Skip to main content

Restricted DCJ-Indel Model Revisited

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8213))

Abstract

The Double Cut and Join (DCJ) is a generic operation representing many rearrangements that can change the organization of a genome, but not its content. For comparing two genomes with unequal contents, in addition to DCJ operations, we have to allow insertions and deletions of DNA segments. The distance in the so-called general DCJ-indel model can be exactly computed, but allows circular chromosomes to be created at intermediate steps, even if the compared genomes are linear. In this case it is more plausible to consider the restricted DCJ-indel model, in which the reincorporation of a circular chromosome has to be done immediately after its creation. This model was studied recently by da Silva et al. (BMC Bioinformatics 13, Suppl. 19, S14), but only an upper bound for the restricted DCJ-indel distance was provided. Here we solve an open problem posed in that paper and present a very simple proof showing that the distance, that can be computed in linear time, is always the same for both the general and the restricted DCJ-indel models. We also present a simpler algorithm for computing an optimal restricted DCJ-indel sorting scenario in O(n logn) time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hannenhalli, S., Pevzner, P.: Transforming men into mice (polynomial algorithm for genomic distance problem). In: Proc. of FOCS 1995, pp. 581–592 (1995)

    Google Scholar 

  2. Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. J. Comput. Syst. Sci. 65, 587–609 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ozery-Flato, M., Shamir, R.: Two notes on genome rearrangement. J. Bioinf. Comput. Biol. 1, 71–94 (2003)

    Article  Google Scholar 

  4. Jean, G., Nikolski, M.: Genome rearrangements: A correct algorithm for optimal capping. Inf. Process. Lett. 104, 14–20 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bergeron, A., Mixtacki, J., Stoye, J.: A new linear time algorithm to compute the genomic distance via the double cut and join distance. Theor. Comput. Sci. 410, 5300–5316 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Erdős, P.L., Soukup, L., Stoye, J.: Balanced vertices in trees and a simpler algorithm to compute the genomic distance. Appl. Math. Lett. 24, 82–86 (2011)

    Article  MathSciNet  Google Scholar 

  7. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21, 3340–3346 (2005)

    Article  Google Scholar 

  8. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements. In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp. 163–173. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Adam, Z., Sankoff, D.: The ABCs of MGR with DCJ. Evol. Bioinform. Online 4, 69–74 (2008)

    Google Scholar 

  10. Mixtacki, J.: Genome halving under DCJ revisited. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 276–286. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under different genomic distances. BMC Bioinformatics 10, 120 (2009)

    Article  Google Scholar 

  12. Thomas, A., Varré, J.S., Ouangraoua, A.: Genome dedoubling by DCJ and reversal. BMC Bioinformatics 12(suppl. 19), S20 (2012)

    Google Scholar 

  13. Kováč, J., Warren, R., Braga, M.D.V., Stoye, J.: Restricted DCJ model (the problem of chromosome reincorporation). J. Comput. Biol. 18, 1231–1241 (2011)

    Article  MathSciNet  Google Scholar 

  14. Yancopoulos, S., Friedberg, R.: DCJ path formulation for genome transformations which include Insertions, Deletions, and Duplications. J. Comput. Biol. 16, 1311–1338 (2009)

    Article  MathSciNet  Google Scholar 

  15. Braga, M.D.V., Willing, E., Stoye, J.: Double cut and join with insertions and deletions. J. Comput. Biol. 18, 1167–1184 (2011)

    Article  MathSciNet  Google Scholar 

  16. da Silva, P.H., Machado, R., Dantas, S., Braga, M.D.V.: Restricted DCJ-indel model: sorting linear genomes with DCJ and indels. BMC Bioinformatics 13(suppl. 19), S14 (2012)

    Google Scholar 

  17. Braga, M.D.V.: An overview of genomic distances modeled with indels. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 22–31. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  18. El-Mabrouk, N.: Sorting signed permutations by reversals and insertions/deletions of contiguous segments. J. Discr. Alg. 1, 105–122 (2001)

    MathSciNet  Google Scholar 

  19. Swenson, K.M., Arndt, W., Tang, J., Moret, B.: Phylogenetic reconstruction from complete gene orders of whole genomes. In: Proc. of Asia-Pacific Bioinformatics Conf. Advances in Bioinformatics and Comp. Biology, vol. 6, pp. 241–250 (2008)

    Google Scholar 

  20. da Silva, P.H., Machado, R., Dantas, S., Braga, M.D.V.: DCJ-indel and DCJ-substitution distances with distinct operation costs. Alg. for Mol. Biol. 8, 21 (2013)

    Article  Google Scholar 

  21. Braga, M.D.V., Machado, R., Ribeiro, L.C., Stoye, J.: On the weight of indels in genomic distances. BMC Bioinformatics 12(suppl. 9), S13 (2011)

    Google Scholar 

  22. Hilker, R., Sickinger, C., Pedersen, C., Stoye, J.: UniMoG - a unifying framework for genomic distance calculation and sorting based on DCJ. Bioinformatics 28, 2509–2511 (2012)

    Article  Google Scholar 

  23. Willing, E., Zaccaria, S., Braga, M.D.V., Stoye, J.: On the inversion-indel distance. BMC Bioinformatics 14(suppl. 11), S3 (2013)

    Google Scholar 

  24. Braga, M.D.V., Machado, R., Ribeiro, L.C., Stoye, J.: Genomic distance under gene substitutions. BMC Bioinformatics 12(suppl. 9), S8 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Braga, M.D.V., Stoye, J. (2013). Restricted DCJ-Indel Model Revisited. In: Setubal, J.C., Almeida, N.F. (eds) Advances in Bioinformatics and Computational Biology. BSB 2013. Lecture Notes in Computer Science(), vol 8213. Springer, Cham. https://doi.org/10.1007/978-3-319-02624-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02624-4_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02623-7

  • Online ISBN: 978-3-319-02624-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics