
Micro-Machinations
A DSL for Game Economies

Paul Klint1 and Riemer van Rozen2

1 Centrum Wiskunde & Informatica��

2 Amsterdam University of Applied Sciences��

Abstract. In the multi-billion dollar game industry, time to market
limits the time developers have for improving games. Game designers
and software engineers usually live on opposite sides of the fence, and
both lose time when adjustments best understood by designers are imple-
mented by engineers. Designers lack a common vocabulary for expressing
gameplay, which hampers specification, communication and agreement.
We aim to speed up the game development process by improving designer
productivity and design quality. The language Machinations has intro-
duced a graphical notation for expressing the rules of game economies
that is close to a designer’s vocabulary. We present the language Micro-
Machinations (MM) that details and formalizes the meaning of a sig-
nificant subset of Machination’s language features and adds several new
features most notably modularization. Next we describe MM Analysis
in Rascal (MM AiR), a framework for analysis and simulation of MM
models using the Rascal meta-programming language and the Spin model
checker. Our approach shows that it is feasible to rapidly simulate game
economies in early development stages and to separate concerns. Today’s
meta-programming technology is a crucial enabler to achieve this.

1 Introduction

There is anecdotal evidence that versions of games like Diablo III1 and Dungeon
Hunter 42 contained bugs in their game economy that allowed players to illicitly
obtain game resources that could be purchased for real money. Such errors se-
riously threaten the business model of game manufacturers. In the multi-billion
dollar game industry, time to market limits the time designers and develop-
ers have for creating, implementing and improving games. In game development
speed is everything. This applies not only to designers who have to quickly assess
player experience and to developers that are under enormous pressure to deliver
software on time, but also to the performance of the software itself. Common
software engineering wisdom does not always apply when pushing technology
to the limits regarding performance and scalability. Domain-Specific Languages
(DSLs) have been successfully applied in domains ranging from planning and
�� This work is part of the EQuA project. http://www.equaproject.nl/
1 http://us.battle.net/d3/en/forum/topic/8796520380
2 http://www.data-apk.com/2013/04/dungeon-hunter-4-v1-0-1.html

M. Erwig, R.F. Paige, and E. Van Wyk (Eds.): SLE 2013, LNCS 8225, pp. 36–55, 2013.
c© Springer International Publishing Switzerland 2013

http://www.equaproject.nl/
http://us.battle.net/d3/en/forum/topic/8796520380
http://www.data-apk.com/2013/04/dungeon-hunter-4-v1-0-1.html

Micro-Machinations 37

financial engineering to digital forensics resulting in substantial improvements
in quality and productivity, but their benefits for the game domain are not yet
well-understood.

There are various explanations for this. The game domain is diffuse, encom-
passing disparate genres, varying objectives and concerns, that often require
specific solutions and approaches. Because the supporting technologies are con-
stantly changing, domain analysis tracks a moving target, and opportunities for
domain modeling and software reuse are limited [1]. Existing academic language-
oriented approaches, although usually well-scoped, are often poorly adaptable,
one-off, top-down projects that lack practical engineering relevance. Systematic
bottom-up development and reuse have yielded libraries called game engines but
such (commercial) engines are no silver bullet either, since they only provide gen-
eral purpose solutions to technical problems and need significant extension and
customization to obtain the functionality for a completely new game. Engines
represent a substantial investment, and also create a long-term dependency on
the vendor for APIs and support.

Our objective is to demonstrate that game development can benefit from DSLs
despite the challenges posed by the game domain and the perceived shortcomings
of existing DSL attempts. We envision light-weight, reusable, inter-operable,
extensible DSLs and libraries for well-scoped game concerns such as story-lines,
character behavior, in-game entities, and locations. We focus in this paper on the
challenge of speeding up the game development process by improving designer
productivity and design quality. Our main contributions:

– Micro-Machinations (MM), a DSL for expressing game economies.
– Micro-Machinations Analysis in Rascal (MM AiR), an interactive simula-

tion, visualization and validation workbench for MM.
– The insight that combining state-of-the-art tools for meta-programming

(Rascal3 [2]) and model checking (Promela/Spin4 [3]) enable rapid pro-
totyping of and experimentation in the game domain with frameworks like
MM AiR.

2 Micro-Machinations

2.1 Background

Our main source of inspiration is the language Machinations [4] that has been
based on an extensive analysis of game design practices in industry and provides
a graphical notation for designers to express the rules of game economies. A
game economy is an abstract game system governed by rules (e.g., how many
coins do I need to buy a crystal) that offers players a playful interactive means
to spend and exchange atomic game resources (e.g., crystals, energy). Resources
are characterized by amount and unit kind.
3 http://www.rascal-mpl.org/
4 http://spinroot.com/spin/whatispin.html

http://www.rascal-mpl.org/
http://spinroot.com/spin/whatispin.html

38 P. Klint and R. van Rozen

Its focus is on the simulation of game designs. Various game design patterns
have been identified in this context [4,5] as well. Machinations takes an approach
that closely resembles Petri Nets that have been used in the game domain by
others. For instance, Brom and Abonyi [6] use Petri nets for narratives, and
Araújo [7] proposes general game design using Petri Nets. Other approaches to
formalisms for game development related to design include hierarchical state
machines [8], behavior trees [9], and rule-based systems [10].

Machinations is a visual game design language intended to create, document,
simulate and test the internal economy of a game. The core game mechanics are
the rules that are at the heart of a game. Machinations diagrams allow designers
to write, store and communicate game mechanics in a uniform way. Perhaps the
hardest part of game design is adjusting the game balance and make a game
challenging and fun.

Figure 1a shows the Machinations framework as presented in [4]. Machinations
can be seen as a design aid, that augments paper prototyping, which is used by
designers to understand game rules and their effect on play. The Machinations
tool5 can be used to generate automatic random runs, that represent possible
game developments, as feedback on the design process. Machinations is already
in use by several game designers in the field.

(a) Machinations Conceptual Framework

Game
Engineering

Micro-Machinations
Analysis in Rascal

Textual
IDE

Graphical
Simulator Game Design

game
software

Micro-
Machinations

ve
rif

ie
s

requirements

Spin

analyzer

creates

D
es

ig
n

+
M

M

MM

play t
est

/ a
sse

s

1

2

4

3

analysis

adapt

(b) Micro-Machinations Architecture

Fig. 1. Side-by-side comparison of Machinations (a) and Micro-Machinations (b)

Micro-Machinations (MM) is an evolutionary continuation of Machinations
aiming at software prototyping and validation. MM is a formalized extended
subset of Machinations, that brings a level of precision (and reduction of non-
determinism) to the elements of the design notation that enables not only sim-
ulation but also formal analysis of game designs. MM also adds new features,
most notably modularization. MM is intended as embedded scripting language
for game engines that enables interaction between the economic rules and the so-
called in-game entities that are characterized by one or more atomic resources.
5 http://www.jorisdormans.nl/machinations/

http://www.jorisdormans.nl/machinations/

Micro-Machinations 39

An advantage of early paper prototyping is that loosely defined rules can be
changed quickly and analyzed informally. Later, during software prototyping the
rules have to be described precisely and making non-trivial changes usually takes
longer. To start software prototyping as early as possible, a quick change in a
model should immediately change the software that implements it. Therefore
we study the precise meaning of the language elements and how they affect
the game state. By leveraging meta-programming, language work-benches and
model checking we can provide additional forms of analysis and prototyping.
This enables us to answer questions about models designers might have, that
affect both the design and the software that implements it. Figure 1b shows
schematically how MM relates to game development.

Our objectives are to introduce short and separate design iterations (1 and 2)
to free time for separate software engineering iterations (4) and alleviate relying
on the usually longer interdependent development iterations (3).

2.2 Micro-Machinations Condensed

MM models are graphs that consist of two kinds of elements, nodes and edges.
Both may be annotated with extra textual or visual information. These elements
describe the rules of internal game economies, and define how resources are step-
by-step propagated and redistributed through the graph. Here is a cheat sheet
for the most important language elements6.

p
pool p

Empty pool

1
p

pool p at 1
Pool & resource

A pool is a named node, that abstracts from an
in-game entity, and can contain resources, such as
coins, crystals, health, etc. Visually, a pool is a
circle with an integer in it representing the
current amount of resources, and the initial
amount at which a pool starts when first
modeled. Pools may specify a maximum capacity
for resources, which can never be exceeded, that
is visually a prefix max followed by an integer.

1
max 2

p
pool p at 1 max 2
Limited capacity

2
max 2

p
pool p at 2 max 2

Full pool

�>
Resource

connection
flow rate of one

all

-all->
Resource

connection
unlimited rate

A resource connection is an edge with an
associated expression that defines the rate at
which resources can flow between source and
target nodes. During each transition or step,
nodes can act once by redistributing resources
along the resource connections of the model. The
inputs of a node are resource connections whose
arrowhead points to that node, and its outputs
are those pointing away.

/2

-/2->
Resource

connection
half flow rate

4*p+1

-4*p+1->
Resource

connection
flow expression

6 For conciseness we only give an informal description here, closely adhering to [4].

40 P. Klint and R. van Rozen

p
pool p

Passive pool

p
auto pool p

Automatic pool

The activation modifier determines if a node can
act. By default, nodes are passive (no symbol)
and do not act unless activated by another node.
Interactive (double line) nodes signify user
actions that during a step can activate a node to
act in the next state. Automatic (*) nodes act
automatically, once every step. Start (s) nodes
are active in the initial state, but become passive
afterwards.p

user pool p
Interactive pool

p
start pool p
Start pool

p
pool p

Pool with pull
act and any
modifier

p

&

all pool p
Pool with pull

act and all
modifier

Nodes act either by pulling (default, no symbol)
resources along their inputs or pushing (p)
resources along their outputs. Nodes that have
the any modifier (default, no symbol), interpret
the flow rate expressions of their resource
connections as upper bounds, and move as many
resources as possible. Additionally, these nodes
may process their resource connections
independently and in any order. Nodes that
instead have the all modifier (&) interpret them
as strict requirements, and the associated flows
all happen or none do.

p

p

push pool p
Pool with push

act and any
modifier

p

p&

push all pool p
Pool with push

act and all
modifier

s
source s
Source

A source node, appearing as a triangle pointing up,
is the only element that can generate resources. A
source can be thought of as a pool with an infinite
amount of resources, and therefore always pushes
all resources or all resources are pulled from it. The
any modifier does not apply, and resources may
never flow into a source. Also, infinite amounts
may not flow from sources.

d
drain d

Drain with any
modifier

d

&

all drain d
Drain with all

modifier

A drain node, appearing as a triangle pointing
down, is the only element that can delete re-
sources. Drains can be thought of as pools with
an infinite negative amount of resources, and have
capacity to pull whatever resources are available,
or whatever resources are pushed into them. No
resources can ever flow from a drain.

==1

.==1.>
Condition edge
equals one expr

>=2

.>=2.>
Condition edge
greater equals

expr

A node can only be active if all of its conditions
are true. A condition is an edge appearing as a
dashed arrow with an associated Boolean
expression. Its source node is a pool that forms
an implicit argument in the expression, and the
condition applies to the target node.

active

.active.>
Condition edge

active expr

>1||p!=1

.>1||p!=1.>
Condition edge
composed expr

Micro-Machinations 41

.*.>
Trigger edge

A trigger is an edge that appears as a dashed arrow
with a multiply sign. The origin node of a trigger
activates the target node when for each resource
connection the source works on, there is a flow
in the transition that is greater or equal to that
of the associated flow rate expression. Addition-
ally, automatic pulling nodes without inputs and
automatic pushing nodes without outputs always
activate targets of their triggers.

c
converter c from A to B

converter

Converters are nodes, appearing as a triangle
pointing right with a vertical line through the
middle, that consume one kind of resources and
produce another. Converters are not core
elements because they can be rewritten as a
combination of a drain, a trigger and a source.
Unlike basic node types, converters therefore take
two steps to complete. Converters can only pull,
and the any modifier does not apply. If specified,
the unit kinds on the inputs and outputs must
match the converter’s unit kinds.

c_sc_d

&

all drain c_d of A source c_s of B
c_d .*.> c_s

desugared converter

2.3 Introductory Example

Figure 2a shows an example how a designer might model a lady feeding birds in
the original Machinations language. Figure 2b shows the textual equivalent as
introduced in MM. The lady automatically throws bread crumbs in a pond (*p)
one at a time, and two birds with different appetites compete for them. The first
has a small appetite and the latter a big a appetite. Both birds automatically
try to eat the whole amount (*&) their appetite compels them to. The edges
from small_appetite and big_appetite are not triggers but edge modifiers, and
we have replaced them by flow rate expressions in MM (lines 11 & 21). Birds
digest food automatically which gives them energy and produces droppings on
the road.

2.4 Game Designer’s Questions

Given a model such as the example from Section 2.3, a designer might have the
following questions.

– Inspect: Given a game state, what are the values of the pools, which nodes
are active and what do they do?

– Select: Given a game state, what are the possible transitions? Are there
alternatives? What are these alternatives and what are their successor states?

– Reach: Given this model, does a node ever act? Does a flow ever happen?
Does a trigger ever happen? Where in the model can resources be scarce? Is
an undesired state reachable, e.g., can the player ever have items from the

42 P. Klint and R. van Rozen

b2_energyb1_energy

pond

2
lady

road

1
small_appetite

2
big_appetite

b2_eat

b1_digest

b1_eat

b2_digest

b1_life b2_life

(a) Visual Model

1 unit Bread : "bread�crumbs"
2 unit Droppings : "bird�residue"
3 unit Energy : "bird�energy"
4 pool BIG_APPETITE of Bread at 2
5 pool SMALL_APPETITE of Bread at 1
6 auto push all pool lady of Bread at 2
7 pool pond of Bread
8 pool road of Droppings
9 lady --> pond

10 auto all pool b1_eat of Bread
11 pond -SMALL_APPETITE-> b1_eat
12 auto converter b1_digest
13 from Bread to Droppings
14 b1_eat --> b1_digest
15 b1_digest --> road
16 pool b1_energy of Energy
17 source b1_life of Energy
18 b1_digest .*.> b1_energy
19 b1_life --> b1_energy
20 auto all pool b2_eat of Bread
21 pond -BIG_APPETITE-> b2_eat
22 auto converter b2_digest
23 from Bread to Droppings
24 b2_eat --> b2_digest
25 b2_digest --> road
26 pool b2_energy of Energy
27 source b2_life of Energy
28 b2_digest .*.> b2_energy
29 b2_life --> b2_energy

(b) Textual model that demon-
strates code duplication

Fig. 2. Modeling two birds that both eat from the same pond

store without paying crystals? Is a desired state always reachable, e.g., can
the game be won or can the level be finished?

– Balance: Are the rules well balanced?

2.5 Technical Challenges

Before answering these questions (in Section 2.6), we discuss engineering chal-
lenges and how to tackle them leveraging meta-programming, language work-
benches and model checking.

– Parse: To analyze any of these questions we need a representation that can
easily be parsed. Therefore, MM introduces a textual representation of the
game model, that serves as an intermediate format, that is compact and easy
to read, parse, serialize and store.

– Reuse: Having a closer look at the example in Figure 2a, we see mirroring in
the game graph that corresponds to code duplication in Figure 2b. We need
modular constructs for reuse, encapsulation, scaling views, partial analysis
and testing, and embedding MM in games (by way of connecting nodes and
edges with in-game entities).

– Inspect: We need an environment that enables users to inspect states by
visualizing serialized models.

– Select: Detailed insight in the game behavior can be obtained by interac-
tively choosing successors and seeing transition alternatives. This is similar
to debugging when stepping through code, and requires the calculation of
alternatives. This can, for instance, reveal a lack of resources or capacity.

Micro-Machinations 43

– Analyze Context Constraints: Some structural elements of models, re-
lated to contextual constraints can introduce errors that we want to catch
statically. Examples are: (i) Sources cannot have inputs; (ii) Drains cannot
have outputs; (iii) Edges are dead code if no active node can use them by
pushing or pulling; and (iv) Edges are doubly used when both origin and
target are pushing and pulling, which can lead to confusing results. Model-
ing errors can also be detected. Optionally, resource types of nodes can be
defined making resource connections easily checkable. Additionally, missing
references can be reported.

– Analyze Reachability: Analyzing reachability is hard because it requires
calculation of all possible paths through the game graph. Normally, we can-
not calculate all possible executions of programs due to the sheer number
of possibilities, and use abstractions to allow forms of analysis. Because a
MM model is itself an abstraction of the actual game, and types and in-
stances —MM’s modularization mechanism is described in more detail in
Section 2.7— enable partial analysis, we can exhaustively verify models in
an experimental context using model checking techniques. The challenge is
to translate MM diagrams to models that a model checker can analyze, and
making that analysis scalable. Non-deterministic choices lead to a combina-
torial explosion of execution path and this results in a state explosion in
the model checker. When searching for undesired situations, an exhaustive
search may not be necessary, since the moment an invalid state is found, the
execution stack trace represents a result.

– Balance: Providing useful analysis to support balancing games is very hard,
since this requires analyzing multiple types of play, each dynamic with differ-
ent unpredictable player choices and non-deterministic events. Experimental
set-ups in which instance interfaces are subjected to modeled input may pro-
vide designers with useful feedback, but building such set-ups is hard and is
the expertise of game designers.

– Prototype and Adjust: Prototyping game software and making adjust-
ments requires code. In addition to the MM format we require a light-weight
embeddable interpreter that enables using script for prototyping and adjust-
ing game software. A simple API for integrating MM in existing architectures
should at least provide a means for calculating successor states (step), ob-
serving pools value changes, activating interactive nodes and reading and
storing information. We require that this API relates the run-time state of
models to the state and the behavior of game elements that affect how the
game behaves when played. This is not further explored in the current paper.

2.6 Answers to Game Designer’s Questions

We will now answer the questions raised in Section 2.4 and illustrate them using
the bird feeding example.

