
Towards xMOF: Executable DSMLs based on fUML∗

Tanja Mayerhofer
Vienna University of
Technology, Austria

mayerhofer@big.tuwien.ac.at

Philip Langer
Vienna University of
Technology, Austria

langer@big.tuwien.ac.at

Manuel Wimmer
Software Engineering Group

Universidad de Málaga, Spain
mw@lcc.uma.es

ABSTRACT
When defining a domain-specific modeling language (DSML),
the two key components that have to be specified are its
syntax and semantics. For specifying a modeling languages’
abstract syntax, metamodels are the standard means. MOF
provides a standardized, well established, and widely ac-
cepted metamodeling language enabling the definition of
metamodels and the generation of accompanying modeling
facilities. However, no such standard means exist for spec-
ifying the behavioral semantics of a DSML. This hampers
the efficient development of model execution facilities, such
as debugging, simulation, and verification. To overcome this
limitation, we propose to integrate fUML with MOF to en-
able the specification of the behavioral semantics for DSMLs
in terms of fUML activities. We discuss alternatives how
this integration can be achieved and show by-example how
to specify the semantics of a DSML using fUML. To reuse
existing runtime infrastructures, we further demonstrate the
usage of external libraries in fUML-based specifications.

1. INTRODUCTION
The success of model-driven engineering (MDE) depends
significantly on the availability of adequate means for defin-
ing domain-specific modeling languages (DSMLs). The two
key components that constitute a DSML are its syntax and
semantics. For defining the abstract syntax of a DSML in
terms of a metamodel, the OMG standard MOF1 not only
provides a well-established and commonly accepted meta-
modeling language, but also fostered the emergence of a
variety of tools for deriving modeling facilities from a meta-
model (semi-)automatically, such as modeling editors, model
validators, and generic components for model serialization,
comparison, and transformations.
Unfortunately, for defining the behavioral semantics of a
DSML, no standard way has been established yet. In prac-
tice, models are usually executed using a code generator or a
model interpreter specified with a general purpose program-
ming language (GPL). Although this enables exploiting the
full power of programming languages, the generated code or
the model interpreter constitute only an implementation of
the behavioral semantics rather than an explicit specifica-
tion which violates the main MDE principle “everything is a
model” [1]. The consequence is that the emergence of poten-
tial techniques building upon an explicit behavioral seman-
tics to derive model debuggers, simulators, and verification

∗This research has been partly funded by our industry part-
ner LieberLieber Software GmbH.
1http://www.omg.org/mof

tools (semi-)automatically is drastically hindered [2].
To overcome this limitation, we stress the need for a stan-
dardized and model-based way of specifying the behavioral
semantics of a DSML to facilitate the same benefits as MOF
granted for specifying the abstract syntax. Therefore, we
propose the usage of fUML2 as behavioral semantics speci-
fication language. fUML is standardized by the OMG and
defines the semantics of a key subset of the UML 2.3 meta-
model by specifying a virtual machine for executing mod-
els compliant to this subset. In particular, we argue to
use fUML for extending the DSML’s metamodel in terms
of fUML activities that describe how a model is executed.
Existing research has already investigated such a usage of
action languages similar to fUML with the result that such
semantics specifications are sufficient for this purpose and
comprehensible by language designers [14].
However, to establish fUML as a language for specifying the
behavioral semantics of DSMLs and leverage the full poten-
tial of having a formal semantics specification, the following
challenges have to be addressed. First, the current language
for specifying the abstract syntax of a DSML is MOF and
not UML; fUML, however, is a subset of UML. Therefore,
fUML has to be first integrated with MOF before it can be
used for MOF-based metamodels. Second, it is often not
feasible to model everything down to the very last detail
using plain fUML. Existing third-party libraries providing,
e.g., complex mathematical calculations or control of exter-
nal resources, may be required. Hence, the usage of external
libraries has to be facilitated in the semantics specification
of DSMLs. However, it is currently not possible to use ex-
ternal libraries from within the fUML virtual machine.
In this paper, we present ongoing research towards using
fUML as a standardized way for specifying the behavioral
semantics of DSMLs. Therefore, we discuss important re-
quirements for such an approach, show alternatives how
fUML can be integrated with MOF, demonstrate how it can
be used to specify the semantics of an example DSML, and
present an approach that enables the usage of external li-
braries in fUML-based specifications without extending the
fUML virtual machine or loosing platform-independence.
The remainder of this paper is structured as follows. Sec-
tion 2 summarizes related work regarding the semantics def-
inition of DSMLs. Requirements that shall be fulfilled by a
semantics specification approach are discussed in Section 3.
Section 4 introduces the proposed operational semantics ap-
proach for defining executable DSMLs based on fUML. In
Section 5, we present how the fUML-based semantics speci-

2http://www.omg.org/spec/FUML

fication can be extended by incorporating external libraries
and conclude in Section 6 with an outlook on future work.

2. RELATED WORK
The need for executable models stimulated intensive research
on how to define the behavioral semantics of modeling lan-
guages. Consequently, various approaches have been pro-
posed in the past. In the following, we give a brief overview
of these approaches.
Denotational and translational semantics approaches map
the constructs of a modeling language to constructs of an-
other language already having a formal semantics. This has
the advantage that existing tools for executing and analyz-
ing the target language can be used for executing the source
language. The drawback, however, is the fact that the se-
mantics of a language is defined by the mapping into the
target language leading to an additional level of indirection.
The definition of the mapping is a complex task and requires
a deep knowledge about the target language. Furthermore,
the results of the execution are only available in the target
language. Thus, the execution results have to be mapped
back to the source language. One example for a translational
semantics approach is the work of Chen et al. [3] who use
the Abstract State Machine formalism as target language.
Another example is Rivera et al. [13] who use Maude for
formalizing the behavioral semantics of DSMLs.
Compared to denotational and translational semantics, the
operational semantics approach is more light-weight, but
sufficient for executing models directly. One way for defining
an operational semantics is to introduce executability con-
cerns by defining graph transformation rules operating on
metamodel instances as proposed by Engels et al. [6]. An-
other possibility is to follow an object-oriented approach by
specifying the behavior of operations defined for the meta-
classes of a modeling language using a dedicated action lan-
guage. A plethora of action languages has been proposed
including the application of existing GPLs: Kermeta [11],
Model Execution Framework (MXF) [15], Smalltalk [5], Eif-
fel [12], xCore [4], Epsilon Object Language [7], and the ap-
proach proposed by Scheidgen and Fischer [14] to name just
a few. Our approach follows the same spirit, but instead of
introducing yet another action language, we employ fUML.
Thus, we use a standardized and UML 2 complied action
language which should act as a stimulus towards the estab-
lishment of a common action language for metamodeling.
Recently, Lai and Carpenter [9] also proposed the usage of
fUML for specifying the operational semantics of DSMLs.
However, they focus on the static verification of fUML mod-
els to identify structural flaws such as unused or empty mod-
els. The authors neither discuss the possible strategies for
using fUML as action language on the metamodeling level,
nor consider the dynamic analysis of fUML models. In con-
trast, the aim of our work is to enable the specification of
executable DSMLs by providing a framework that allows to
(semi-)automatically generate execution facilities, such as
model debugging or testing environments, and the integra-
tion with existing execution frameworks using APIs.

3. REQUIREMENTS
In the following we describe important requirements that
shall be fulfilled by semantics specification languages and
facilities to utilize the full potential of having a formal se-
mantics specification of a DSML.

Standardization. One very important requirement is that
the semantics specification shall be based on standardized
technologies. This not only enables interoperability and
vendor-independence, but the usage of well-established stan-
dard modeling technologies enables an eased application of
the semantics specification approach, as language designers
are already accustomed to apply them.
We will see in Section 4 that since our semantics specifica-
tion approach is based on MOF and fUML, only technolo-
gies standardized by the OMG are used for specifying the
abstract syntax as well as the semantics of a DSML. How-
ever, currently fUML is neither integrated with MOF, nor is
its usage as semantics specification language standardized.

Extensibility. When specifying the semantics of a DSML,
there might be the need to use external libraries. Specifying
for instance complex mathematical calculations by means of
an action language such as fUML in the course of the seman-
tics definition of a DSML is just out of scope of the language
specification process (if the language is not about complex
mathematical calculations). Therefore, a semantics specifi-
cation language needs to provide means for integrating other
languages in terms of libraries, thus hiding implementation
details outside the problem domain of the DSML.
In Section 5, we present how we provide the possibility to
integrate external libraries in our semantics specification ap-
proach based on fUML.

