi+1. Since an Lmer is added to the table when it is 

found to occur f times, when the fth instance of x0 is encountered, the next k-1 Lmers to be 

encountered will be the next k-1 elements to be added to LmerTable.  □  

Lemma 4: When MarkFamilies(S, L, f) completes: An Lmer in S is the first Lmer of an 

elementary repeat if and only if it appears in LmerTable marked with the isStart flag set to 

true. 

Proof: Since MarkFamilies() is only run after CountLmers(), we know that an Lmer is in 

LmerTable if and only if it belongs to an elementary family. Our tasks are to ensure that 1) 

the first Lmer of every elementary repeat is marked by the isStart flag and 2) no other 

Lmer is marked by the isStart flag.   

As MarkFamilies() progresses, every instance of every Lmer will be evaluated. The goal 

is to look at every Lmer in LmerTable and determine whether it is the start of a new family. 

Let p and q be two Lmers in LmerTable with ranks r and r+1 respectively; we must 

determine whether they belong to the same elementary repeat. If they do not, then q must 

be the start of a new elementary repeat since it is not a continuation of p’s family. q belongs 

to p’s family if and only if every instance of p is immediately followed by an instance of q, 

and every instance of q is immediately preceded by an instance of p. Thus proving that q is 
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the start of a new family is simply a matter of finding an instance of p that is not followed 

by an instance of q, or finding an instance of q that is not preceded by an instance of p. 

 Since p and q are of consecutive ranks, we expect them to be in the same family until 

proven otherwise. So when we encounter an instance of p at position i of S we expect the 

Lmer at position i+1 to be an instance of q. We test this by setting expectedRank to p+1 (line 

12), and if the next Lmer is not q (line 9) or is not in LmerTable at all (line 13) we know p 

was not followed by q, and thus q must be the start of a different family.  

Likewise, if we encounter an instance of q at position i of S we want to verify that p is the 

Lmer at position i-1. So we look up the last location of q and ensure it equals i-1 (line 7). If 

not, q must be the start of a new family. 

It follows that all Lmers which begin a new family will be marked accordingly: if the 

Lmer at position i does not belong to the same elementary repeat series as the family of the 

next Lmer, then the next position will be marked as the start of a new family. The Lmer at 

rank 0 is necessarily the start of a new family, thus all subsequent Lmers in LmerTable are 

either a continuation of the previous family or the start of a new one. □  

8.6 Inexact Matching 

We now have two mechanisms for inexact matching: the first by replacing Lmers with 

PatternHunter style spaced seeds (Section 2.4), as was done with SCANER and RAIDER in 

Sections 4 and 5. 

The second mechanism is unique to this version of RAIDER. We simply replace the start 

flags with start counters: every time an out-of-rank Lmer is discovered, its start counter is 

incremented. We then determine boundaries as a ratio of start-counter value to Lmer 

frequency: if an Lmer’s start-count is low compared to the Lmer’s frequency, then we 

forgive the few times it appeared out of rank and do not mark a boundary. The user 

specifies what percentage of an Lmer’s instances may appear out of rank before that Lmer 

is marked as a family start. 

8.7 Performance 

At the time of writing this algorithm only had a Python implementation, which did not 

offer a fair comparison to the C++ implementations of SCANER and RAIDER algorithms. 

Thus we do not yet know what practical benefit the linear runtime might achieve, or what 

performance-increase may be gained from the new mechanism for inexact matching.  
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9 Conclusion 

RAIDER holds much promise in terms of both speed and sensitivity, and warrants 

further development. In its experimental state, our assessments show RAIDER is already 

able to outperform popular tool RepeatScout in a number of scenarios.  

In terms of speed, RAIDER performed extremely well given the size of input, processing 

human chromosome 22 in under a minute and the human genome in four and a half hours. 