Figure 3 shows a rewrite of the example using new language elements to be
detailed in Section 2.7. Figure 3a shows the definition of Bird, which references

44 P. Klint and R. van Rozen

pond

eat

appetite

digest

road energy

Bird

life

(a) A bird’s life

Bird b1 Bird b2

0
pond

2
lady = =

0
road

road = =road

1
small_appetite

2
big_appetite

appetite appetite = =

pond pond

(b) A lady feeding two birds

Fig. 3. Graphically modeling birds that eat, digest and live

1 Bird(ref appetite ,ref pond,ref road)
2 {
3 //birds eat exactly all they want
4 auto all pool eat of Bread
5 pond -appetite-> eat
6 auto converter digest
7 from Bread to Droppings
8 eat --> digest //digest Bread
9 digest --> road //produce Dropping

10 pool energy of Energy
11 source life of Energy
12 digest .*.> energy
13 life --> energy
14 assert fed: energy > 0 || road < 2
15 "birds�always�get�fed"
16 }

(a) A bird’s life

1 unit Bread : "bread�crumbs"
2 unit Droppings : "bird�residue"
3 unit Energy : "bird�energy"
4 pool BIG_APPETITE of Bread at 2
5 pool SMALL_APPETITE of Bread at 1
6 //a lady throws crumbs in the pond
7 auto push all pool lady of Bread at 2
8 pool pond of Bread
9 pool road of Droppings

10 lady --> pond
11 Bird b1 //b1 has a big appetite
12 BIG_APPETITE .=.> b1.appetite
13 pond .=.> b1.pond road .=.> b1.road
14 Bird b2 //b2 has a small appetite
15 SMALL_APPETITE .=.> b2.appetite
16 pond .=.> b2.pond road .=.> b2.road

(b) A lady feeding two birds

1 lady-1->pond
2 step
3 pond-1->b1_eat
4 lady-1->pond
5 step
6 pond-1->b1_eat
7 b1_eat-1->b1_digest_drain
8 step
9 b1_eat-1->b1_digest_drain

10 b1_life-1->b1_energy
11 b1_digest_source-1->road
12 step
13 b1_life-1->b1_energy
14 b1_digest_source-1->road
15 step
16 violate b2_fed

(c) Bird b2 starves

Fig. 4. Textual model and analysis that shows birds with a big appetite starve

external nodes pond, road and appetite. These external nodes act as formal pa-
rameters of the Bird specification and are bound twice in Figure 3b. Figure 4a
and Figure 4b show the textual equivalent of this model.

Next, we introduce assertions and pose that birds shall never starve by adding
an assertion at line 14 of Figure 4a.

Then, we run the analysis to check for reachability and find that (i) bird b2
starves because b1_eat always happens before big_appetite is available, and (ii)
the acts of bird b2_eat and b2_energy are unreachable for all execution paths.

Finally, we can explore the model and understand it better by inspecting
states, observing lack of alternative transitions, and automatically simulating the
trace that lead to the assertion violation visually, shown textually in Figure 4c.

2.7 Language Extensions

We have designed MM and have introduced new language features as necessary
to attain our goals. MM has modular constructs for reuse, encapsulation, scaling
views, partial analysis and testing, and relating MM to in-game entities. MM has
reduced non-determinism and increased control over competition for resources
and capacity by introducing priorities. Time is modeled and understood, in a
way that is embeddable in games. Finally, invariants are introduced for defining
simple properties for analysis.

Micro-Machinations 45

Types definitions and instances. The following table introduces7 our modular-
ization features type definitions and instances.

r

A

A(ref r){ ... }

Type definition
reference
definition

1

B

p

B(in p){
pool p at 1 }

Type definition
input modifier

A type definition is a named diagram that
functions as parameterized module for
encapsulating elements. Type definitions define
internal elements and how the they can be used
externally. A reference, represented by a circle with
a dashed line, is an alias that refers to a node that
is defined externally. Internal nodes annotated with
an interface modifier input, output or input/output
become interfaces on the instances of the type.
The input modifier denotes that an interface
accepts inputs, output implies it accepts outputs
and input/output accepts both. Interface modifiers
appear as an arrow in the top right corner of a
node, where an input modifier point into the node,
an output modifier points out of the node, and an
in-/output modifier does both.

C

2
p

C(out p){
pool p at 2 }

Type definition
output modifier

D

3
p

D(inout p){
pool p at 3 }

Type definition
in-/output
modifier

A a
r

A a
Type instance

reference
interface

B b
p

B b
Type instance
input interface

An instance is a named object that has individual
instance data, whose interfaces are defined by its
type and can be bound to other models, acting as
formal parameters.

An interface makes internal elements of an
instance available to the outside, and can be used
by connecting resource connections. Visually, an
interface is a small circle at the border of an
instance with its name under it. Input interfaces
have an arrow pointing into the circle, outputs
have an arrow pointing outward, and in-/outputs
have a bidirectional arrow. The direction of the
arrow implies the validity of the direction of the
edges that connect to it. Only reference interfaces
appear with a dashed line.

References must be bound to definitions using
edges called bindings, represented by dashed arrows
annotated with an equal sign, that originate from a
defining node and target a reference.
Additionally, instances can be nested inside type
definitions and build a name space, e.g., a nested
pool p inside an instance a of type definition A

is referred to as a.p.

C c
p

C c
Type instance

output
interface

D d
p

D d
Type instance

in-/output
interface

 a
p=

p
pool p A a p .=.> a.p

Type instance
with reference binding

A a
r=C c

p
C c A a c.p .=.> a.r

Type instances
with reference binding

E

r
=D d

p

E(inout p,ref r){D d d.p .=.> r}
Type definition with nested

instance and reference binding

7 Once again, for conciseness, only informally.

46 P. Klint and R. van Rozen

0

P21

P1 0

P3

2

2

(a) P2 or P3 pulls

2

0

P22

P1 2 0

P3

(b) P2 or P3 pulls

0

P21

P1

P3

2

2 0

(c) Push to P2 or P3

0

P22

P1 0

P3

2

2

(d) P1 cannot push

Fig. 5. Non-determinism due to shortage of resources

1

P2 0
max 1

P11

P3

(a) Pull from P2 or P3

1

P2 0
max 1

P11

P3
(b) P1 cannot pull

1

P2 0
max 1

P11

P3

(c) P2 or P3 pushes

1

P2 0
max 1

P11

P3
(d) P2 or P3 pushes

Fig. 6. Non-determinism due to shortage of capacity

Nodes have priorities. The sources of non-determinism that we have identified
are nodes competing for resources and the any modifier. Alternative transitions
exist due to lack of resources or capacity, as illustrated by Figure 5 and Figure 6.