Reusability. As we will see in Section 4, specifying the se-
mantics of a DSML from scratch remains a complex task.
Therefore, means for reusing behavioral semantics specifica-
tions is highly desirable, as this would ease the task of speci-
fying the semantics tremendously. We envision the definition
of what we call “kernel semantics” that express reoccuring
patterns in behavioral semantics specifications (cf. [2] for a
similar approach using so-called “semantic units”). If we for
instance consider the various behavioral diagrams provided
by the UML, we can identify different patterns of behav-
ioral semantics, such as control flow and data flow used in
activities, and triggers and events driving the execution of
state machines. Having the formal specifications of such
kernel semantics at hand, we could use them to specify the
behavioral semantics of a DSML by composing the needed
semantics patterns. Another usage scenario would be to pro-
vide means for specializing existing semantics specifications.
This could be useful when introducing semantic variation
points into a language or when using a profile mechanism.
However, providing the means for specifying and reusing
kernel semantics is subject to future work.

Automation. Today, model execution is often realized ei-
ther by generating code out of models or by implementing a
model interpreter using a GPL. In both cases, the actual se-
mantics of the modeling language is only implicitly given. In
the case of code generation, the semantics is hidden within
the generation templates; when using a model interpreter,
the interpreter’s implementation actually defines the mod-
eling language’s semantics. Furthermore, using these ap-
proaches, model execution facilities, such as debuggers or
verifiers, have to be built from scratch for every DSML,
which entails high development efforts. Having an explicit
formal semantics specification for a DSML also enables us
to automatically generate model execution tools, such as de-
buggers, simulators, verifiers, and testing environments [2].

(a) Push down DSML to M1 / Pull up DSML to

M3 MOF

M2 fUML aDSML MM

«instanceOf» «instanceOf»

«instanceOf»

«transformedTo»

«instanceOf» «instanceOf» «instance

M1
aDSML OS

(in fUML AD)
aDSML MM
(in fUML CD)

aDSML Model
(in fUML OD)

«transform

«executes»

«operatesOn» «ontological
instanceOf»

«executes»

M2 (b) Pull up fUML to M3

MOF fUML
xMOF

fUMLaDSML MM aDSML OS

«instanceOf» «pulledUp»«instanceOf» «instanceOf»

«instanceOf»

«operatesOn»

«executes»

Of»

aDSML Model aDSML Model

medTo»

Figure 1: Two strategies for using fUML as semantics specification language

In particular, the following artifacts for building model ex-
ecution tools shall be generated from the semantics specifi-
cation. In order to reason about the execution of a DSML,
a trace model representing the runtime behavior of the exe-
cuted model is necessary. Such a trace model would provide
the information necessary for analyzing the model’s behav-
ior which constitutes the basis for several applications, such
as dynamic adaptation, runtime verification, as well as test-
ing. Further, for enabling the observation and control of
the model execution, a DSML-specific event model, as well
as a command API, have to be derived from the semantics
specification of the DSML. This is for instance required by
debuggers, simulators, or adaptation engines.
Enabling the generation of model execution tools for a DSML
from its semantics specification belongs to future work.

4. SPECIFYING SEMANTICS WITH FUML
In the operational semantics approach, executability is in-
troduced into the abstract syntax of a DSML using an action
language. Following object-orientation, this is done by spec-
ifying the bodies of metaclass operations using the chosen
action language, defining how models are executed.

4.1 xMOF: Integrating fUML with MOF
We propose an operational semantics approach for defining
executable DSMLs based on the new OMG standard fUML.
fUML defines a key subset of UML 2.3 and specifies a vir-
tual machine for executing compliant models. For modeling
structural aspects of a system, fUML contains a subset of
the Classes::Kernel package of UML. For modeling behav-
ior, a subset of the packages CommonBehaviors, Actions,
and Activities is included in fUML.
However, to establish fUML as a standardized specification
language for defining the operational semantics of DSMLs,
it has to be integrated with MOF, as MOF is the standard-
ized means for specifying the abstract syntax of DSMLs, and
not UML. As fUML uses the UML package Classes::Kernel
for defining the structural part of a model, which is also
merged into MOF for enabling the specification of the ab-
stract syntax of a DSML, the structural part of the fUML
metamodel complies with MOF. Therefore, we propose the
usage of the behavioral part of fUML for defining the op-
erational semantics of a DSML. However, when considering
the MOF metamodeling stack [8], fUML models are—such

as UML class and activity diagrams—situated on level M1,
whereas the DSML specification is located on level M2. To
overcome this level mismatch, we identified the following two
strategies, enabling the usage of fUML as semantics specifi-
cation language for DSMLs, which are depicted in Figure 1.