RAIDER also performed considerably faster than RepeatScout, often by orders of 

magnitude. The discovery of a linear-time version of RAIDER has created potential for even 

faster whole-genome processing times, and is not far from implementation and testing. 

Performance in terms of sensitivity was competent, but there are many avenues that 

may lead to further improvements. We suspect our sensitivity could be greatly improved 

by following RepeatScout’s method for masking elements: currently RAIDER simply 

outputs a list of locations where elementary repeat instances were found, whereas 

RepeatScout simply outputs consensus seeds and then uses RepeatMasker to mask 

locations. Having RAIDER analyze all instances of a repeat family and output consensus 

seeds in the same manner as RepeatScout should yield increased sensitivity. 

A rigorous investigation of optimal spaced seed patterns could yield dramatic 

improvements. Furthermore, since our method only finds elementary repeats, it would be 

useful to create an additional step which uses the building-blocks of elementary repeats to 

form and search for larger, composite repeats (we discuss initial attempts in appendix A).  

The development of metrics not requiring the of repeat databases potentially assembled 

by the tools we are competing with would be of value. Metrics that can recognize and 

award the correct grouping of biological components are also needed, as the potential 

advantage of elementary repeats is in their ability to separate hitch-hiking data from TEs. 

With further refinement, RAIDER has the potential to be the fastest and the most 

accurate de novo search tool available, as well as the only tool that can perform whole-

genome searching in a reasonable amount of time.  

 

10 Appendices 

10.1 Appendix A: Composite Repeats 

Elementary repeats alone tend to be small for use by a tool such as RepeatMasker (see 

Section 2.3). Thus we also implemented an algorithm for finding composite repeats using 



 

 35 

the output of SCANER. However, the definition of composite repeat allows for much 

redundancy, and further work was needed to refine our ancestral seed database. 

Definition 7 – Composite repeat 

A composite repeat C is a sequence of two or more elementary repeats which occurs 

with frequency c in a given text T, meeting the following conditions: 

1) c ≥ Fc, where Fc is the specified minimum frequency for a composite. 

2) C is maximal in terms of elementary repeat components. 

 Note that this does not contain a condition analogue to (3) of the elementary repeat 

definition. This allows the possibility of composites comprised of smaller composites, so 

long as the smaller composites remain maximal. For example, let A, B and C represent three 

distinct elementary repeats. Suppose we find the following sequence in our text, with * 

representing unidentified sequence data: ABC*AB*ABC. BC is not a composite, because it 

would not be maximal as it only occurs as a part of ABC. However, AB is a composite 

because its occurrence outside of ABC allows it to be considered maximal. 

We created another step for SCANER which takes the output of Pair-Chain and finds 

composite repeats in the resulting chains, with a runtime bound by O(m|C|2), where m is 

the number of composites and |C| is the length of the largest composite in terms of 

elements. It worked by simply looking all elementary repeats, and any elementary repeats 

that were adjacent or overlapping were considered continuous and a potential composite. 

If the same sequence of continuous elementary repeats was found fC or more times, it was 

recorded as a composite. 

The definition of composite allows for high redundancy, and finding composites in this 

manner also meant adding a third, rather inefficient step to SCANER. It still completes in 

 C. Elegans ChrI Human Chr22 

Method Time (s) Ancestor 

Coverage 

False 

Positives 

Time (s) Ancestor 

Coverage 

False 

Positives 

SCANER 38.35 0.847 0.209 159.20 0.763 0.191 

RepeatScout 1238.86 0.944 0.010 2244.93 0.777 0.258 

 Mouse Chr19 C. Elegans ChrX 

Method Time (s) Ancestor 

Coverage 

False 

Positives 

Time (s) Ancestor 

Coverage 

False 

Positives 

SCANER 174.81 0.337 0.822 50.16 0.503 0.055 

RepeatScout 4208.35 0.539 0.442 1240.68 0.604 0.337 

Table 5: Results of SCANER + Composite-finding was still fast, but not 
as fast as RAIDER alone and did not perform any better.  
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reasonable time (Table 5) but remains slower than RAIDER with similar performance. Thus 

for the duration of this paper we focused on the development of RAIDER. 

Research is needed to find an optimal formula for assembling elementary repeats into 

useful composite repeat seeds. A formula that exploits elementary repeats ability to 

eliminate hitch-hiking data, and simultaneously avoids the issues with redundancy we 

encountered, would likely boost RAIDER’s sensitivity considerably. 

 

10.2 Appendix C: The Pigeon-holed Repeats Problem 

Let L=5 be the minimum length needed for a sequence instance to be considered 

significant. Let's also assume f=2 is the minimum frequency required to qualify as an 

elementary repeat. So if ATATA occurs twice, it is an elementary repeat. 

Now because of the pigeon-hole principle, an elementary repeat can only occur so 

many times before it must produce a second family that is actually a false positive. For 

example: let Fi be the ith instance of the family F. Let pi be the base immediately before Fi, 

and si be base immediately after Fi. For example, if 

 p1 + F1 + s1=CATATAT and  

p2 + F2 + s2=GATATAG  

then p1=C, s1=T, p2=s2=G. 

 

Now since every pi must come from the set {A,C,G,T}, we cannot have more than four 

instances of F without repeating some pi.  

 

AATATA 
CATATA 
GATATA 
TATATA 
xATATA  
 

If x is A, then we have a new elementary repeat: AATAT, since it now occurs twice. If 

it is C, we have the new elementary repeat CATAT, and so forth. Additionally, we have all 

the bases si which occur immediately after ATATA, so if ||F||=5, we now must have three 

elementary repeat families. 

It gets worse. If ||F|| > 16, we now must have at least five families, because the two 

bases immediately prior and immediately after each instance are limited to 16 possible 2-

base strings. By now the pattern has emerged: for every power of 4 in |F|, we add two more 

families. Thus if we have one true family F with ||F|| instances, we end up with 2log4(||F||) 
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false positive families. So for families such as the ALUs with thousands of instances in the 

human genome, this becomes problematic. 

Also note that the number of instances in each of those false-families grows at a 

linear pace: at least one in four instances of F will have the same pi, which means that if 

||F||=100, we have a false-family with at least 25 instances. Increasing f may mitigate the 

issue, but could also eliminate potentially important data that just did not occur many 

times. This is exacerbated some by the fact that bases don't occur with even distribution, 

thus increasing the probability of certain bases will generate false positives. 

Perhaps the best solution to this is to filter out families that overlap significantly but 

do not occur independently of F, or do not occur at least 50% of the time where F occurs 

(or some similar significant fraction). Exploring the math further should reveal at what 

point a repeat is statistically likely to be just noise. Until that avenue is thoroughly 

explored, experimentally increasing the minimum frequency f to a power of 4 should be an 

effective strategy. E.g. if f=16, then an even base-distribution will not produce any pigeon-

holed false-positives for any family ||F|| ≤ 64. 

10.3 Appendix D: Simple RAIDER Python 

The linear version of RAIDER presented in Section 8 is attached here. A C++ 

implementation of inexact-matching RAIDER described in Section 5 is available for 

download at http://handouts.cec.miamioh.edu/karroje/RAIDER/  

 

import os 

import sys 

import argparse 

 

# Lists Lmers in order of first occurrence 

LmerTable = [] 

 

# Maps strings to Lmer objects 

LmerMap = {} 

 

class Lmer(): 

    def __init__(self): 

        self.locations = [] 

        self.isNewFamily = False 

 

def isNewFamily(rank): 

    return LmerTable[rank].isNewFamily 

     

def setNewFamily(rank): 

    LmerTable[rank].isNewFamily = True 

 

def getLmer(S, i, L): 