We have already mentioned that each activated node can act once during a
step. Since the order in which nodes act is not defined, models under-specify
behavior and this can result in undesirable non-determinism. To allow a degree
of control, we specify that active nodes with the following actions and modifiers
are scheduled in the following order: pull all, pull any, push all, push any. Groups
of nodes from different categories do not compete for resources or capacity, which
helps in analyzing models and in understanding them. Section 4 makes use of
this feature.

Steps take time. MM does not support different time modes as Machinations
does. In MM each node may act at most once during a step, which conforms to
the Machinations notion of synchronous time. We do not support asynchronous
time, in which user activated nodes may act multiple times during a step with-
out affecting other nodes. Machinations supports a turn-based mode, in which
players can each spend a fixed number of action points on activating interactive
nodes each step. We note that turns are game assets that can be modeled, using
pools, conditions and triggers, enabling turn-based analysis. MM does not spec-
ify how long a step takes, it only assumes that steps happen and its environment
determines what the step intervals are.

Micro-Machinations 47

Invariants. Defining property specifications to verify a model against can be hard,
requiring knowledge of linear temporal logic. Defining invariants, Boolean expres-
sions that must be true for each state, is easier to understand. MM adds assertions
which consist of a name, a boolean expression that must invariantly be true, and
a message to explain what happened when the assertion is violated, i.e. becomes
false for some state. Figure 4a contains an example of an assertion (lines 14–15).

3 MM AiR Framework

Figure 7a shows the main functions of the MM Analysis in Rascal (MM AiR)
framework and Figure 7b relates them to the challenges they address. The frame-
work is implemented as a Rascal meta-program of approximately 4.5 KLOC.
We will now describe the main functions of the framework.

MM Analysis by SPIN

MM Analysis in Rascal IDE
MM Model

(.mm)

SimulateCheck

Translate

Graphical
View

MM Trace
(.mmt)

Promela
Model (.pml)

Verify
(pan)

Replay
(pan)

Pan Trail
(.trail)

Replay

messages

Analyze

Report

(a) MM AiR IDE functions

§ functionality challenges
3.1 check contextual

constraints (parse,
desugar, perform
static analysis)

define syntax, seman-
tics, reuse, constraints

3.2 simulate MM model
(interpret and evalu-
ate successor states,
interactive graphical
visualizations)

make models debug-
gable, improve scala-
bility and performance

3.3 translate MM to
Promela

relate formalisms, en-
sure interoperability,
improve scalability

3.4 verify MM in Spin ensure interoperability,
improve scalability

3.5 analyze reachability ensure interoperability
3.6 replay behaviors and

verification results
source level debugging,
ensure interoperability,
readability

(b) Sections, functions and challenges

Fig. 7. MM AiR Overview

3.1 Check Contextual Constraints

Starting with a grammar for MM’s textual syntax, using Rascal we generate
a basic MM Eclipse IDE that supports editing and parsing textual MM mod-
els with syntax highlighting. This IDE is extended with functionality to give
feedback when models are incorrect or do not pass contextual analysis. This is
implemented in a series of model transformations, leveraging Rascal’s support
for pattern matching, tree visiting and comprehensions. This includes labeling
the model elements, for storing information in states and for resource redis-
tributions in transitions. We check models against the contextual constraints
described in Section 2.5.

48 P. Klint and R. van Rozen

3.2 Simulate Models

Simulate provides a graphical view of a MM model and enables users to inspect
states, choose transitions and successors, and navigate through the model by
stepping forward and backward. We generate figures and interactive controls
for simulating flattened states and transitions. This is easily done by applying
Rascal’s extensive visualization library, which renders figures and provides call-
backs we use to call an interpreter. The interpreter calculates successor states
by evaluating expressions, checking conditions and generating transitions.

3.3 Translate to Promela

The biggest challenge in analyzing MM is providing a scalable reachability anal-
ysis. We achieve this by translating MM to Promela, the input language of
the Spin model checker. A naive approach is to model each node as a process,
enabling every possible scheduling permutation to happen. However, not every
scheduling results in a unique resource distribution, which hampers performance
and scalability. Therefore we take steps to reduce the number of calculations
without excluding possible behaviors. We take the following measures to reduce
the state space explosion.

– Reduce non-determinism. We model only necessary non-determinism.
We have identified two sources that are currently in MM: nodes compet-
ing for resources or capacity and the any modifier. For competing nodes
every permutation potentially results in a unique transition that must be
computed, but nodes that do not compete can be sequentially processed.

– Avoid intermediate states. Promela has a d_step statement that can
be used to avoid intermediate states, by grouping statements in single tran-
sitions.

– Store efficiently and analyze partially. Pools can specify a maximum
that we use to specify which type to use in Promela (bit, byte or int),
minimizing the state vector. For partial analysis we can limit pool capacities.

Translating an MM model to Promela works as follows. We bind references
to definitions and transform the model to core MM. We generate one proctype

per model, schematically shown in Figure 8, and a monitor proctype that tests
assertions for each state. Figure 8a depicts their general structure. At the begin-
ning of a step the state is printed, and step guards are enabled if a node is active.
This is followed by sections for each priority level as determined by node type.
In each section, groups of nodes may be competing for resources or capacity.

For each group of competitors ci consisting of nodes n1, ..., nn, we introduce a
non-deterministic choice using guards that are disabled after a competing node
acts as shown in Figure 8b. The remaining independent nodes r1, ..., rn are just
sequentially processed, since they never affect each other during a step. Figure 8c
shows that each path in the monitor process remains blocked until an invariant
becomes false, and a violation is found.

Micro-Machinations 49

print state

prepare

section pull any

section pull all

section push all

section pull any

finalize

test reachability

print step

(a) Process

competitors c1
{n1 .. nn} branch

node n1 act

n1 step = false

...

node nn act

nn step = false

[n1 step]

[nn step]

[else]

remainder
{r1 .. rn}

node r1 act

node rn act

...

...

competitors cn
{n1 .. nn} branch

[else]

(b) Section

assert b1
 fail

assertions
{b1 .. bn} branch

assert bn
 fail

...

[!b1]

[!bn]

(c) Monitor

Fig. 8. Skeleton for generated Promela code: process, section and monitor

all node act
{f1 .. fn}

commit = true

all flow f1 act

...

all flow fn act

[else]

commit flows

[commit]

(a) All Node

all flow act

condition met

[flow>0 &&
tgt_new_try+flow<max
&& src_old_try>=flow]

commit = false
[else]

(b) All Flow

any node act
{f1 .. fn} branch

any flow f1 act

f1 step = false

...

any flow fn act

fn step = false

[f1 step]

[fn step]

[else]

(c) Any Node

any flow act

flow happens
[flow > 0 && tgt_new < max && src_old >= 0]

partial flow available

[src_old >= flow]
full flow available

full capacity

partial capacity

full capacity

partial capacity

[else]

[tgt_new
+ flow
< max]

[else]

[else]

[tgt_new +
src_old <
max]

[else]

(d) Any Flow

Fig. 9. Skeleton of generated Promela code for nodes

The behavior of nodes with the all modifier is deterministic, as shown in
Figure 9a and Figure 9b. All flows f1, ..., fn are executed sequentially and per
flow conditions are checked. The effect of all flows is only committed if the
conditions for all flows have been satisfied.

The behavior of nodes with the any modifier is shown in Figure 9c and Fig-
ure 9d models the non-determinism by introducing a non-deterministic choice
between the flows f1, ..., fn.

Individual nodes act by checking shortages of resources on the old state from
which subtractions are made and check shortage of capacity on the new state,
to which additions are also made. Finally, when each node has acted the state
is finalized by copying the new state to the current state. Temporary values
and guards are reset, and active nodes are calculated by applying activation
modifiers, triggers and conditions. Next reachability is tested, the step is printed
and we start at the beginning to determine the next step.

50 P. Klint and R. van Rozen

3.4 Verify Invariant Properties

MM models are verified against their assertions by translating them to Promela
and then running a shell script. The script invokes Spin and compiles it to a
highly optimized model-specific Promela analyzer (Pan). It then runs this ver-
ifier to perform the state space exploration, and captures the verification report
Pan outputs, which may contain unreached states and associated Promela
source lines. If the verifier finds an assertion violation, it also produces a trail,
a series of numbers that represent choices in the execution of the state machine
representing the Promela model. The challenge is interoperability, relating the
verification report and the trail back to MM and showing understandable feed-
back to the user. We show how this is solved in Section 3.5 and Section 3.6.

3.5 Analyze Reachability

We tackle the interoperability challenge of relating a Spin reachability analysis to
MM as follows. During the generation of Promela we add reachability tests, in
which states and source lines become reachable if an element acts. We collect the
source lines using a tiny language called MM Reach, which specifies the test case
by defining whether a node receives full or partial flow via a resource connection
or if it activates a trigger. We extract unreached Promela source lines from
the Pan verification report and map them back to MM elements to report the
following messages, which are relative to a partial or exhaustive search.

– Starvation. Nodes that never push or pull full or partial flow via a resource
connection starve, and represent dead code.

– Drought. A resource connection through which resources do not flow runs
dry, and is unused dead code.

– Inactivity. A trigger that never activates its target node is idle.
– Abundance. A node with the any modifier that always receives full flow

along all of its resource connections indicates a lack of shortage.

3.6 Replay Behaviors

We tackle the interoperability challenge of relating Pan trails for Promela
models we obtained in Section 3.4 to MM model resource redistributions by
introducing an intermediate language called MM Trace (MMT). A sequence of
MMT statements forms a program that contains the transitions that an MM
model performs, which MM AiR graphically replays in a guided simulation.

Replaying a trail on Pan simulates the steps of a Promela model while
calling printf statements that generate an MMT program, ending in an assertion
violation. The program is obtained by embedding the following MMT statements
prefixed with MM: for filtering in the Promela model.

– Flow. Node causes flow to occur: source-amount->target
– Trigger. Trigger activates a target node in the next state: trigger node

– Violation. A state violates an assertion: violate name

– Step. Terminate a transition: step

Micro-Machinations 51

4 Case Study: SimWar

SimWar is a simple hypothetical Real-Time Strategy (RTS) game introduced
by Wright [11] that illustrates the game design challenge of balancing a game.
This entails ensuring different player choices and strategies represent engaging
and challenging experiences. Common strategies for RTS games are turtling, a
low-risk, long-term strategy that favors defense, and rushing, a high-risk short-
term strategy that favors attack. Adams and Dormans [4] study the game using
the Machinations tool. By simulating many random runs, they show the game
is indeed poorly balanced and that turtling is the dominant strategy.

 *

 *

 2

50

reserve

0

resources
*

turn
5

0

attack

1
max 3

factories

killed destroyed

buyAttack buyDefense buyFactory

opponent
_attack

opponent
_defense

/4/4

*1

1

defense ==0

(a) SimWar Base

1 Base(in BuyAttack, in BuyFactory, in BuyDefense, //choices
2 ref opponent_attack, ref opponent_defense, ref turn,
3 out attack, out defense, out factories, out resources){
4 turn .*.> resources //turn triggers resources to pull
5 turn .*.> killed //turn triggers killed
6 turn .*.> destroyed //turn triggers destroyed
7 pool reserve of Gold at 50 //Gold reserve (starts at 50)
8 pool resources of Gold //Gold resources (for purchases)
9 pool factories of Factory at 1 max 3 //factories for income

10 pool defense of Defense at 1 //defending units
11 pool attack of Attack //attacking units
12 drain killed of Defense, Attack //units can be killed
13 drain destroyed of Factory //factories can be destroyed
14 converter buyDefense from Gold to Defense //buy defense
15 converter buyAttack from Gold to Attack //buy attack
16 converter buyFactory from Gold to Factory //buy factory
17 reserve -factories-> resources //produce income
18 resources -5-> buyFactory //buyFactory consumes 5 Gold
19 buyFactory --> factories //buyFactory produces 1 Factory
20 resources -1-> buyDefense //buyDefense consumes 2 Gold
21 buyDefense --> defense //buyDefense produces 1 Defense
22 resources -2-> buyAttack //buyAttack consumes 1 Gold
23 buyAttack --> attack //buyAttack produces 1 Attack
24 factories -all-> destroyed //factories destuction
25 defense -opponent_attack/4-> killed //defense casualty rate
26 attack -opponent_defense/4-> killed //attack casualty rate
27 defense .defense == 0.> destroyed //undefended condition
28 }

(b) SimWar Base

Fig. 10. The rules of SimWar

Our MM adaptation of SimWar, shown in Figure 10, is based on [4], but it
models the rules for players in a definition called Base, avoiding duplication. It
also replaces probabilities on resource connections with amounts. Two players
compete by spending resources, choosing to buy defense (cost 1), attack (cost
2) or factories (cost 5). This is modeled by three converters in line 15–17 of
Figure 10b that pull their respective costs from resources when activated.