(a) Push down DSML to M1 / Pull up DSML to M2.
The first strategy is to apply a model-to-model transforma-
tion to generate a model on M1 level for a specified meta-
model of a DSML on level M2 in case a metamodel is already
available for the DSML (push down DSML to M1). The
generated model denoted as aDSML MM (in fUML CD) in
column (a) of Figure 1 is created by mapping the elements of
the DSML metamodel (aDSML MM) compliant to MOF to
elements of the fUML metamodel. As fUML uses the UML
package Classes::Kernel to represent the structural part of
a model and this UML package is also used in MOF for
specifying metamodels, this transformation works straight-
forward. With this transformation it is possible to define
fUML activities, specifying the operational semantics of the
DSML (aDSML OS (in fUML AD)). In order to execute a
DSML model (aDSML Model) it has to be transformed into
a fUML compliant representation of a corresponding object
diagram (aDSML Model (in fUML OD)) representing onto-
logical instances (cf. [8]) of the fUML classes which define
the metaclasses of the DSML (aDSML MM (in fUMLCD)).
In case no metamodel is available in the first place, one may
start on the M1 level by purely using fUML and generate a
metamodel of a DSML for the level M2 afterwards (pull up
DSML to M2). This approach has been used in [9].

(b) Pull up fUML to M3. A second strategy is to pull up
fUML from the metamodel level M2 to the meta-metamodel
level M3 by integrating it with MOF. This approach is de-
picted in column (b) of Figure 1. Using this approach, the
abstract syntax of a model in form of a metamodel denoted
as aDSML MM, as well as the operational semantics aDSML
OS, can be specified on the metamodel level M2 by the
means of this integrated meta-modeling language. The ab-
stract syntax can be expressed using the modeling concepts
provided by the package Classes::Kernel which is available
in MOF as well as in fUML. The operational semantics can
be specified using activities compliant to fUML, enabling the
execution of DSML models (aDSML Model).

syntax metamodel Net

1

Pl T iti

* *
+input

1

Place

- initialTokens :int

Transition
+output

*

*

11

TransitionConf

+ fire() :void
+ isEnabled() :boolean

PlaceConf

- tokens :int

+ addToken() :void +output

+input

*
()

+ removeToken() :void

+transition configs*

*
+place configs *

runtime configuration
metamodel

NetConf

+ run() :void

Figure 2: Metamodel of Petri Net DSML

The first strategy, which enables the usage of fUML as se-
mantics specification language by transforming DSML mod-
els between MOF and UML utilizing model transformations
has the advantage that present modeling tools already offer
the necessary facilities to implement it. However, applying
this approach also has a major drawback: one has to live in
two different worlds. On the one hand, the UML modeling
environments have to be used for defining the operational se-
mantics, as well as for executing, analyzing, and debugging
models, and on the other hand, models are normally defined
and manipulated in metamodeling environments. Thus, sim-
ilar drawbacks arise as mentioned in Section 2 for transla-
tional semantics approaches.
Therefore, we advocate the second strategy, i.e., pulling up
fUML to the meta-metamodel level M3 by integrating it with
MOF into a framework we call xMOF (eXecutable MOF).
xMOF merges MOF and fUML resulting in a metamodel-
ing language capable of specifying the abstract syntax of
a DSML using MOF constructs, as well as the operational
semantics of a DSML by the means of fUML activities.

4.2 xMOF: An Example
We demonstrate our approach by specifying the operational
semantics of Petri Nets. Figure 2 depicts the metamodel of
our Petri Net DSML. The upper part of Figure 2 shows the
syntax metamodel for representing a Petri Net. A Net con-
sists of Places and Transitions. Places hold a particular
amount of initialTokens and Transitions reference the
Places providing input and output.
For defining the operational semantics of a DSML, we ad-
ditionally introduce a so-called runtime configuration meta-
model. This metamodel contains metaclasses providing a
runtime representation of the corresponding syntax meta-
classes. The operations defined for the runtime metaclasses
are used for specifying the operational semantics by defining
a fUML activity for each operation. This approach has the
advantage that the syntax of the DSML is separated from
its runtime representation [6, 14]. The lower part of Fig-
ure 2 contains the runtime configuration metamodel of our
Petri Net DSML. At runtime, the Net, Places, and Transi-

tions are represented by instances of the runtime configura-
tion metaclasses NetConf, PlaceConf, and TransitionConf.
For a Place, the runtime representation stores the amount
of contained tokens at a given point in time. Please note

that we consider the initial token distribution as part of the
syntax model, therefore it is captured using the attribute
initialTokens of the syntax metaclass Place; whereas the
token distribution at runtime is part of the runtime config-
uration model and therewith captured using the attribute
tokens of the runtime metaclass PlaceConf.
Figure 3 depicts the fUML activities which specify the be-
havior of each operation defined for the runtime metaclasses.
These activities altogether completely specify the operational
semantics of our Petri Net DSML. The run() operation of
the metaclass NetConf is the main operation controlling the
execution of a Net. It repeatedly determines a list of en-
abled Transitions, i.e., Transitions where the operation
isEnabled() of the corresponding TransitionConf returns
true, and calls fire() for the first TransitionConf in this
list. The operation isEnabled() returns true, if all input
Places of a Transition hold at least one token. This infor-
mation is represented by the tokens attribute of the Place-

Conf representing an input Place. More precisely, the oper-
ation isEnabled() checks for a TransitionConf if there ex-
ists at least one input PlaceConf without tokens (tokens=0)
and returns false in this case, true otherwise. The oper-
ation fire() causes that the amount of tokens held by the
input and output PlaceConfs is updated accordingly. This
is done by decrementing the value of the tokens attribute
of the PlaceConf representing an input Place by calling re-

moveToken(), and incrementing it for output Places using
addToken(). Due to space limitations, only removeToken()

is depicted in Figure 3. The operational semantics specifica-
tion also has to define how the runtime configuration model
for a given syntactical model has to be initialized. Using
fUML, this can be done by specifying this initialization as
so-called classifier behavior which also calls the main oper-
ation of the semantics specification (run() in our example).

Our approach of using fUML as semantics specification lan-
guage has the advantage that only standardized technologies
are used. Please note that with the new OMG standard Alf3,
also a textual representation of fUML is available, enabling
a more compact specification of fUML models.

5. EXTENSIBILITY OF SEMANTICS
When generating code from models to execute them, one
may benefit from the full power of the target GPL and, as
a result, may utilize powerful libraries or interact with ex-
ternal resources, using their dedicated APIs. Unfortunately,
this benefit is usually not provided when weaving the behav-
ior into the abstract syntax of a DSML in terms of an action
language, such as fUML, because developers may not escape
the borders of the action languages’ virtual machines.
To overcome this major drawback, we propose an approach
for integrating external libraries with the fUML virtual ma-
chine. With this approach, we aim at realizing the following
requirements: neither the metamodel of fUML nor its vir-
tual machine should be extended, as this would break its
conformance to the OMG standard. Moreover, the usage
of external libraries should be transparent to the developer
when designing the operational semantics of the DSML us-
ing fUML. Thus, developers should be able to interact with
the components of the external libraries, including ingoing
and outgoing data objects of these components, just as with
any other component defined natively with fUML.

3http://www.omg.org/spec/ALF/

NetConf::run() TransitionConf::isEnabled()

Read

ReadSelf

Read input

ReadStructuralFeature

ReadSelf ReadStructuralFeature

result :
TransitionConf

p

object :
TransitionConf result :

Read

ReadSelf

result :
Read transition configs

ReadStructuralFeature

object :

TransitionConf result :
PlaceConf[*]

result :
NetConf

object :
NetConf result :

TransitionConf[*] «parallel» i t l fi
Select input place configs

ith t k 0TransitionConf[] «parallel» input place configs :
PlaceConfig[*]

with tokens=0

«parallel» transition configs : Select enabled transition configs object :p
TransitionConf[*]

ReadStructuralFeature

PlaceConf
result :int

target :
Read tokens

ReadStructuralFeature

decisionInputFlow

C ll i E bl d()

TransitionConfresult :
boolean

decisionInputFlow

[0]
Call isEnabled()

(TransitionConf::isEnabled)
decisionInputFlow

input place configs :
PlaceConfig[*]

transition configs :

decisionInputFlow

[true]

aceCo g[]

result :transition configs :
TransitionConf[*] list :

PlaceConf[*] S if f l

ValueSpecification

result :
boolean

list :TransitionConf[*] Size :
Li tSi

PlaceConf[]
> Specify false[true]

target :TransitionConfindex

ListSize
result :int

Specify true

ValueSpecification
[false]

d i i I tFl
Call fire()

(TransitionConf::fire)
Get :ListGet:int

Specify 1

ValueSpecification
Specify true

result :
boolean

ValueSpecification

decisionInputFlow

(TransitionConf::fire)

result :
TransitionConf

Specify 1

result :
int

boolean
Specify 0

result :int
TransitionConfint

T iti C f fi ()TransitionConf::fire()

object : «iterative»

result : Read ouput

ReadStructuralFeatureTransitionConf
«iterative»

Call addToken()
(Pl C f ddT k)

ReadSelf
TransitionConf

p
result :
PlaceConf[*]

output place configs : PlaceConf[*]

(PlaceConf::addToken)target :PlaceConf

Read
output place configs : PlaceConf[]

Read input

ReadStructuralFeature

bj t

«iterative»

Call removeToken()
Read inputobject :

TransitionConf result :
i t l fi Pl C f[*]

(PlaceConf::removeToken)target :PlaceConf

PlaceConf[*] input place configs : PlaceConf[*]

PlaceConf::removeToken()
object :
PlaceConf

result :
PlaceConf

R dSt t lF t result :int
x :int

lt i t

AddStructuralFeatureValue

Read

ReadSelf
Read tokens

ReadStructuralFeature result :int
Subtract :- result :int Set tokens

object :
PlaceConf

i t

value :int

y :int

Specify 1

ValueSpecification

p y
result :int

Figure 3: Semantics specification of Petri Net DSML using fUML

For realizing the aforementioned requirements, we propose
to integrate the required interfaces of the external libraries
into the fUML model and employ a dedicated integration
layer, which forwards calls of the integrated interfaces to
the actual external library at runtime. In the following, we
discuss these steps in more detail.

Importing external libraries. For importing the interfaces
of external libraries, we may apply MoDisco4, a reverse en-
gineering framework in the Eclipse ecosystem, or any other
comparable tool for extracting a class diagram representa-
tion in terms of classes, as well as their fields and operation
signatures of the required components from the external li-
braries. Once this class diagram is obtained, we may import
it into the fUML model. To avoid crowding the fUML model,

4http://www.eclipse.org/MoDisco/

users may select manually the specific classes and class mem-
bers they aim to use. Of course, in case they are not selected
by the user, we still have to import field types, as well as
operation parameter types and return types. The bodies
of the operations of the integrated classes can be omitted.
Instead, an empty fUML activity is added as behavior of
each imported operation. These empty activities act as spe-
cial place holder for the actual functionality of the external
library, as described in the following.

Integrating external libraries at runtime. Whenever ac-
tivities representing place holders for operations of imported
external libraries are called during the execution of the DSML,
a dedicated integration layer forwards the call to the external
library. To enable this layer to be notified whenever such a
place holder activity is called and to allow for pausing the ex-
ecution until the external library responds to the forwarded

call, we make use of an event mechanism and a command
API that we integrated into the standardized fUML virtual
machine (cf. [10]). The developed event mechanism notifies
listeners about the state of the fUML model execution; for
instance, it indicates that a specific activity has been en-
tered. The command API enables controlling the execution
precisely in terms of suspending the execution at a certain
fUML activity node, performing single execution steps, as
well as resuming the execution. It is worth noting that while
a model execution is suspended, we may access and modify
the runtime model of the execution. Based on this function-
ality, the integration layer may register itself as listener to
the fUML virtual machine and if a place holder activity is
entered, it may suspend the execution to forward the invo-
cation to the actual operation of the external library that
is represented by the place holder activity and integrate its
result back into the runtime model of the fUML execution.
The same is done when an integrated class is instantiated
in a fUML model. Instantiations, as well as modifications
of instance values, are also indicated by the fUML virtual
machine using dedicated events. Thus, when an imported
class is instantiated (or an existing instance is modified),
the integration layer may instantiate (or modify) an exist-
ing instance using the actual external library accordingly.
To maintain a mapping between the instances in the fUML
runtime and the actual instances of the external library, the
integration layer also has to keep track of all created in-
stances and their representatives in the fUML runtime.

In our Petri Net DSML example, one could require that
if multiple Transitions are enabled, one is randomly cho-
sen (instead of the first one) to enable a nondeterministic
execution of the Petri Net. Therefore, the value specifi-
cation action in the activity NetConf::run() that specifies
that the operation fire() is called for the first Transi-

tionConf of the list of enabled TransitionConfs, has to be
replaced by a call operation action triggering the execution
of an operation of an appropriate external library, such as
java.util.Random.