    S.seek(i) 

    return S.read(L).upper() 

http://handouts.cec.miamioh.edu/karroje/RAIDER/
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def countLmers(S, S_len, C, L): 

    counts = {} 

    for i in range(S_len - L): 

        text = getLmer(S, i, L) 

        count = 1 

        if text in counts: 

            count = count + counts[text] 

        counts[text] = count 

        if count == C: 

            LmerMap[text] = len(LmerTable) 

            LmerTable.append(Lmer()) 

             

        if i % 1000 == 0: 

            showProgress(i, S_len) 

 

def markFamilies(S, S_len, C, L): 

    expectedRank = 0 

    setNewFamily(0) 

    for i in range(S_len - L): 

        text = getLmer(S, i, L) 

        if text in LmerMap: 

            rank = LmerMap[text] 

            current = LmerTable[rank] 

            prevLocations = LmerTable[rank - 1].locations 

            if not prevLocations or prevLocations[-1] != i - 1: 

                setNewFamily(rank) 

            if rank != expectedRank and expectedRank < len(LmerTable): 

                setNewFamily(expectedRank) 

            current.locations.append(i)  

            expectedRank = rank + 1 

        elif expectedRank and expectedRank < len(LmerTable): 

            setNewFamily(expectedRank) 

            expectedRank = 0 

 

        if i % 1000 == 0: 

            showProgress(i, S_len) 

 

def writeFamily(length, locations, S, O): 

    count = len(locations) 

    O.write(">" + str(length) + ":" + str(count) + "\n") 

    S.seek(locations[0]) 

    O.write(S.read(length) + "\n") 

 

def writeFamilies(C, L, S, O):    

    length = L 

    familyStartRank = 0 

    locations = LmerTable[familyStartRank].locations 

     

    countFams = 1 

    countRepeats = len(locations) 

     

    tableSize = len(LmerTable) 

    for rank in range(1, tableSize): 

        if isNewFamily(rank): 

            countFams += 1 

            countRepeats += len(locations) 
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            writeFamily(length, locations, S, O) 

            locations = LmerTable[rank].locations 

            length = L 

        else: 

            length += 1 

         

        if rank % 100 == 0: 

            showProgress(rank, tableSize) 

    writeFamily(length, locations, S, O) 

    print(str(countFams) + " families identified") 

    print(str(countRepeats) + " repeats identified") 

 

def raider(S, S_len, C, L, O): 

    print("Counting Lmers...") 

    countLmers(S, S_len, C, L) 

    print("\nMarking families...") 

    markFamilies(S, S_len, C, L) 

    LmerMap = None 

    print("\nWriting results...") 

    writeFamilies(C, L, S, O) 

 

def showProgress(progress, total): 

    percent = int(float(progress) / (float(total) / 100.0)) 

    sys.stdout.write('\r' + "[") 

    sys.stdout.write("".join(["|" for i in range(percent)])) 

    sys.stdout.write("".join(["-" for i in range(100 - percent)])) 

    sys.stdout.write("]" + str(percent) + "%") 

    sys.stdout.flush() 

         

def bootstrap(input, output, C, L): 

    S_len = os.path.getsize(input) 

    S = open(input, 'r')  

    O = open(output, 'w') 

    raider(S, S_len, C, L, O) 

    S.close() 

    O.close() 

     

def parseArgs(): 

    parser = argparse.ArgumentParser("RAIDER") 

    parser.add_argument('-c', '--count', dest = 'count', help = "Minimum 

number of occurrences to be significant", default = 8) 

    parser.add_argument('-l', '--length', dest = 'length', help = "Minimum 

length required to be elementary", default = 16) 

    parser.add_argument("input_file", help = "File containing reference 

sequence. Must be simply the sequence, with no line breaks") 

    parser.add_argument("output_file", help = "Output file name") 

    return parser.parse_args() 

 

if __name__ == "__main__": 

    args = parseArgs() 

    bootstrap(args.input_file, args.output_file, int(args.count), 

int(args.length)) 
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