Factories produce income every turn, and represent an investment enabling
more purchases. We model this by turn triggering resources (line 5), which pulls
from reserve (line 9) the current amount of factories (line 18). A player must
destroy their opponent’s factories to win. Two references, opponent_defense and
opponent_attack determine the (rounded down) casualty rate of one in four (line
26, 27) for attack and defense respectively. Opponents fight until one player has
no defense, and her factories are destroyed (line 28).

52 P. Klint and R. van Rozen

 >=1 >=5

>=2

 >=3

 *
turn

buyDefense

count

tick

factories

buyFactory buyAttack

resources

 *
buy

 * *

 <3
>=20

>=8

 <8

*

*

(a) Turtle Strategy

1 Turtle(ref buyAttack, ref buyDefense,
2 ref buyFactory, ref factories,
3 ref resources, ref turn){
4 source tick
5 turn .*.> count
6 tick --> count
7 pool count
8 auto source buy
9 buy .*.> buyAttack

10 buy .*.> buyFactory
11 buy .*.> buyDefense
12 count .>=20.> buyAttack
13 factories .>=3.> buyAttack
14 resources .>=2.> buyAttack
15 count .<8 .> buyDefense
16 resources .>=1.> buyDefense
17 count .>=8.> buyFactory
18 factories .<3.> buyFactory
19 resources .>=5.> buyFactory
20 }

(b) SimWar Turtle

>=5

 >15 <3

buyDefense buyFactory buyAttack

1
max 1

choice<10

 *

count factories

resources

*

>20

turn

 * * *
getFactory getAttack

>=2
>=1

skip

tick

getDefense

(c) Random Strategy

1 Random(ref buyAttack, ref buyDefense,
2 ref buyFactory, ref factories,
3 ref resources, ref turn){
4 source tick
5 turn .*.> count
6 tick --> count
7 pool count
8 tick --> state
9 auto pool state max 1

10 auto all drain skip
11 auto all drain getFactory
12 auto all drain getAttack
13 auto all drain getDefense
14 getAttack .*.> buyAttack
15 getFactory .*.> buyFactory
16 getDefense .*.> buyDefense
17 state --> skip
18 state --> getAttack
19 state --> getDefense
20 state --> getFactory
21 count .>15.> skip
22 resources .>= 2.> getAttack
23 count .>= 20.> getAttack
24 resources .>= 1.> getDefense
25 count .<10.> getDefense
26 resources . >= 5.> getFactory
27 factories . <3.> getFactory
28 }

(d) SimWar Random

Fig. 11. SimWar Test Strategies

4.1 Experimental Setup

In an experiment with SimWar and two strategies shown in Figure 11 we apply
the MM AiR framework, analyzing (i) the reachability of modeling elements,
and (ii) the existence of a strategy that beats a turtling strategy.

The Turtle strategy, defined in Figure 11a and Figure 11b, simply counts turns,
and based on this triggers references for buying. The Random strategy defined in
Figure 11c and Figure 11d also counts, but adds a non-deterministic element which
uses priorities. Drains skip, getDefence, getFactory, getAttack compete for the re-
source in choice before it pulls a resource from tick, enabling the next choice. In our
test set-up shown in Figure 12, we bind instances of Random and Turtle to a Base
instance in lines 16–20 & 25-29 of Figure 12b. We bind base instances as opponents
in lines 13–14, 22–23 andbind turn to doit, our means for activity. Finally, we assert
in lines 30–31 that the factories of Turtle are never destroyed. A violation of this
assertion represents a behavior of Random that beats Turtle.

Micro-Machinations 53

Turtle p1

=

B
as

e
s2

=

B
ase s1

attack

=opponent_
defense

=

=
defense

opponent_
defense

attack
opponent_

attack

R
an

do
m

 p
2

=

=

=

=

=

=

=

=

=

=

resources
resources

factories
factories

buyDefense
buyDefense

buyAttack
buyAttack

buyFactory
buyFactory

resources

factories

buyDefense

buyFactory

resources

factories

buyDefense

buyAttack
buyAttack

buyFactory

turnturnturn

1
max 1

do

max 1 max 1

do2= = =do1

* **

opponent_
attack

defense

turn

(a) A Turtle instance battling a Random instance

1 unit Gold : "gold"
2 unit Factory : "factories"
3 unit Defense : "defense"
4 unit Attack : "attack"
5 Turtle p1 Base s1 //player p1 is turtling
6 Random p2 Base s2 //player p2 is random
7 auto all pool doit at 1 max 1
8 auto all pool do1 max 1
9 auto all pool do2 max 1

10 doit --> do1 do1 --> do2 do2 --> doit
11 doit.==1.>do1 do1 .==1.>do2 do2.==1.>doit
12 doit .=.> s1.turn
13 s2.defense .=.> s1.opponent_defense
14 s2.attack .=.> s1.opponent_attack
15 doit .=.> p1.turn
16 s1.resources .=.> p1.resources
17 s1.buyAttack .=.> p1.buyAttack
18 s1.buyFactory .=.> p1.buyFactory
19 s1.buyDefense .=.> p1.buyDefense
20 s1.factories .=.> p1.factories
21 doit .=.> s2.turn
22 s1.defense .=.> s2.opponent_defense
23 s1.attack .=.> s2.opponent_attack
24 doit .=.> p2.turn
25 s2.resources .=.> p2.resources
26 s2.buyAttack .=.> p2.buyAttack
27 s2.buyFactory .=.> p2.buyFactory
28 s2.buyDefense .=.> p2.buyDefense
29 s2.factories .=.> p2.factories
30 assert turtleLives:
31 s1.factories != 0 "turtle�dies"

(b) SimWar Battle

Fig. 12. SimWar experimental test setup

Fig. 13. MM AiR playing back a counter-example showing Turtle defeated

54 P. Klint and R. van Rozen

4.2 Experimental Results

We apply MM AiR by translating the models to Promela and running Spin.
Pan reports using 2500MB of memory, mostly for storing 10.5M states of 220
bytes, generating 188K states/second, taking 56 seconds on an Intel Core i5-
2557M CPU. It reports 11.9M transitions, of which 9.5M are atomic steps, and
an assertion violation (s1_factories!=0) at depth 8810.