Using this approach of integrating external libraries into the
fUML virtual machine, enables language designers to exploit
the full power of third-party libraries in the semantics spec-
ification of their DSML.

6. CONCLUSION AND OUTLOOK
In this paper, we presented ongoing work towards the usage
of fUML as a standardized means for specifying the behav-
ioral semantics of DSMLs. We demonstrated how fUML can
be integrated with MOF and how existing libraries of pro-
gramming languages can be utilized in behavioral semantics
specifications.
The next step is the automatic generation of model execu-
tion tools for DSML. In previous work [10], we created the
basis for enabling the (semi-)automatic generation of execu-
tion tools, such as debuggers and testing environments. We
enhanced the reference implementation of the fUML virtual
machine in terms of a dedicated trace model, an event model,
and a command API, thus enabling the runtime analysis,
observation and control of the execution of fUML models.
Using these extensions, we plan to implement an approach
for deriving execution tooling support for DSMLs in terms
of dedicated model debuggers and testing engines.

Regarding the reusability of semantics specifications, we plan
to elaborate kernel semantics representing reoccuring pat-
terns in behavioral semantics specifications, such as for ex-
ample control flow semantics, by surveying the semantics
of existing DSMLs. Further, we plan to develop adequate
means for formalizing these kernel semantics to provide fa-
cilities to reuse the kernel semantics in the behavioral se-
mantics specification of DSMLs.

7. REFERENCES
[1] J. Bézivin. On the unification power of models.

Software and System Modeling, 4(2):171–188, 2005.

[2] B. R. Bryant, J. Gray, M. Mernik, P. J. Clarke, R. B.
France, and G. Karsai. Challenges and directions in
formalizing the semantics of modeling languages.
Computer Science and Information Systems,
8(2):225–253, 2011.

[3] K. Chen, J. Sztipanovits, S. Abdelwalhed, and
E. Jackson. Semantic anchoring with model
transformations. In Proc. of ECMDA-FA’05, pages
115–129, 2005.

[4] T. Clark, A. Evans, P. Sammut, and J. Willans.
Applied Metamodelling: A Foundation for Language
Driven Development. Ceteva, Sheffield, 2004.

[5] S. Ducasse and T. Gı̂rba. Using Smalltalk as a
reflective executable meta-language. In Proc. of
MODELS’06, pages 604–618, 2006.

[6] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer.
Dynamic meta modeling: A graphical approach to the
operational semantics of behavioral diagrams in UML.
In Proc. of UML’00, pages 323–337, 2000.

[7] D. S. Kolovos, R. F. Paige, and F. Polack. The
Epsilon Object Language (EOL). In Proc. of
ECMDA-FA’06, pages 128–142.

[8] T. Kühne. Matters of (meta-)modeling. Software and
System Modeling, 5(4):369–385, 2006.

[9] Q. Lai and A. Carpenter. Defining and verifying
behaviour of domain specific language with fUML. In
Workshop Proc. of BM-FA’12 @ ECMFA’12, pages
1–7, 2012.

[10] T. Mayerhofer, P. Langer, and G. Kappel. A runtime
model for fUML. Submitted to Models@run.time
(MRT’12) @ MoDELS’12, a draft version is available
at http://tinyurl.com/mrt-draft, 2012.

[11] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel. Weaving
executability into object-oriented meta-languages. In
Proc. of MODELS’05, pages 264–278, 2005.

[12] R. Paige, P. Brooke, and J. Ostroff.
Specification-driven development of an executable
metamodel in Eiffel. In Workshop Proc. of WiSME’04
@ UML’04, 2004.

[13] J. E. Rivera, F. Durán, and A. Vallecillo. On the
behavioral semantics of real-time domain specific
visual languages. In Workshop Proc. of WRLA’10 @
ETAPS’10, pages 174–190, 2010.

[14] M. Scheidgen and J. Fischer. Human comprehensible
and machine processable specifications of operational
semantics. In Proc. of ECMDA-FA’2007, pages
157–171, 2007.

[15] M. Soden and H. Eichler. Towards a model execution
framework for Eclipse. In Workshop Proc. of
BM-MDA’09 @ ECMDA’09, pages 1–7, 2009.