The shortest trail yields an MMT file of 95 steps. Figure 13 shows its graph-
ical play-back. We find 22 strategies that beat our Turtle behavior, but these
strategies all fall into the turtling category, confirming the strategy is dominant.

During its limited state space exploration, Pan collects unreached Promela
source lines. Using these, our analysis reports the following:

Drought: No flow via s1_factories -s1_factories-> s1_destroyed at line 25 column 2
Drought: No flow via s2_factories -s2_factories-> s2_destroyed at line 25 column 2
Starvation: Node s2_destroyed does not pull at line 14 column 2
Starvation: Node s1_destroyed does not pull at line 14 column 2
Starvation: Node p1_buy does not push at line 39 column 2
Inactivity: Node doit does not trigger s2_destroyed at line 7 column 2

Initially puzzled by the first drought and the second starvation message, we
concluded that the assertion in the monitor process is violated before the reacha-
bility check happens. Indeed node p1_buy never pushes, since it has no resource
connections, it serves only to trigger choices.

The final message of inactivity tells us that s2_destroyed is never triggered by
doit, the binding of turn. This experiment shows MM AiR provides feedback for
analyzing and refining MM models intended to be embedded in game software.

5 Conclusions

Machinations was a great first step in turning industrial experience in game
design into a design language for game economies. In this paper we have taken
the original Machinations language as starting point and have analyzed and
scrutinized it. It turned out that the definitions of various of the original language
elements were incomplete or ambiguous and therefore not yet suitable for a
formal analysis of game designs. During this exercise, we have learned quite a
few lessons:

– Formal validation of rules for game economies is feasible.
– Unsurprisingly, modularity is a key feature also for a game design language.

Modularity not only promotes design reuse, but also enables modular vali-
dation that can significantly reduce the state space.

– In our refinement and redefinition of various language features, we have
observed that non-determinism had to be eliminated where possible in order
to reduce the state space.

– While a graphical notation is good for adoption among game designers, a
textual notation is better for tool builders.

– Promela is a flexible language that offers many features to represent the
model to be validated. Different representation choices lead to vastly different
performance of the model checker and it is non-trivial to choose the right
representation for the problem at hand.

Micro-Machinations 55

– The Rascal language workbench turned out to be very suitable for the de-
sign and implementation of MM AiR. In addition to compiler-like operations
like parsing and type checking MM AiR also offers editing, interactive error
reporting and visualization. It also supports generation of Promela code
that is shipped to the Spin model checker and the resulting execution traces
produced by Spin can be imported and replayed in MM AiR.

MM Air in its current form is an academic prototype, but it is also a first step
towards creating embeddable libraries of reusable, validated, elements of game de-
signs. Next steps include the use of probabilistic model checkers, mining of recur-
ring patterns in game designs and finally designing and implementing embeddable
APIs for MM. These will form the starting point for further empirical validation.
We see as the major contributions of the current paper both the specific design
and implementation of MM and MM AiR and the insight that the combination of
state-of-the-art technologies for meta-programming and model checking provide
the right tools to bring game design to the next level of productivity and quality.

Acknowledgements. We thank Joris Dormans for answering our many ques-
tions about Machinations, Tijs van der Storm for providing advice and feedback,
and the anonymous reviewers for giving valuable suggestions.

References
1. Blow, J.: Game Development: Harder Than You Think. ACM Queue 1, 28–37 (2004)
2. Klint, P., van der Storm, T., Vinju, J.: EASY Meta-programming with Rascal. In:

Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS,
vol. 6491, pp. 222–289. Springer, Heidelberg (2011)

3. Holzmann, G.: SPIN Model Checker, the: Primer and Reference Manual, 1st edn.
Addison-Wesley Professional (2003)

4. Adams, E., Dormans, J.: Game Mechanics: Advanced Game Design, 1st edn. New
Riders Publishing, Thousand Oaks (2012)

5. Dormans, J.: Level Design as Model Transformation: A Strategy for Automated
Content Generation. In: Proceedings of the 2nd International Workshop on Proce-
dural Content Generation in Games, PCGames 2011, ACM, New York (2011)

6. Brom, C., Abonyi, A.: Petri Nets for Game Plot. In: Proceedings of Artificial
Intelligence and the Simulation of Behaviour (AISB) (2006)

7. Araújo, M., Roque, L.: Modeling Games with Petri Nets. In: Proceedings of the
3rd Annual DiGRA Conference Breaking New Ground: Innovation in Games, Play,
Practice and Theory (2009)

8. Fu,D.,Houlette,R., Jensen,R.:AVisualEnvironment forRapidBehaviorDefinition.
In: Proc. Conf. on Behavior Representation in Modeling and Simulation (2003)

9. Champandard, A.J.: Behavior Trees for Next-Gen Game AI (December 2007),
http://aigamedev.com

10. McNaughton, M., Cutumisu, M., Szafron, D., Schaeffer, J., Redford, J., Parker,
D.: ScriptEase: Generative Design Patterns for Computer Role-Playing Games. In:
Proceedings of the 19th IEEE International Conference on Automated Software
Engineering, pp. 88–99. IEEE Computer Society, Washington, DC (2004)

11. Wright, W.: Dynamics for Designers. Lecture delivered at the Game Developers
Conference (2003)

http://aigamedev.com

	Micro-Machinations
	1 Introduction
	2 Micro-Machinations
	2.1 Background
	2.2 Micro-Machinations Condensed
	2.3 Introductory Example
	2.4 Game Designer’s Questions
	2.5 Technical Challenges
	2.6 Answers to Game Designer’s Questions
	2.7 Language Extensions

	3 MM AiR Framework
	3.1 Check Contextual Constraints
	3.2 Simulate Models
	3.3 Translate to Promela
	3.4 Verify Invariant Properties
	3.5 Analyze Reachability
	3.6 Replay Behaviors

	4 Case Study: SimWar
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusions
	References

